Add most of base/ build/ buildtools/ testing/ third_party/googletest/
Enough to make ./tools/gn/bootstrap/bootstrap.py work on Linux.
Change-Id: I94de95f1ce87dd3672d1a99c62254edee8be45bd
Reviewed-on: https://gn-review.googlesource.com/1100
Reviewed-by: Petr Hosek <phosek@google.com>
Commit-Queue: Scott Graham <scottmg@chromium.org>
diff --git a/base/numerics/BUILD.gn b/base/numerics/BUILD.gn
new file mode 100644
index 0000000..0bb8dd1
--- /dev/null
+++ b/base/numerics/BUILD.gn
@@ -0,0 +1,28 @@
+# Copyright (c) 2017 The Chromium Authors. All rights reserved.
+# Use of this source code is governed by a BSD-style license that can be
+# found in the LICENSE file.
+
+# This is a dependency-free, header-only, library, and it needs to stay that
+# way to facilitate pulling it into various third-party projects. So, this
+# file is here to protect against accidentally introducing external
+# dependencies or depending on internal implementation details.
+source_set("base_numerics") {
+ visibility = [ "//base/*" ]
+ sources = [
+ "checked_math_impl.h",
+ "clamped_math_impl.h",
+ "safe_conversions_arm_impl.h",
+ "safe_conversions_impl.h",
+ "safe_math_arm_impl.h",
+ "safe_math_clang_gcc_impl.h",
+ "safe_math_shared_impl.h",
+ ]
+ public = [
+ "checked_math.h",
+ "clamped_math.h",
+ "math_constants.h",
+ "ranges.h",
+ "safe_conversions.h",
+ "safe_math.h",
+ ]
+}
diff --git a/base/numerics/DEPS b/base/numerics/DEPS
new file mode 100644
index 0000000..d95bf13
--- /dev/null
+++ b/base/numerics/DEPS
@@ -0,0 +1,7 @@
+# This is a dependency-free, header-only, library, and it needs to stay that
+# way to facilitate pulling it into various third-party projects. So, this
+# file is here to protect against accidentally introducing dependencies.
+include_rules = [
+ "-base",
+ "+base/numerics",
+]
diff --git a/base/numerics/OWNERS b/base/numerics/OWNERS
new file mode 100644
index 0000000..5493fba
--- /dev/null
+++ b/base/numerics/OWNERS
@@ -0,0 +1,5 @@
+jschuh@chromium.org
+tsepez@chromium.org
+
+
+# COMPONENT: Internals
diff --git a/base/numerics/README.md b/base/numerics/README.md
new file mode 100644
index 0000000..896b124
--- /dev/null
+++ b/base/numerics/README.md
@@ -0,0 +1,409 @@
+# `base/numerics`
+
+This directory contains a dependency-free, header-only library of templates
+providing well-defined semantics for safely and performantly handling a variety
+of numeric operations, including most common arithmetic operations and
+conversions.
+
+The public API is broken out into the following header files:
+
+* `checked_math.h` contains the `CheckedNumeric` template class and helper
+ functions for performing arithmetic and conversion operations that detect
+ errors and boundary conditions (e.g. overflow, truncation, etc.).
+* `clamped_math.h` contains the `ClampedNumeric` template class and
+ helper functions for performing fast, clamped (i.e. non-sticky saturating)
+ arithmetic operations and conversions.
+* `safe_conversions.h` contains the `StrictNumeric` template class and
+ a collection of custom casting templates and helper functions for safely
+ converting between a range of numeric types.
+* `safe_math.h` includes all of the previously mentioned headers.
+
+*** aside
+**Note:** The `Numeric` template types implicitly convert from C numeric types
+and `Numeric` templates that are convertable to an underlying C numeric type.
+The conversion priority for `Numeric` type coercions is:
+
+* `StrictNumeric` coerces to `ClampedNumeric` and `CheckedNumeric`
+* `ClampedNumeric` coerces to `CheckedNumeric`
+***
+
+[TOC]
+
+## Common patterns and use-cases
+
+The following covers the preferred style for the most common uses of this
+library. Please don't cargo-cult from anywhere else. 😉
+
+### Performing checked arithmetic conversions
+
+The `checked_cast` template converts between arbitrary arithmetic types, and is
+used for cases where a conversion failure should result in program termination:
+
+```cpp
+// Crash if signed_value is out of range for buff_size.
+size_t buff_size = checked_cast<size_t>(signed_value);
+```
+
+### Performing saturated (clamped) arithmetic conversions
+
+The `saturated_cast` template converts between arbitrary arithmetic types, and
+is used in cases where an out-of-bounds source value should be saturated to the
+corresponding maximum or minimum of the destination type:
+
+```cpp
+// Convert from float with saturation to INT_MAX, INT_MIN, or 0 for NaN.
+int int_value = saturated_cast<int>(floating_point_value);
+```
+
+### Enforcing arithmetic conversions at compile-time
+
+The `strict_cast` enforces type restrictions at compile-time and results in
+emitted code that is identical to a normal `static_cast`. However, a
+`strict_cast` assignment will fail to compile if the destination type cannot
+represent the full range of the source type:
+
+```cpp
+// Throw a compiler error if byte_value is changed to an out-of-range-type.
+int int_value = strict_cast<int>(byte_value);
+```
+
+You can also enforce these compile-time restrictions on function parameters by
+using the `StrictNumeric` template:
+
+```cpp
+// Throw a compiler error if the size argument cannot be represented by a
+// size_t (e.g. passing an int will fail to compile).
+bool AllocateBuffer(void** buffer, StrictCast<size_t> size);
+```
+
+### Comparing values between arbitrary arithmetic types
+
+Both the `StrictNumeric` and `ClampedNumeric` types provide well defined
+comparisons between arbitrary arithmetic types. This allows you to perform
+comparisons that are not legal or would trigger compiler warnings or errors
+under the normal arithmetic promotion rules:
+
+```cpp
+bool foo(unsigned value, int upper_bound) {
+ // Converting to StrictNumeric allows this comparison to work correctly.
+ if (MakeStrictNum(value) >= upper_bound)
+ return false;
+```
+
+*** note
+**Warning:** Do not perform manual conversions using the comparison operators.
+Instead, use the cast templates described in the previous sections, or the
+constexpr template functions `IsValueInRangeForNumericType` and
+`IsTypeInRangeForNumericType`, as these templates properly handle the full range
+of corner cases and employ various optimizations.
+***
+
+### Calculating a buffer size (checked arithmetic)
+
+When making exact calculations—such as for buffer lengths—it's often necessary
+to know when those calculations trigger an overflow, undefined behavior, or
+other boundary conditions. The `CheckedNumeric` template does this by storing
+a bit determining whether or not some arithmetic operation has occured that
+would put the variable in an "invalid" state. Attempting to extract the value
+from a variable in an invalid state will trigger a check/trap condition, that
+by default will result in process termination.
+
+Here's an example of a buffer calculation using a `CheckedNumeric` type (note:
+the AssignIfValid method will trigger a compile error if the result is ignored).
+
+```cpp
+// Calculate the buffer size and detect if an overflow occurs.
+size_t size;
+if (!CheckAdd(kHeaderSize, CheckMul(count, kItemSize)).AssignIfValid(&size)) {
+ // Handle an overflow error...
+}
+```
+
+### Calculating clamped coordinates (non-sticky saturating arithmetic)
+
+Certain classes of calculations—such as coordinate calculations—require
+well-defined semantics that always produce a valid result on boundary
+conditions. The `ClampedNumeric` template addresses this by providing
+performant, non-sticky saturating arithmetic operations.
+
+Here's an example of using a `ClampedNumeric` to calculate an operation
+insetting a rectangle.
+
+```cpp
+// Use clamped arithmetic since inset calculations might overflow.
+void Rect::Inset(int left, int top, int right, int bottom) {
+ origin_ += Vector2d(left, top);
+ set_width(ClampSub(width(), ClampAdd(left, right)));
+ set_height(ClampSub(height(), ClampAdd(top, bottom)));
+}
+```
+
+*** note
+The `ClampedNumeric` type is not "sticky", which means the saturation is not
+retained across individual operations. As such, one arithmetic operation may
+result in a saturated value, while the next operation may then "desaturate"
+the value. Here's an example:
+
+```cpp
+ClampedNumeric<int> value = INT_MAX;
+++value; // value is still INT_MAX, due to saturation.
+--value; // value is now (INT_MAX - 1), because saturation is not sticky.
+```
+
+***
+
+## Conversion functions and StrictNumeric<> in safe_conversions.h
+
+This header includes a collection of helper `constexpr` templates for safely
+performing a range of conversions, assignments, and tests.
+
+### Safe casting templates
+
+* `as_signed()` - Returns the supplied integral value as a signed type of
+ the same width.
+* `as_unsigned()` - Returns the supplied integral value as an unsigned type
+ of the same width.
+* `checked_cast<>()` - Analogous to `static_cast<>` for numeric types, except
+ that by default it will trigger a crash on an out-of-bounds conversion (e.g.
