| // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| // |
| // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| // PLEASE READ: Do you really need a singleton? If possible, use a |
| // function-local static of type base::NoDestructor<T> instead: |
| // |
| // Factory& Factory::GetInstance() { |
| // static base::NoDestructor<Factory> instance; |
| // return *instance; |
| // } |
| // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
| // |
| // Singletons make it hard to determine the lifetime of an object, which can |
| // lead to buggy code and spurious crashes. |
| // |
| // Instead of adding another singleton into the mix, try to identify either: |
| // a) An existing singleton that can manage your object's lifetime |
| // b) Locations where you can deterministically create the object and pass |
| // into other objects |
| // |
| // If you absolutely need a singleton, please keep them as trivial as possible |
| // and ideally a leaf dependency. Singletons get problematic when they attempt |
| // to do too much in their destructor or have circular dependencies. |
| |
| #ifndef BASE_MEMORY_SINGLETON_H_ |
| #define BASE_MEMORY_SINGLETON_H_ |
| |
| #include "base/at_exit.h" |
| #include "base/atomicops.h" |
| #include "base/base_export.h" |
| #include "base/lazy_instance_helpers.h" |
| #include "base/logging.h" |
| #include "base/macros.h" |
| #include "base/threading/thread_restrictions.h" |
| |
| namespace base { |
| |
| // Default traits for Singleton<Type>. Calls operator new and operator delete on |
| // the object. Registers automatic deletion at process exit. |
| // Overload if you need arguments or another memory allocation function. |
| template<typename Type> |
| struct DefaultSingletonTraits { |
| // Allocates the object. |
| static Type* New() { |
| // The parenthesis is very important here; it forces POD type |
| // initialization. |
| return new Type(); |
| } |
| |
| // Destroys the object. |
| static void Delete(Type* x) { |
| delete x; |
| } |
| |
| // Set to true to automatically register deletion of the object on process |
| // exit. See below for the required call that makes this happen. |
| static const bool kRegisterAtExit = true; |
| |
| #if DCHECK_IS_ON() |
| // Set to false to disallow access on a non-joinable thread. This is |
| // different from kRegisterAtExit because StaticMemorySingletonTraits allows |
| // access on non-joinable threads, and gracefully handles this. |
| static const bool kAllowedToAccessOnNonjoinableThread = false; |
| #endif |
| }; |
| |
| |
| // Alternate traits for use with the Singleton<Type>. Identical to |
| // DefaultSingletonTraits except that the Singleton will not be cleaned up |
| // at exit. |
| template<typename Type> |
| struct LeakySingletonTraits : public DefaultSingletonTraits<Type> { |
| static const bool kRegisterAtExit = false; |
| #if DCHECK_IS_ON() |
| static const bool kAllowedToAccessOnNonjoinableThread = true; |
| #endif |
| }; |
| |
| // Alternate traits for use with the Singleton<Type>. Allocates memory |
| // for the singleton instance from a static buffer. The singleton will |
| // be cleaned up at exit, but can't be revived after destruction unless |
| // the ResurrectForTesting() method is called. |
| // |
| // This is useful for a certain category of things, notably logging and |
| // tracing, where the singleton instance is of a type carefully constructed to |
| // be safe to access post-destruction. |
| // In logging and tracing you'll typically get stray calls at odd times, like |
| // during static destruction, thread teardown and the like, and there's a |
| // termination race on the heap-based singleton - e.g. if one thread calls |
| // get(), but then another thread initiates AtExit processing, the first thread |
| // may call into an object residing in unallocated memory. If the instance is |
| // allocated from the data segment, then this is survivable. |
| // |
| // The destructor is to deallocate system resources, in this case to unregister |
| // a callback the system will invoke when logging levels change. Note that |
| // this is also used in e.g. Chrome Frame, where you have to allow for the |
| // possibility of loading briefly into someone else's process space, and |
| // so leaking is not an option, as that would sabotage the state of your host |
| // process once you've unloaded. |
| template <typename Type> |
| struct StaticMemorySingletonTraits { |
| // WARNING: User has to support a New() which returns null. |
| static Type* New() { |
| // Only constructs once and returns pointer; otherwise returns null. |
| if (subtle::NoBarrier_AtomicExchange(&dead_, 1)) |
| return nullptr; |
| |
| return new (buffer_) Type(); |
| } |
| |
| static void Delete(Type* p) { |
| if (p) |
| p->Type::~Type(); |
| } |
| |
| static const bool kRegisterAtExit = true; |
| |
| #if DCHECK_IS_ON() |
| static const bool kAllowedToAccessOnNonjoinableThread = true; |
| #endif |
| |
| static void ResurrectForTesting() { subtle::NoBarrier_Store(&dead_, 0); } |
| |
| private: |
| alignas(Type) static char buffer_[sizeof(Type)]; |
| // Signal the object was already deleted, so it is not revived. |
| static subtle::Atomic32 dead_; |
| }; |
| |
| template <typename Type> |