+ overflow, underflow, NaN to integral) or a compile error if the conversion
+ error can be detected at compile time. The crash handler can be overridden
+ to perform a behavior other than crashing.
+* `saturated_cast<>()` - Analogous to `static_cast` for numeric types, except
+ that it returns a saturated result when the specified numeric conversion
+ would otherwise overflow or underflow. An NaN source returns 0 by
+ default, but can be overridden to return a different result.
+* `strict_cast<>()` - Analogous to `static_cast` for numeric types, except
+ this causes a compile failure if the destination type is not large
+ enough to contain any value in the source type. It performs no runtime
+ checking and thus introduces no runtime overhead.
+
+### Other helper and conversion functions
+
+* `IsValueInRangeForNumericType<>()` - A convenience function that returns
+ true if the type supplied as the template parameter can represent the value
+ passed as an argument to the function.
+* `IsTypeInRangeForNumericType<>()` - A convenience function that evaluates
+ entirely at compile-time and returns true if the destination type (first
+ template parameter) can represent the full range of the source type
+ (second template parameter).
+* `IsValueNegative()` - A convenience function that will accept any
+ arithmetic type as an argument and will return whether the value is less
+ than zero. Unsigned types always return false.
+* `SafeUnsignedAbs()` - Returns the absolute value of the supplied integer
+ parameter as an unsigned result (thus avoiding an overflow if the value
+ is the signed, two's complement minimum).
+
+### StrictNumeric<>
+
+`StrictNumeric<>` is a wrapper type that performs assignments and copies via
+the `strict_cast` template, and can perform valid arithmetic comparisons
+across any range of arithmetic types. `StrictNumeric` is the return type for
+values extracted from a `CheckedNumeric` class instance. The raw numeric value
+is extracted via `static_cast` to the underlying type or any type with
+sufficient range to represent the underlying type.
+
+* `MakeStrictNum()` - Creates a new `StrictNumeric` from the underlying type
+ of the supplied arithmetic or StrictNumeric type.
+* `SizeT` - Alias for `StrictNumeric<size_t>`.
+
+## CheckedNumeric<> in checked_math.h
+
+`CheckedNumeric<>` implements all the logic and operators for detecting integer
+boundary conditions such as overflow, underflow, and invalid conversions.
+The `CheckedNumeric` type implicitly converts from floating point and integer
+data types, and contains overloads for basic arithmetic operations (i.e.: `+`,
+`-`, `*`, `/` for all types and `%`, `<<`, `>>`, `&`, `|`, `^` for integers).
+However, *the [variadic template functions
+](#CheckedNumeric_in-checked_math_h-Non_member-helper-functions)
+are the prefered API,* as they remove type ambiguities and help prevent a number
+of common errors. The variadic functions can also be more performant, as they
+eliminate redundant expressions that are unavoidable with the with the operator
+overloads. (Ideally the compiler should optimize those away, but better to avoid
+them in the first place.)
+
+Type promotions are a slightly modified version of the [standard C/C++ numeric
+promotions
+](http://en.cppreference.com/w/cpp/language/implicit_conversion#Numeric_promotions)
+with the two differences being that *there is no default promotion to int*
+and *bitwise logical operations always return an unsigned of the wider type.*
+
+### Members
+
+The unary negation, increment, and decrement operators are supported, along
+with the following unary arithmetic methods, which return a new
+`CheckedNumeric` as a result of the operation:
+
+* `Abs()` - Absolute value.
+* `UnsignedAbs()` - Absolute value as an equal-width unsigned underlying type
+ (valid for only integral types).
+* `Max()` - Returns whichever is greater of the current instance or argument.
+ The underlying return type is whichever has the greatest magnitude.
+* `Min()` - Returns whichever is lowest of the current instance or argument.
+ The underlying return type is whichever has can represent the lowest
+ number in the smallest width (e.g. int8_t over unsigned, int over
+ int8_t, and float over int).
+
+The following are for converting `CheckedNumeric` instances:
+
+* `type` - The underlying numeric type.
+* `AssignIfValid()` - Assigns the underlying value to the supplied
+ destination pointer if the value is currently valid and within the
+ range supported by the destination type. Returns true on success.
+* `Cast<>()` - Instance method returning a `CheckedNumeric` derived from
+ casting the current instance to a `CheckedNumeric` of the supplied
+ destination type.
+
+*** aside
+The following member functions return a `StrictNumeric`, which is valid for
+comparison and assignment operations, but will trigger a compile failure on
+attempts to assign to a type of insufficient range. The underlying value can
+be extracted by an explicit `static_cast` to the underlying type or any type
+with sufficient range to represent the underlying type.
+***
+
+* `IsValid()` - Returns true if the underlying numeric value is valid (i.e.
+ has not wrapped or saturated and is not the result of an invalid
+ conversion).
+* `ValueOrDie()` - Returns the underlying value. If the state is not valid
+ this call will trigger a crash by default (but may be overridden by
+ supplying an alternate handler to the template).
+* `ValueOrDefault()` - Returns the current value, or the supplied default if
+ the state is not valid (but will not crash).
+
+**Comparison operators are explicitly not provided** for `CheckedNumeric`
+types because they could result in a crash if the type is not in a valid state.
+Patterns like the following should be used instead:
+
+```cpp
+// Either input or padding (or both) may be arbitrary sizes.
+size_t buff_size;
+if (!CheckAdd(input, padding, kHeaderLength).AssignIfValid(&buff_size) ||
+ buff_size >= kMaxBuffer) {
+ // Handle an error...
+} else {
+ // Do stuff on success...
+}
+```
+
+### Non-member helper functions
+
+The following variadic convenience functions, which accept standard arithmetic
+or `CheckedNumeric` types, perform arithmetic operations, and return a
+`CheckedNumeric` result. The supported functions are:
+
+* `CheckAdd()` - Addition.
+* `CheckSub()` - Subtraction.
+* `CheckMul()` - Multiplication.
+* `CheckDiv()` - Division.
+* `CheckMod()` - Modulus (integer only).
+* `CheckLsh()` - Left integer shift (integer only).
+* `CheckRsh()` - Right integer shift (integer only).
+* `CheckAnd()` - Bitwise AND (integer only with unsigned result).
+* `CheckOr()` - Bitwise OR (integer only with unsigned result).
+* `CheckXor()` - Bitwise XOR (integer only with unsigned result).
+* `CheckMax()` - Maximum of supplied arguments.
+* `CheckMin()` - Minimum of supplied arguments.
+
+The following wrapper functions can be used to avoid the template
+disambiguator syntax when converting a destination type.
+
+* `IsValidForType<>()` in place of: `a.template IsValid<>()`
+* `ValueOrDieForType<>()` in place of: `a.template ValueOrDie<>()`
+* `ValueOrDefaultForType<>()` in place of: `a.template ValueOrDefault<>()`
+
+The following general utility methods is are useful for converting from
+arithmetic types to `CheckedNumeric` types:
+
+* `MakeCheckedNum()` - Creates a new `CheckedNumeric` from the underlying type
+ of the supplied arithmetic or directly convertible type.
+
+## ClampedNumeric<> in clamped_math.h
+
+`ClampedNumeric<>` implements all the logic and operators for clamped
+(non-sticky saturating) arithmetic operations and conversions. The
+`ClampedNumeric` type implicitly converts back and forth between floating point
+and integer data types, saturating on assignment as appropriate. It contains
+overloads for basic arithmetic operations (i.e.: `+`, `-`, `*`, `/` for
+all types and `%`, `<<`, `>>`, `&`, `|`, `^` for integers) along with comparison
+operators for arithmetic types of any size. However, *the [variadic template
+functions
+](#ClampedNumeric_in-clamped_math_h-Non_member-helper-functions)
+are the prefered API,* as they remove type ambiguities and help prevent
+a number of common errors. The variadic functions can also be more performant,
+as they eliminate redundant expressions that are unavoidable with the operator
+overloads. (Ideally the compiler should optimize those away, but better to avoid
+them in the first place.)
+
+Type promotions are a slightly modified version of the [standard C/C++ numeric
+promotions
+](http://en.cppreference.com/w/cpp/language/implicit_conversion#Numeric_promotions)
+with the two differences being that *there is no default promotion to int*
+and *bitwise logical operations always return an unsigned of the wider type.*
+
+*** aside
+Most arithmetic operations saturate normally, to the numeric limit in the
+direction of the sign. The potentially unusual cases are:
+
+* **Division:** Division by zero returns the saturated limit in the direction
+ of sign of the dividend (first argument). The one exception is 0/0, which
+ returns zero (although logically is NaN).
+* **Modulus:** Division by zero returns the dividend (first argument).
+* **Left shift:** Non-zero values saturate in the direction of the signed
+ limit (max/min), even for shifts larger than the bit width. 0 shifted any
+ amount results in 0.
+* **Right shift:** Negative values saturate to -1. Positive or 0 saturates
+ to 0. (Effectively just an unbounded arithmetic-right-shift.)