| alignas(Type) char StaticMemorySingletonTraits<Type>::buffer_[sizeof(Type)]; |
| template <typename Type> |
| subtle::Atomic32 StaticMemorySingletonTraits<Type>::dead_ = 0; |
| |
| // The Singleton<Type, Traits, DifferentiatingType> class manages a single |
| // instance of Type which will be created on first use and will be destroyed at |
| // normal process exit). The Trait::Delete function will not be called on |
| // abnormal process exit. |
| // |
| // DifferentiatingType is used as a key to differentiate two different |
| // singletons having the same memory allocation functions but serving a |
| // different purpose. This is mainly used for Locks serving different purposes. |
| // |
| // Example usage: |
| // |
| // In your header: |
| // namespace base { |
| // template <typename T> |
| // struct DefaultSingletonTraits; |
| // } |
| // class FooClass { |
| // public: |
| // static FooClass* GetInstance(); <-- See comment below on this. |
| // void Bar() { ... } |
| // private: |
| // FooClass() { ... } |
| // friend struct base::DefaultSingletonTraits<FooClass>; |
| // |
| // DISALLOW_COPY_AND_ASSIGN(FooClass); |
| // }; |
| // |
| // In your source file: |
| // #include "base/memory/singleton.h" |
| // FooClass* FooClass::GetInstance() { |
| // return base::Singleton<FooClass>::get(); |
| // } |
| // |
| // Or for leaky singletons: |
| // #include "base/memory/singleton.h" |
| // FooClass* FooClass::GetInstance() { |
| // return base::Singleton< |
| // FooClass, base::LeakySingletonTraits<FooClass>>::get(); |
| // } |
| // |
| // And to call methods on FooClass: |
| // FooClass::GetInstance()->Bar(); |
| // |
| // NOTE: The method accessing Singleton<T>::get() has to be named as GetInstance |
| // and it is important that FooClass::GetInstance() is not inlined in the |
| // header. This makes sure that when source files from multiple targets include |
| // this header they don't end up with different copies of the inlined code |
| // creating multiple copies of the singleton. |
| // |
| // Singleton<> has no non-static members and doesn't need to actually be |
| // instantiated. |
| // |
| // This class is itself thread-safe. The underlying Type must of course be |
| // thread-safe if you want to use it concurrently. Two parameters may be tuned |
| // depending on the user's requirements. |
| // |
| // Glossary: |
| // RAE = kRegisterAtExit |
| // |
| // On every platform, if Traits::RAE is true, the singleton will be destroyed at |
| // process exit. More precisely it uses AtExitManager which requires an |
| // object of this type to be instantiated. AtExitManager mimics the semantics |
| // of atexit() such as LIFO order but under Windows is safer to call. For more |
| // information see at_exit.h. |
| // |
| // If Traits::RAE is false, the singleton will not be freed at process exit, |
| // thus the singleton will be leaked if it is ever accessed. Traits::RAE |
| // shouldn't be false unless absolutely necessary. Remember that the heap where |
| // the object is allocated may be destroyed by the CRT anyway. |
| // |
| // Caveats: |
| // (a) Every call to get(), operator->() and operator*() incurs some overhead |
| // (16ns on my P4/2.8GHz) to check whether the object has already been |
| // initialized. You may wish to cache the result of get(); it will not |
| // change. |
| // |
| // (b) Your factory function must never throw an exception. This class is not |
| // exception-safe. |
| // |
| |
| template <typename Type, |
| typename Traits = DefaultSingletonTraits<Type>, |
| typename DifferentiatingType = Type> |
| class Singleton { |
| private: |
| // Classes using the Singleton<T> pattern should declare a GetInstance() |
| // method and call Singleton::get() from within that. |
| friend Type* Type::GetInstance(); |
| |
| // This class is safe to be constructed and copy-constructed since it has no |
| // member. |
| |
| // Return a pointer to the one true instance of the class. |
| static Type* get() { |
| #if DCHECK_IS_ON() |
| if (!Traits::kAllowedToAccessOnNonjoinableThread) |
| ThreadRestrictions::AssertSingletonAllowed(); |
| #endif |
| |
| return subtle::GetOrCreateLazyPointer( |
| &instance_, &CreatorFunc, nullptr, |
| Traits::kRegisterAtExit ? OnExit : nullptr, nullptr); |
| } |
| |
| // Internal method used as an adaptor for GetOrCreateLazyPointer(). Do not use |
| // outside of that use case. |
| static Type* CreatorFunc(void* /* creator_arg*/) { return Traits::New(); } |
| |
| // Adapter function for use with AtExit(). This should be called single |
| // threaded, so don't use atomic operations. |
| // Calling OnExit while singleton is in use by other threads is a mistake. |
| static void OnExit(void* /*unused*/) { |
| // AtExit should only ever be register after the singleton instance was |
| // created. We should only ever get here with a valid instance_ pointer. |
| Traits::Delete(reinterpret_cast<Type*>(subtle::NoBarrier_Load(&instance_))); |
| instance_ = 0; |
| } |
| static subtle::AtomicWord instance_; |
| }; |
| |
| template <typename Type, typename Traits, typename DifferentiatingType> |
| subtle::AtomicWord Singleton<Type, Traits, DifferentiatingType>::instance_ = 0; |
| |
| } // namespace base |
| |
| #endif // BASE_MEMORY_SINGLETON_H_ |