+* **Bitwise operations:** No saturation; bit pattern is identical to
+ non-saturated bitwise operations.
+***
+
+### Members
+
+The unary negation, increment, and decrement operators are supported, along
+with the following unary arithmetic methods, which return a new
+`ClampedNumeric` as a result of the operation:
+
+* `Abs()` - Absolute value.
+* `UnsignedAbs()` - Absolute value as an equal-width unsigned underlying type
+ (valid for only integral types).
+* `Max()` - Returns whichever is greater of the current instance or argument.
+ The underlying return type is whichever has the greatest magnitude.
+* `Min()` - Returns whichever is lowest of the current instance or argument.
+ The underlying return type is whichever has can represent the lowest
+ number in the smallest width (e.g. int8_t over unsigned, int over
+ int8_t, and float over int).
+
+The following are for converting `ClampedNumeric` instances:
+
+* `type` - The underlying numeric type.
+* `RawValue()` - Returns the raw value as the underlying arithmetic type. This
+ is useful when e.g. assigning to an auto type or passing as a deduced
+ template parameter.
+* `Cast<>()` - Instance method returning a `ClampedNumeric` derived from
+ casting the current instance to a `ClampedNumeric` of the supplied
+ destination type.
+
+### Non-member helper functions
+
+The following variadic convenience functions, which accept standard arithmetic
+or `ClampedNumeric` types, perform arithmetic operations, and return a
+`ClampedNumeric` result. The supported functions are:
+
+* `ClampAdd()` - Addition.
+* `ClampSub()` - Subtraction.
+* `ClampMul()` - Multiplication.
+* `ClampDiv()` - Division.
+* `ClampMod()` - Modulus (integer only).
+* `ClampLsh()` - Left integer shift (integer only).
+* `ClampRsh()` - Right integer shift (integer only).
+* `ClampAnd()` - Bitwise AND (integer only with unsigned result).
+* `ClampOr()` - Bitwise OR (integer only with unsigned result).
+* `ClampXor()` - Bitwise XOR (integer only with unsigned result).
+* `ClampMax()` - Maximum of supplied arguments.
+* `ClampMin()` - Minimum of supplied arguments.
+
+The following is a general utility method that is useful for converting
+to a `ClampedNumeric` type:
+
+* `MakeClampedNum()` - Creates a new `ClampedNumeric` from the underlying type
+ of the supplied arithmetic or directly convertible type.
diff --git a/base/numerics/checked_math.h b/base/numerics/checked_math.h
new file mode 100644
index 0000000..ede3344
--- /dev/null
+++ b/base/numerics/checked_math.h
@@ -0,0 +1,393 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_CHECKED_MATH_H_
+#define BASE_NUMERICS_CHECKED_MATH_H_
+
+#include <stddef.h>
+
+#include <limits>
+#include <type_traits>
+
+#include "base/numerics/checked_math_impl.h"
+
+namespace base {
+namespace internal {
+
+template <typename T>
+class CheckedNumeric {
+ static_assert(std::is_arithmetic<T>::value,
+ "CheckedNumeric<T>: T must be a numeric type.");
+
+ public:
+ using type = T;
+
+ constexpr CheckedNumeric() = default;
+
+ // Copy constructor.
+ template <typename Src>
+ constexpr CheckedNumeric(const CheckedNumeric<Src>& rhs)
+ : state_(rhs.state_.value(), rhs.IsValid()) {}
+
+ template <typename Src>
+ friend class CheckedNumeric;
+
+ // This is not an explicit constructor because we implicitly upgrade regular
+ // numerics to CheckedNumerics to make them easier to use.
+ template <typename Src>
+ constexpr CheckedNumeric(Src value) // NOLINT(runtime/explicit)
+ : state_(value) {
+ static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
+ }
+
+ // This is not an explicit constructor because we want a seamless conversion
+ // from StrictNumeric types.
+ template <typename Src>
+ constexpr CheckedNumeric(
+ StrictNumeric<Src> value) // NOLINT(runtime/explicit)
+ : state_(static_cast<Src>(value)) {}
+
+ // IsValid() - The public API to test if a CheckedNumeric is currently valid.
+ // A range checked destination type can be supplied using the Dst template
+ // parameter.
+ template <typename Dst = T>
+ constexpr bool IsValid() const {
+ return state_.is_valid() &&
+ IsValueInRangeForNumericType<Dst>(state_.value());
+ }
+
+ // AssignIfValid(Dst) - Assigns the underlying value if it is currently valid
+ // and is within the range supported by the destination type. Returns true if
+ // successful and false otherwise.
+ template <typename Dst>
+#if defined(__clang__) || defined(__GNUC__)
+ __attribute__((warn_unused_result))
+#elif defined(_MSC_VER)
+ _Check_return_
+#endif
+ constexpr bool
+ AssignIfValid(Dst* result) const {
+ return BASE_NUMERICS_LIKELY(IsValid<Dst>())
+ ? ((*result = static_cast<Dst>(state_.value())), true)
+ : false;
+ }
+
+ // ValueOrDie() - The primary accessor for the underlying value. If the
+ // current state is not valid it will CHECK and crash.
+ // A range checked destination type can be supplied using the Dst template
+ // parameter, which will trigger a CHECK if the value is not in bounds for
+ // the destination.
+ // The CHECK behavior can be overridden by supplying a handler as a
+ // template parameter, for test code, etc. However, the handler cannot access
+ // the underlying value, and it is not available through other means.
+ template <typename Dst = T, class CheckHandler = CheckOnFailure>
+ constexpr StrictNumeric<Dst> ValueOrDie() const {
+ return BASE_NUMERICS_LIKELY(IsValid<Dst>())
+ ? static_cast<Dst>(state_.value())
+ : CheckHandler::template HandleFailure<Dst>();
+ }
+
+ // ValueOrDefault(T default_value) - A convenience method that returns the
+ // current value if the state is valid, and the supplied default_value for
+ // any other state.
+ // A range checked destination type can be supplied using the Dst template
+ // parameter. WARNING: This function may fail to compile or CHECK at runtime
+ // if the supplied default_value is not within range of the destination type.
+ template <typename Dst = T, typename Src>
+ constexpr StrictNumeric<Dst> ValueOrDefault(const Src default_value) const {
+ return BASE_NUMERICS_LIKELY(IsValid<Dst>())
+ ? static_cast<Dst>(state_.value())
+ : checked_cast<Dst>(default_value);
+ }
+
+ // Returns a checked numeric of the specified type, cast from the current
+ // CheckedNumeric. If the current state is invalid or the destination cannot
+ // represent the result then the returned CheckedNumeric will be invalid.
+ template <typename Dst>
+ constexpr CheckedNumeric<typename UnderlyingType<Dst>::type> Cast() const {
+ return *this;
+ }
+
+ // This friend method is available solely for providing more detailed logging
+ // in the the tests. Do not implement it in production code, because the
+ // underlying values may change at any time.
+ template <typename U>
+ friend U GetNumericValueForTest(const CheckedNumeric<U>& src);
+
+ // Prototypes for the supported arithmetic operator overloads.
+ template <typename Src>
+ constexpr CheckedNumeric& operator+=(const Src rhs);
+ template <typename Src>
+ constexpr CheckedNumeric& operator-=(const Src rhs);
+ template <typename Src>
+ constexpr CheckedNumeric& operator*=(const Src rhs);
+ template <typename Src>
+ constexpr CheckedNumeric& operator/=(const Src rhs);
+ template <typename Src>
+ constexpr CheckedNumeric& operator%=(const Src rhs);
+ template <typename Src>
+ constexpr CheckedNumeric& operator<<=(const Src rhs);
+ template <typename Src>
+ constexpr CheckedNumeric& operator>>=(const Src rhs);
+ template <typename Src>
+ constexpr CheckedNumeric& operator&=(const Src rhs);
+ template <typename Src>
+ constexpr CheckedNumeric& operator|=(const Src rhs);
+ template <typename Src>
+ constexpr CheckedNumeric& operator^=(const Src rhs);
+
+ constexpr CheckedNumeric operator-() const {
+ // The negation of two's complement int min is int min, so we simply
+ // check for that in the constexpr case.
+ // We use an optimized code path for a known run-time variable.
+ return MustTreatAsConstexpr(state_.value()) || !std::is_signed<T>::value ||
+ std::is_floating_point<T>::value
+ ? CheckedNumeric<T>(
+ NegateWrapper(state_.value()),
+ IsValid() && (!std::is_signed<T>::value ||
+ std::is_floating_point<T>::value ||
+ NegateWrapper(state_.value()) !=
+ std::numeric_limits<T>::lowest()))
+ : FastRuntimeNegate();
+ }
+
+ constexpr CheckedNumeric operator~() const {
+ return CheckedNumeric<decltype(InvertWrapper(T()))>(
+ InvertWrapper(state_.value()), IsValid());
+ }
+
+ constexpr CheckedNumeric Abs() const {
+ return !IsValueNegative(state_.value()) ? *this : -*this;
+ }
+
+ template <typename U>
+ constexpr CheckedNumeric<typename MathWrapper<CheckedMaxOp, T, U>::type> Max(
+ const U rhs) const {
+ using R = typename UnderlyingType<U>::type;
+ using result_type = typename MathWrapper<CheckedMaxOp, T, U>::type;
+ // TODO(jschuh): This can be converted to the MathOp version and remain
+ // constexpr once we have C++14 support.
+ return CheckedNumeric<result_type>(
+ static_cast<result_type>(
+ IsGreater<T, R>::Test(state_.value(), Wrapper<U>::value(rhs))
+ ? state_.value()
+ : Wrapper<U>::value(rhs)),
+ state_.is_valid() && Wrapper<U>::is_valid(rhs));
+ }
+
+ template <typename U>
+ constexpr CheckedNumeric<typename MathWrapper<CheckedMinOp, T, U>::type> Min(
+ const U rhs) const {
+ using R = typename UnderlyingType<U>::type;
+ using result_type = typename MathWrapper<CheckedMinOp, T, U>::type;
+ // TODO(jschuh): This can be converted to the MathOp version and remain
+ // constexpr once we have C++14 support.
+ return CheckedNumeric<result_type>(
+ static_cast<result_type>(
+ IsLess<T, R>::Test(state_.value(), Wrapper<U>::value(rhs))
+ ? state_.value()
+ : Wrapper<U>::value(rhs)),
+ state_.is_valid() && Wrapper<U>::is_valid(rhs));
+ }
+
+ // This function is available only for integral types. It returns an unsigned
+ // integer of the same width as the source type, containing the absolute value
+ // of the source, and properly handling signed min.
+ constexpr CheckedNumeric<typename UnsignedOrFloatForSize<T>::type>
+ UnsignedAbs() const {
+ return CheckedNumeric<typename UnsignedOrFloatForSize<T>::type>(
+ SafeUnsignedAbs(state_.value()), state_.is_valid());
+ }
+
+ constexpr CheckedNumeric& operator++() {
+ *this += 1;
+ return *this;
+ }
+
+ constexpr CheckedNumeric operator++(int) {
+ CheckedNumeric value = *this;
+ *this += 1;
+ return value;
+ }
+
+ constexpr CheckedNumeric& operator--() {
+ *this -= 1;
+ return *this;
+ }
+
+ constexpr CheckedNumeric operator--(int) {
+ CheckedNumeric value = *this;
+ *this -= 1;
+ return value;
+ }
+
+ // These perform the actual math operations on the CheckedNumerics.
+ // Binary arithmetic operations.
+ template <template <typename, typename, typename> class M,
+ typename L,
+ typename R>
+ static constexpr CheckedNumeric MathOp(const L lhs, const R rhs) {
+ using Math = typename MathWrapper<M, L, R>::math;
+ T result = 0;
+ bool is_valid =
+ Wrapper<L>::is_valid(lhs) && Wrapper<R>::is_valid(rhs) &&
+ Math::Do(Wrapper<L>::value(lhs), Wrapper<R>::value(rhs), &result);
+ return CheckedNumeric<T>(result, is_valid);
+ }
+
+ // Assignment arithmetic operations.
+ template <template <typename, typename, typename> class M, typename R>
+ constexpr CheckedNumeric& MathOp(const R rhs) {
+ using Math = typename MathWrapper<M, T, R>::math;
+ T result = 0; // Using T as the destination saves a range check.
+ bool is_valid = state_.is_valid() && Wrapper<R>::is_valid(rhs) &&
+ Math::Do(state_.value(), Wrapper<R>::value(rhs), &result);
+ *this = CheckedNumeric<T>(result, is_valid);
+ return *this;
+ }
+
+ private:
+ CheckedNumericState<T> state_;
+
+ CheckedNumeric FastRuntimeNegate() const {
+ T result;
+ bool success = CheckedSubOp<T, T>::Do(T(0), state_.value(), &result);
+ return CheckedNumeric<T>(result, IsValid() && success);
+ }
+
+ template <typename Src>
+ constexpr CheckedNumeric(Src value, bool is_valid)
+ : state_(value, is_valid) {}
+
+ // These wrappers allow us to handle state the same way for both
+ // CheckedNumeric and POD arithmetic types.
+ template <typename Src>
+ struct Wrapper {
+ static constexpr bool is_valid(Src) { return true; }
+ static constexpr Src value(Src value) { return value; }
+ };
+
+ template <typename Src>
+ struct Wrapper<CheckedNumeric<Src>> {
+ static constexpr bool is_valid(const CheckedNumeric<Src> v) {
+ return v.IsValid();
+ }
+ static constexpr Src value(const CheckedNumeric<Src> v) {
+ return v.state_.value();
+ }
+ };
+
+ template <typename Src>
+ struct Wrapper<StrictNumeric<Src>> {
+ static constexpr bool is_valid(const StrictNumeric<Src>) { return true; }
+ static constexpr Src value(const StrictNumeric<Src> v) {
+ return static_cast<Src>(v);
+ }
+ };
+};
+
+// Convenience functions to avoid the ugly template disambiguator syntax.
+template <typename Dst, typename Src>
+constexpr bool IsValidForType(const CheckedNumeric<Src> value) {
+ return value.template IsValid<Dst>();
+}
+
+template <typename Dst, typename Src>
+constexpr StrictNumeric<Dst> ValueOrDieForType(
+ const CheckedNumeric<Src> value) {
+ return value.template ValueOrDie<Dst>();
+}
+
+template <typename Dst, typename Src, typename Default>
+constexpr StrictNumeric<Dst> ValueOrDefaultForType(
+ const CheckedNumeric<Src> value,
+ const Default default_value) {
+ return value.template ValueOrDefault<Dst>(default_value);
+}
+
+// Convience wrapper to return a new CheckedNumeric from the provided arithmetic
+// or CheckedNumericType.
+template <typename T>
+constexpr CheckedNumeric<typename UnderlyingType<T>::type> MakeCheckedNum(
+ const T value) {
+ return value;
+}
+
+// These implement the variadic wrapper for the math operations.
+template <template <typename, typename, typename> class M,
+ typename L,
+ typename R>
+constexpr CheckedNumeric<typename MathWrapper<M, L, R>::type> CheckMathOp(
+ const L lhs,
+ const R rhs) {
+ using Math = typename MathWrapper<M, L, R>::math;
+ return CheckedNumeric<typename Math::result_type>::template MathOp<M>(lhs,
+ rhs);
+}
+
+// General purpose wrapper template for arithmetic operations.
+template <template <typename, typename, typename> class M,
+ typename L,
+ typename R,
+ typename... Args>
+constexpr CheckedNumeric<typename ResultType<M, L, R, Args...>::type>
+CheckMathOp(const L lhs, const R rhs, const Args... args) {
+ return CheckMathOp<M>(CheckMathOp<M>(lhs, rhs), args...);
+}
+
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Add, +, +=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Sub, -, -=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Mul, *, *=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Div, /, /=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Mod, %, %=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Lsh, <<, <<=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Rsh, >>, >>=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, And, &, &=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Or, |, |=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Xor, ^, ^=)
+BASE_NUMERIC_ARITHMETIC_VARIADIC(Checked, Check, Max)
+BASE_NUMERIC_ARITHMETIC_VARIADIC(Checked, Check, Min)
+
+// These are some extra StrictNumeric operators to support simple pointer
+// arithmetic with our result types. Since wrapping on a pointer is always
+// bad, we trigger the CHECK condition here.
+template <typename L, typename R>
+L* operator+(L* lhs, const StrictNumeric<R> rhs) {
+ uintptr_t result = CheckAdd(reinterpret_cast<uintptr_t>(lhs),
+ CheckMul(sizeof(L), static_cast<R>(rhs)))
+ .template ValueOrDie<uintptr_t>();
+ return reinterpret_cast<L*>(result);
+}
+
+template <typename L, typename R>
+L* operator-(L* lhs, const StrictNumeric<R> rhs) {
+ uintptr_t result = CheckSub(reinterpret_cast<uintptr_t>(lhs),
+ CheckMul(sizeof(L), static_cast<R>(rhs)))
+ .template ValueOrDie<uintptr_t>();
+ return reinterpret_cast<L*>(result);
+}
+
+} // namespace internal
+
+using internal::CheckedNumeric;
+using internal::IsValidForType;
+using internal::ValueOrDieForType;
+using internal::ValueOrDefaultForType;
+using internal::MakeCheckedNum;
+using internal::CheckMax;
+using internal::CheckMin;
+using internal::CheckAdd;
+using internal::CheckSub;
+using internal::CheckMul;
+using internal::CheckDiv;
+using internal::CheckMod;
+using internal::CheckLsh;
+using internal::CheckRsh;
+using internal::CheckAnd;
+using internal::CheckOr;
+using internal::CheckXor;
+
+} // namespace base
+
+#endif // BASE_NUMERICS_CHECKED_MATH_H_
diff --git a/base/numerics/checked_math_impl.h b/base/numerics/checked_math_impl.h
new file mode 100644
index 0000000..e083389
--- /dev/null
+++ b/base/numerics/checked_math_impl.h
@@ -0,0 +1,567 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_CHECKED_MATH_IMPL_H_
+#define BASE_NUMERICS_CHECKED_MATH_IMPL_H_
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include <climits>
+#include <cmath>
+#include <cstdlib>
+#include <limits>
+#include <type_traits>
+
+#include "base/numerics/safe_conversions.h"
+#include "base/numerics/safe_math_shared_impl.h"
+
+namespace base {
+namespace internal {
+
+template <typename T>
+constexpr bool CheckedAddImpl(T x, T y, T* result) {
+ static_assert(std::is_integral<T>::value, "Type must be integral");
+ // Since the value of x+y is undefined if we have a signed type, we compute
+ // it using the unsigned type of the same size.
+ using UnsignedDst = typename std::make_unsigned<T>::type;
+ using SignedDst = typename std::make_signed<T>::type;
+ UnsignedDst ux = static_cast<UnsignedDst>(x);
+ UnsignedDst uy = static_cast<UnsignedDst>(y);
+ UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy);
+ *result = static_cast<T>(uresult);
+ // Addition is valid if the sign of (x + y) is equal to either that of x or
+ // that of y.
+ return (std::is_signed<T>::value)
+ ? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) >= 0
+ : uresult >= uy; // Unsigned is either valid or underflow.
+}
+
+template <typename T, typename U, class Enable = void>
+struct CheckedAddOp {};
+
+template <typename T, typename U>
+struct CheckedAddOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ // TODO(jschuh) Make this "constexpr if" once we're C++17.
+ if (CheckedAddFastOp<T, U>::is_supported)
+ return CheckedAddFastOp<T, U>::Do(x, y, result);
+
+ // Double the underlying type up to a full machine word.
+ using FastPromotion = typename FastIntegerArithmeticPromotion<T, U>::type;
+ using Promotion =
+ typename std::conditional<(IntegerBitsPlusSign<FastPromotion>::value >
+ IntegerBitsPlusSign<intptr_t>::value),
+ typename BigEnoughPromotion<T, U>::type,
+ FastPromotion>::type;
+ // Fail if either operand is out of range for the promoted type.
+ // TODO(jschuh): This could be made to work for a broader range of values.
+ if (BASE_NUMERICS_UNLIKELY(!IsValueInRangeForNumericType<Promotion>(x) ||
+ !IsValueInRangeForNumericType<Promotion>(y))) {
+ return false;
+ }
+
+ Promotion presult = {};
+ bool is_valid = true;
+ if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
+ presult = static_cast<Promotion>(x) + static_cast<Promotion>(y);
+ } else {
+ is_valid = CheckedAddImpl(static_cast<Promotion>(x),
+ static_cast<Promotion>(y), &presult);
+ }
+ *result = static_cast<V>(presult);
+ return is_valid && IsValueInRangeForNumericType<V>(presult);
+ }
+};
+
+template <typename T>
+constexpr bool CheckedSubImpl(T x, T y, T* result) {
+ static_assert(std::is_integral<T>::value, "Type must be integral");
+ // Since the value of x+y is undefined if we have a signed type, we compute
+ // it using the unsigned type of the same size.
+ using UnsignedDst = typename std::make_unsigned<T>::type;
+ using SignedDst = typename std::make_signed<T>::type;
+ UnsignedDst ux = static_cast<UnsignedDst>(x);
+ UnsignedDst uy = static_cast<UnsignedDst>(y);
+ UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy);
+ *result = static_cast<T>(uresult);
+ // Subtraction is valid if either x and y have same sign, or (x-y) and x have
+ // the same sign.
+ return (std::is_signed<T>::value)
+ ? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) >= 0
+ : x >= y;
+}
+
+template <typename T, typename U, class Enable = void>
+struct CheckedSubOp {};
+
+template <typename T, typename U>
+struct CheckedSubOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ // TODO(jschuh) Make this "constexpr if" once we're C++17.
+ if (CheckedSubFastOp<T, U>::is_supported)
+ return CheckedSubFastOp<T, U>::Do(x, y, result);
+
+ // Double the underlying type up to a full machine word.
+ using FastPromotion = typename FastIntegerArithmeticPromotion<T, U>::type;
+ using Promotion =
+ typename std::conditional<(IntegerBitsPlusSign<FastPromotion>::value >
+ IntegerBitsPlusSign<intptr_t>::value),
+ typename BigEnoughPromotion<T, U>::type,
+ FastPromotion>::type;
+ // Fail if either operand is out of range for the promoted type.
+ // TODO(jschuh): This could be made to work for a broader range of values.
+ if (BASE_NUMERICS_UNLIKELY(!IsValueInRangeForNumericType<Promotion>(x) ||
+ !IsValueInRangeForNumericType<Promotion>(y))) {
+ return false;
+ }
+
+ Promotion presult = {};
+ bool is_valid = true;
+ if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
+ presult = static_cast<Promotion>(x) - static_cast<Promotion>(y);
+ } else {
+ is_valid = CheckedSubImpl(static_cast<Promotion>(x),
+ static_cast<Promotion>(y), &presult);
+ }
+ *result = static_cast<V>(presult);
+ return is_valid && IsValueInRangeForNumericType<V>(presult);
+ }
+};
+
+template <typename T>
+constexpr bool CheckedMulImpl(T x, T y, T* result) {
+ static_assert(std::is_integral<T>::value, "Type must be integral");
+ // Since the value of x*y is potentially undefined if we have a signed type,
+ // we compute it using the unsigned type of the same size.
+ using UnsignedDst = typename std::make_unsigned<T>::type;
+ using SignedDst = typename std::make_signed<T>::type;
+ const UnsignedDst ux = SafeUnsignedAbs(x);
+ const UnsignedDst uy = SafeUnsignedAbs(y);
+ UnsignedDst uresult = static_cast<UnsignedDst>(ux * uy);
+ const bool is_negative =
+ std::is_signed<T>::value && static_cast<SignedDst>(x ^ y) < 0;
+ *result = is_negative ? 0 - uresult : uresult;
+ // We have a fast out for unsigned identity or zero on the second operand.
+ // After that it's an unsigned overflow check on the absolute value, with
+ // a +1 bound for a negative result.
+ return uy <= UnsignedDst(!std::is_signed<T>::value || is_negative) ||
+ ux <= (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy;
+}
+
+template <typename T, typename U, class Enable = void>
+struct CheckedMulOp {};
+
+template <typename T, typename U>
+struct CheckedMulOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ // TODO(jschuh) Make this "constexpr if" once we're C++17.
+ if (CheckedMulFastOp<T, U>::is_supported)
+ return CheckedMulFastOp<T, U>::Do(x, y, result);
+
+ using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
+ // Verify the destination type can hold the result (always true for 0).
+ if (BASE_NUMERICS_UNLIKELY((!IsValueInRangeForNumericType<Promotion>(x) ||
+ !IsValueInRangeForNumericType<Promotion>(y)) &&
+ x && y)) {
+ return false;
+ }
+
+ Promotion presult = {};
+ bool is_valid = true;
+ if (CheckedMulFastOp<Promotion, Promotion>::is_supported) {
+ // The fast op may be available with the promoted type.
+ is_valid = CheckedMulFastOp<Promotion, Promotion>::Do(x, y, &presult);
+ } else if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
+ presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
+ } else {
+ is_valid = CheckedMulImpl(static_cast<Promotion>(x),
+ static_cast<Promotion>(y), &presult);
+ }
+ *result = static_cast<V>(presult);
+ return is_valid && IsValueInRangeForNumericType<V>(presult);
+ }
+};
+
+// Division just requires a check for a zero denominator or an invalid negation
+// on signed min/-1.
+template <typename T, typename U, class Enable = void>
+struct CheckedDivOp {};
+
+template <typename T, typename U>
+struct CheckedDivOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ if (BASE_NUMERICS_UNLIKELY(!y))
+ return false;
+
+ // The overflow check can be compiled away if we don't have the exact
+ // combination of types needed to trigger this case.
+ using Promotion = typename BigEnoughPromotion<T, U>::type;
+ if (BASE_NUMERICS_UNLIKELY(
+ (std::is_signed<T>::value && std::is_signed<U>::value &&
+ IsTypeInRangeForNumericType<T, Promotion>::value &&
+ static_cast<Promotion>(x) ==
+ std::numeric_limits<Promotion>::lowest() &&
+ y == static_cast<U>(-1)))) {
+ return false;
+ }
+
+ // This branch always compiles away if the above branch wasn't removed.
+ if (BASE_NUMERICS_UNLIKELY((!IsValueInRangeForNumericType<Promotion>(x) ||
+ !IsValueInRangeForNumericType<Promotion>(y)) &&
+ x)) {
+ return false;
+ }
+
+ Promotion presult = Promotion(x) / Promotion(y);
+ *result = static_cast<V>(presult);
+ return IsValueInRangeForNumericType<V>(presult);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct CheckedModOp {};
+
+template <typename T, typename U>
+struct CheckedModOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ using Promotion = typename BigEnoughPromotion<T, U>::type;
+ if (BASE_NUMERICS_LIKELY(y)) {
+ Promotion presult = static_cast<Promotion>(x) % static_cast<Promotion>(y);
+ *result = static_cast<Promotion>(presult);
+ return IsValueInRangeForNumericType<V>(presult);
+ }
+ return false;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct CheckedLshOp {};
+
+// Left shift. Shifts less than 0 or greater than or equal to the number
+// of bits in the promoted type are undefined. Shifts of negative values
+// are undefined. Otherwise it is defined when the result fits.
+template <typename T, typename U>
+struct CheckedLshOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = T;
+ template <typename V>
+ static constexpr bool Do(T x, U shift, V* result) {
+ // Disallow negative numbers and verify the shift is in bounds.
+ if (BASE_NUMERICS_LIKELY(!IsValueNegative(x) &&
+ as_unsigned(shift) <
+ as_unsigned(std::numeric_limits<T>::digits))) {
+ // Shift as unsigned to avoid undefined behavior.
+ *result = static_cast<V>(as_unsigned(x) << shift);
+ // If the shift can be reversed, we know it was valid.
+ return *result >> shift == x;
+ }
+
+ // Handle the legal corner-case of a full-width signed shift of zero.
+ return std::is_signed<T>::value && !x &&
+ as_unsigned(shift) == as_unsigned(std::numeric_limits<T>::digits);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct CheckedRshOp {};
+
+// Right shift. Shifts less than 0 or greater than or equal to the number
+// of bits in the promoted type are undefined. Otherwise, it is always defined,
+// but a right shift of a negative value is implementation-dependent.
+template <typename T, typename U>
+struct CheckedRshOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = T;
+ template <typename V>
+ static bool Do(T x, U shift, V* result) {
+ // Use the type conversion push negative values out of range.
+ if (BASE_NUMERICS_LIKELY(as_unsigned(shift) <
+ IntegerBitsPlusSign<T>::value)) {
+ T tmp = x >> shift;
+ *result = static_cast<V>(tmp);
+ return IsValueInRangeForNumericType<V>(tmp);
+ }
+ return false;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct CheckedAndOp {};
+
+// For simplicity we support only unsigned integer results.
+template <typename T, typename U>
+struct CheckedAndOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename std::make_unsigned<
+ typename MaxExponentPromotion<T, U>::type>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ result_type tmp = static_cast<result_type>(x) & static_cast<result_type>(y);
+ *result = static_cast<V>(tmp);
+ return IsValueInRangeForNumericType<V>(tmp);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct CheckedOrOp {};
+
+// For simplicity we support only unsigned integers.
+template <typename T, typename U>
+struct CheckedOrOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename std::make_unsigned<
+ typename MaxExponentPromotion<T, U>::type>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ result_type tmp = static_cast<result_type>(x) | static_cast<result_type>(y);
+ *result = static_cast<V>(tmp);
+ return IsValueInRangeForNumericType<V>(tmp);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct CheckedXorOp {};
+
+// For simplicity we support only unsigned integers.
+template <typename T, typename U>
+struct CheckedXorOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename std::make_unsigned<
+ typename MaxExponentPromotion<T, U>::type>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ result_type tmp = static_cast<result_type>(x) ^ static_cast<result_type>(y);
+ *result = static_cast<V>(tmp);
+ return IsValueInRangeForNumericType<V>(tmp);
+ }
+};
+
+// Max doesn't really need to be implemented this way because it can't fail,
+// but it makes the code much cleaner to use the MathOp wrappers.
+template <typename T, typename U, class Enable = void>
+struct CheckedMaxOp {};
+
+template <typename T, typename U>
+struct CheckedMaxOp<
+ T,
+ U,
+ typename std::enable_if<std::is_arithmetic<T>::value &&
+ std::is_arithmetic<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ result_type tmp = IsGreater<T, U>::Test(x, y) ? static_cast<result_type>(x)
+ : static_cast<result_type>(y);
+ *result = static_cast<V>(tmp);
+ return IsValueInRangeForNumericType<V>(tmp);
+ }
+};
+
+// Min doesn't really need to be implemented this way because it can't fail,
+// but it makes the code much cleaner to use the MathOp wrappers.
+template <typename T, typename U, class Enable = void>
+struct CheckedMinOp {};
+
+template <typename T, typename U>
+struct CheckedMinOp<
+ T,
+ U,
+ typename std::enable_if<std::is_arithmetic<T>::value &&
+ std::is_arithmetic<U>::value>::type> {
+ using result_type = typename LowestValuePromotion<T, U>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ result_type tmp = IsLess<T, U>::Test(x, y) ? static_cast<result_type>(x)
+ : static_cast<result_type>(y);
+ *result = static_cast<V>(tmp);
+ return IsValueInRangeForNumericType<V>(tmp);
+ }
+};
+
+// This is just boilerplate that wraps the standard floating point arithmetic.
+// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
+#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
+ template <typename T, typename U> \
+ struct Checked##NAME##Op< \
+ T, U, \
+ typename std::enable_if<std::is_floating_point<T>::value || \
+ std::is_floating_point<U>::value>::type> { \
+ using result_type = typename MaxExponentPromotion<T, U>::type; \
+ template <typename V> \
+ static constexpr bool Do(T x, U y, V* result) { \
+ using Promotion = typename MaxExponentPromotion<T, U>::type; \
+ Promotion presult = x OP y; \
+ *result = static_cast<V>(presult); \
+ return IsValueInRangeForNumericType<V>(presult); \
+ } \
+ };
+
+BASE_FLOAT_ARITHMETIC_OPS(Add, +)
+BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
+BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
+BASE_FLOAT_ARITHMETIC_OPS(Div, /)
+
+#undef BASE_FLOAT_ARITHMETIC_OPS
+
+// Floats carry around their validity state with them, but integers do not. So,
+// we wrap the underlying value in a specialization in order to hide that detail
+// and expose an interface via accessors.
+enum NumericRepresentation {
+ NUMERIC_INTEGER,
+ NUMERIC_FLOATING,
+ NUMERIC_UNKNOWN
+};
+
+template <typename NumericType>
+struct GetNumericRepresentation {
+ static const NumericRepresentation value =
+ std::is_integral<NumericType>::value
+ ? NUMERIC_INTEGER
+ : (std::is_floating_point<NumericType>::value ? NUMERIC_FLOATING
+ : NUMERIC_UNKNOWN);
+};
+
+template <typename T,
+ NumericRepresentation type = GetNumericRepresentation<T>::value>
+class CheckedNumericState {};
+
+// Integrals require quite a bit of additional housekeeping to manage state.
+template <typename T>
+class CheckedNumericState<T, NUMERIC_INTEGER> {
+ private:
+ // is_valid_ precedes value_ because member intializers in the constructors
+ // are evaluated in field order, and is_valid_ must be read when initializing
+ // value_.
+ bool is_valid_;
+ T value_;
+
+ // Ensures that a type conversion does not trigger undefined behavior.
+ template <typename Src>
+ static constexpr T WellDefinedConversionOrZero(const Src value,
+ const bool is_valid) {
+ using SrcType = typename internal::UnderlyingType<Src>::type;
+ return (std::is_integral<SrcType>::value || is_valid)
+ ? static_cast<T>(value)
+ : static_cast<T>(0);
+ }
+
+ public:
+ template <typename Src, NumericRepresentation type>
+ friend class CheckedNumericState;
+
+ constexpr CheckedNumericState() : is_valid_(true), value_(0) {}
+
+ template <typename Src>
+ constexpr CheckedNumericState(Src value, bool is_valid)
+ : is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)),
+ value_(WellDefinedConversionOrZero(value, is_valid_)) {
+ static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
+ }
+
+ // Copy constructor.
+ template <typename Src>
+ constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
+ : is_valid_(rhs.IsValid()),
+ value_(WellDefinedConversionOrZero(rhs.value(), is_valid_)) {}
+
+ template <typename Src>
+ constexpr explicit CheckedNumericState(Src value)
+ : is_valid_(IsValueInRangeForNumericType<T>(value)),
+ value_(WellDefinedConversionOrZero(value, is_valid_)) {}
+
+ constexpr bool is_valid() const { return is_valid_; }
+ constexpr T value() const { return value_; }
+};
+
+// Floating points maintain their own validity, but need translation wrappers.
+template <typename T>
+class CheckedNumericState<T, NUMERIC_FLOATING> {
+ private:
+ T value_;
+
+ // Ensures that a type conversion does not trigger undefined behavior.
+ template <typename Src>
+ static constexpr T WellDefinedConversionOrNaN(const Src value,
+ const bool is_valid) {
+ using SrcType = typename internal::UnderlyingType<Src>::type;
+ return (StaticDstRangeRelationToSrcRange<T, SrcType>::value ==
+ NUMERIC_RANGE_CONTAINED ||
+ is_valid)
+ ? static_cast<T>(value)
+ : std::numeric_limits<T>::quiet_NaN();
+ }
+
+ public:
+ template <typename Src, NumericRepresentation type>
+ friend class CheckedNumericState;
+
+ constexpr CheckedNumericState() : value_(0.0) {}
+
+ template <typename Src>
+ constexpr CheckedNumericState(Src value, bool is_valid)
+ : value_(WellDefinedConversionOrNaN(value, is_valid)) {}
+
+ template <typename Src>
+ constexpr explicit CheckedNumericState(Src value)
+ : value_(WellDefinedConversionOrNaN(
+ value,
+ IsValueInRangeForNumericType<T>(value))) {}
+
+ // Copy constructor.
+ template <typename Src>
+ constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
+ : value_(WellDefinedConversionOrNaN(
+ rhs.value(),
+ rhs.is_valid() && IsValueInRangeForNumericType<T>(rhs.value()))) {}
+
+ constexpr bool is_valid() const {
+ // Written this way because std::isfinite is not reliably constexpr.
+ return MustTreatAsConstexpr(value_)
+ ? value_ <= std::numeric_limits<T>::max() &&
+ value_ >= std::numeric_limits<T>::lowest()
+ : std::isfinite(value_);
+ }
+ constexpr T value() const { return value_; }
+};
+
+} // namespace internal
+} // namespace base
+
+#endif // BASE_NUMERICS_CHECKED_MATH_IMPL_H_
diff --git a/base/numerics/clamped_math.h b/base/numerics/clamped_math.h
new file mode 100644
index 0000000..b184363
--- /dev/null
+++ b/base/numerics/clamped_math.h
@@ -0,0 +1,262 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_CLAMPED_MATH_H_
+#define BASE_NUMERICS_CLAMPED_MATH_H_
+
+#include <stddef.h>
+
+#include <limits>
+#include <type_traits>
+
+#include "base/numerics/clamped_math_impl.h"
+
+namespace base {
+namespace internal {
+
+template <typename T>
+class ClampedNumeric {
+ static_assert(std::is_arithmetic<T>::value,
+ "ClampedNumeric<T>: T must be a numeric type.");
+
+ public:
+ using type = T;
+
+ constexpr ClampedNumeric() : value_(0) {}
+
+ // Copy constructor.
+ template <typename Src>
+ constexpr ClampedNumeric(const ClampedNumeric<Src>& rhs)
+ : value_(saturated_cast<T>(rhs.value_)) {}
+
+ template <typename Src>
+ friend class ClampedNumeric;
+
+ // This is not an explicit constructor because we implicitly upgrade regular
+ // numerics to ClampedNumerics to make them easier to use.
+ template <typename Src>
+ constexpr ClampedNumeric(Src value) // NOLINT(runtime/explicit)
+ : value_(saturated_cast<T>(value)) {
+ static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
+ }
+
+ // This is not an explicit constructor because we want a seamless conversion
+ // from StrictNumeric types.
+ template <typename Src>
+ constexpr ClampedNumeric(
+ StrictNumeric<Src> value) // NOLINT(runtime/explicit)
+ : value_(saturated_cast<T>(static_cast<Src>(value))) {}
+
+ // Returns a ClampedNumeric of the specified type, cast from the current
+ // ClampedNumeric, and saturated to the destination type.
+ template <typename Dst>
+ constexpr ClampedNumeric<typename UnderlyingType<Dst>::type> Cast() const {
+ return *this;
+ }
+
+ // Prototypes for the supported arithmetic operator overloads.
+ template <typename Src>
+ constexpr ClampedNumeric& operator+=(const Src rhs);
+ template <typename Src>
+ constexpr ClampedNumeric& operator-=(const Src rhs);
+ template <typename Src>
+ constexpr ClampedNumeric& operator*=(const Src rhs);
+ template <typename Src>
+ constexpr ClampedNumeric& operator/=(const Src rhs);
+ template <typename Src>
+ constexpr ClampedNumeric& operator%=(const Src rhs);
+ template <typename Src>
+ constexpr ClampedNumeric& operator<<=(const Src rhs);
+ template <typename Src>
+ constexpr ClampedNumeric& operator>>=(const Src rhs);
+ template <typename Src>
+ constexpr ClampedNumeric& operator&=(const Src rhs);
+ template <typename Src>
+ constexpr ClampedNumeric& operator|=(const Src rhs);
+ template <typename Src>
+ constexpr ClampedNumeric& operator^=(const Src rhs);
+
+ constexpr ClampedNumeric operator-() const {
+ // The negation of two's complement int min is int min, so that's the
+ // only overflow case where we will saturate.
+ return ClampedNumeric<T>(SaturatedNegWrapper(value_));
+ }
+
+ constexpr ClampedNumeric operator~() const {
+ return ClampedNumeric<decltype(InvertWrapper(T()))>(InvertWrapper(value_));
+ }
+
+ constexpr ClampedNumeric Abs() const {
+ // The negation of two's complement int min is int min, so that's the
+ // only overflow case where we will saturate.
+ return ClampedNumeric<T>(SaturatedAbsWrapper(value_));
+ }
+
+ template <typename U>
+ constexpr ClampedNumeric<typename MathWrapper<ClampedMaxOp, T, U>::type> Max(
+ const U rhs) const {
+ using result_type = typename MathWrapper<ClampedMaxOp, T, U>::type;
+ return ClampedNumeric<result_type>(
+ ClampedMaxOp<T, U>::Do(value_, Wrapper<U>::value(rhs)));
+ }
+
+ template <typename U>
+ constexpr ClampedNumeric<typename MathWrapper<ClampedMinOp, T, U>::type> Min(
+ const U rhs) const {
+ using result_type = typename MathWrapper<ClampedMinOp, T, U>::type;
+ return ClampedNumeric<result_type>(
+ ClampedMinOp<T, U>::Do(value_, Wrapper<U>::value(rhs)));
+ }
+
+ // This function is available only for integral types. It returns an unsigned
+ // integer of the same width as the source type, containing the absolute value
+ // of the source, and properly handling signed min.
+ constexpr ClampedNumeric<typename UnsignedOrFloatForSize<T>::type>
+ UnsignedAbs() const {
+ return ClampedNumeric<typename UnsignedOrFloatForSize<T>::type>(
+ SafeUnsignedAbs(value_));
+ }
+
+ constexpr ClampedNumeric& operator++() {
+ *this += 1;
+ return *this;
+ }
+
+ constexpr ClampedNumeric operator++(int) {
+ ClampedNumeric value = *this;
+ *this += 1;
+ return value;
+ }
+
+ constexpr ClampedNumeric& operator--() {
+ *this -= 1;
+ return *this;
+ }
+
+ constexpr ClampedNumeric operator--(int) {
+ ClampedNumeric value = *this;
+ *this -= 1;
+ return value;
+ }
+
+ // These perform the actual math operations on the ClampedNumerics.
+ // Binary arithmetic operations.
+ template <template <typename, typename, typename> class M,
+ typename L,
+ typename R>
+ static constexpr ClampedNumeric MathOp(const L lhs, const R rhs) {
+ using Math = typename MathWrapper<M, L, R>::math;
+ return ClampedNumeric<T>(
+ Math::template Do<T>(Wrapper<L>::value(lhs), Wrapper<R>::value(rhs)));
+ }
+
+ // Assignment arithmetic operations.
+ template <template <typename, typename, typename> class M, typename R>
+ constexpr ClampedNumeric& MathOp(const R rhs) {
+ using Math = typename MathWrapper<M, T, R>::math;
+ *this =
+ ClampedNumeric<T>(Math::template Do<T>(value_, Wrapper<R>::value(rhs)));
+ return *this;
+ }
+
+ template <typename Dst>
+ constexpr operator Dst() const {
+ return saturated_cast<typename ArithmeticOrUnderlyingEnum<Dst>::type>(
+ value_);
+ }
+
+ // This method extracts the raw integer value without saturating it to the
+ // destination type as the conversion operator does. This is useful when
+ // e.g. assigning to an auto type or passing as a deduced template parameter.
+ constexpr T RawValue() const { return value_; }
+
+ private:
+ T value_;
+
+ // These wrappers allow us to handle state the same way for both
+ // ClampedNumeric and POD arithmetic types.
+ template <typename Src>
+ struct Wrapper {
+ static constexpr Src value(Src value) {
+ return static_cast<typename UnderlyingType<Src>::type>(value);
+ }
+ };
+};
+
+// Convience wrapper to return a new ClampedNumeric from the provided arithmetic
+// or ClampedNumericType.
+template <typename T>
+constexpr ClampedNumeric<typename UnderlyingType<T>::type> MakeClampedNum(
+ const T value) {
+ return value;
+}
+
+// Overload the ostream output operator to make logging work nicely.
+template <typename T>
+std::ostream& operator<<(std::ostream& os, const ClampedNumeric<T>& value) {
+ os << static_cast<T>(value);
+ return os;
+}
+
+// These implement the variadic wrapper for the math operations.
+template <template <typename, typename, typename> class M,
+ typename L,
+ typename R>
+constexpr ClampedNumeric<typename MathWrapper<M, L, R>::type> ClampMathOp(
+ const L lhs,
+ const R rhs) {
+ using Math = typename MathWrapper<M, L, R>::math;
+ return ClampedNumeric<typename Math::result_type>::template MathOp<M>(lhs,
+ rhs);
+}
+
+// General purpose wrapper template for arithmetic operations.
+template <template <typename, typename, typename> class M,
+ typename L,
+ typename R,
+ typename... Args>
+constexpr ClampedNumeric<typename ResultType<M, L, R, Args...>::type>
+ClampMathOp(const L lhs, const R rhs, const Args... args) {
+ return ClampMathOp<M>(ClampMathOp<M>(lhs, rhs), args...);
+}
+
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Add, +, +=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Sub, -, -=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Mul, *, *=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Div, /, /=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Mod, %, %=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Lsh, <<, <<=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Rsh, >>, >>=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, And, &, &=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Or, |, |=)
+BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Xor, ^, ^=)
+BASE_NUMERIC_ARITHMETIC_VARIADIC(Clamped, Clamp, Max)
+BASE_NUMERIC_ARITHMETIC_VARIADIC(Clamped, Clamp, Min)
+BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsLess, <);
+BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsLessOrEqual, <=);
+BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsGreater, >);
+BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsGreaterOrEqual, >=);
+BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsEqual, ==);
+BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsNotEqual, !=);
+
+} // namespace internal
+
+using internal::ClampedNumeric;
+using internal::MakeClampedNum;
+using internal::ClampMax;
+using internal::ClampMin;
+using internal::ClampAdd;
+using internal::ClampSub;
+using internal::ClampMul;
+using internal::ClampDiv;
+using internal::ClampMod;
+using internal::ClampLsh;
+using internal::ClampRsh;
+using internal::ClampAnd;
+using internal::ClampOr;
+using internal::ClampXor;
+
+} // namespace base
+
+#endif // BASE_NUMERICS_CLAMPED_MATH_H_
diff --git a/base/numerics/clamped_math_impl.h b/base/numerics/clamped_math_impl.h
new file mode 100644
index 0000000..303a7e9
--- /dev/null
+++ b/base/numerics/clamped_math_impl.h
@@ -0,0 +1,341 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
+#define BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include <climits>
+#include <cmath>
+#include <cstdlib>
+#include <limits>
+#include <type_traits>
+
+#include "base/numerics/checked_math.h"
+#include "base/numerics/safe_conversions.h"
+#include "base/numerics/safe_math_shared_impl.h"
+
+namespace base {
+namespace internal {
+
+template <typename T,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_signed<T>::value>::type* = nullptr>
+constexpr T SaturatedNegWrapper(T value) {
+ return MustTreatAsConstexpr(value) || !ClampedNegFastOp<T>::is_supported
+ ? (NegateWrapper(value) != std::numeric_limits<T>::lowest()
+ ? NegateWrapper(value)
+ : std::numeric_limits<T>::max())
+ : ClampedNegFastOp<T>::Do(value);
+}
+
+template <typename T,
+ typename std::enable_if<std::is_integral<T>::value &&
+ !std::is_signed<T>::value>::type* = nullptr>
+constexpr T SaturatedNegWrapper(T value) {
+ return T(0);
+}
+
+template <
+ typename T,
+ typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
+constexpr T SaturatedNegWrapper(T value) {
+ return -value;
+}
+
+template <typename T,
+ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+constexpr T SaturatedAbsWrapper(T value) {
+ // The calculation below is a static identity for unsigned types, but for
+ // signed integer types it provides a non-branching, saturated absolute value.
+ // This works because SafeUnsignedAbs() returns an unsigned type, which can
+ // represent the absolute value of all negative numbers of an equal-width
+ // integer type. The call to IsValueNegative() then detects overflow in the
+ // special case of numeric_limits<T>::min(), by evaluating the bit pattern as
+ // a signed integer value. If it is the overflow case, we end up subtracting
+ // one from the unsigned result, thus saturating to numeric_limits<T>::max().
+ return static_cast<T>(SafeUnsignedAbs(value) -
+ IsValueNegative<T>(SafeUnsignedAbs(value)));
+}
+
+template <
+ typename T,
+ typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
+constexpr T SaturatedAbsWrapper(T value) {
+ return value < 0 ? -value : value;
+}
+
+template <typename T, typename U, class Enable = void>
+struct ClampedAddOp {};
+
+template <typename T, typename U>
+struct ClampedAddOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U y) {
+ if (ClampedAddFastOp<T, U>::is_supported)
+ return ClampedAddFastOp<T, U>::template Do<V>(x, y);
+
+ static_assert(std::is_same<V, result_type>::value ||
+ IsTypeInRangeForNumericType<U, V>::value,
+ "The saturation result cannot be determined from the "
+ "provided types.");
+ const V saturated = CommonMaxOrMin<V>(IsValueNegative(y));
+ V result = {};
+ return BASE_NUMERICS_LIKELY((CheckedAddOp<T, U>::Do(x, y, &result)))
+ ? result
+ : saturated;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedSubOp {};
+
+template <typename T, typename U>
+struct ClampedSubOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U y) {
+ // TODO(jschuh) Make this "constexpr if" once we're C++17.
+ if (ClampedSubFastOp<T, U>::is_supported)
+ return ClampedSubFastOp<T, U>::template Do<V>(x, y);
+
+ static_assert(std::is_same<V, result_type>::value ||
+ IsTypeInRangeForNumericType<U, V>::value,
+ "The saturation result cannot be determined from the "
+ "provided types.");
+ const V saturated = CommonMaxOrMin<V>(!IsValueNegative(y));
+ V result = {};
+ return BASE_NUMERICS_LIKELY((CheckedSubOp<T, U>::Do(x, y, &result)))
+ ? result
+ : saturated;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedMulOp {};
+
+template <typename T, typename U>
+struct ClampedMulOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U y) {
+ // TODO(jschuh) Make this "constexpr if" once we're C++17.
+ if (ClampedMulFastOp<T, U>::is_supported)
+ return ClampedMulFastOp<T, U>::template Do<V>(x, y);
+
+ V result = {};
+ const V saturated =
+ CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y));
+ return BASE_NUMERICS_LIKELY((CheckedMulOp<T, U>::Do(x, y, &result)))
+ ? result
+ : saturated;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedDivOp {};
+
+template <typename T, typename U>
+struct ClampedDivOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U y) {
+ V result = {};
+ if (BASE_NUMERICS_LIKELY((CheckedDivOp<T, U>::Do(x, y, &result))))
+ return result;
+ // Saturation goes to max, min, or NaN (if x is zero).
+ return x ? CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y))
+ : SaturationDefaultLimits<V>::NaN();
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedModOp {};
+
+template <typename T, typename U>
+struct ClampedModOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U y) {
+ V result = {};
+ return BASE_NUMERICS_LIKELY((CheckedModOp<T, U>::Do(x, y, &result)))
+ ? result
+ : x;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedLshOp {};
+
+// Left shift. Non-zero values saturate in the direction of the sign. A zero
+// shifted by any value always results in zero.
+template <typename T, typename U>
+struct ClampedLshOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = T;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U shift) {
+ static_assert(!std::is_signed<U>::value, "Shift value must be unsigned.");
+ if (BASE_NUMERICS_LIKELY(shift < std::numeric_limits<T>::digits)) {
+ // Shift as unsigned to avoid undefined behavior.
+ V result = static_cast<V>(as_unsigned(x) << shift);
+ // If the shift can be reversed, we know it was valid.
+ if (BASE_NUMERICS_LIKELY(result >> shift == x))
+ return result;
+ }
+ return x ? CommonMaxOrMin<V>(IsValueNegative(x)) : 0;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedRshOp {};
+
+// Right shift. Negative values saturate to -1. Positive or 0 saturates to 0.
+template <typename T, typename U>
+struct ClampedRshOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = T;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U shift) {
+ static_assert(!std::is_signed<U>::value, "Shift value must be unsigned.");
+ // Signed right shift is odd, because it saturates to -1 or 0.
+ const V saturated = as_unsigned(V(0)) - IsValueNegative(x);
+ return BASE_NUMERICS_LIKELY(shift < IntegerBitsPlusSign<T>::value)
+ ? saturated_cast<V>(x >> shift)
+ : saturated;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedAndOp {};
+
+template <typename T, typename U>
+struct ClampedAndOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename std::make_unsigned<
+ typename MaxExponentPromotion<T, U>::type>::type;
+ template <typename V>
+ static constexpr V Do(T x, U y) {
+ return static_cast<result_type>(x) & static_cast<result_type>(y);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedOrOp {};
+
+// For simplicity we promote to unsigned integers.
+template <typename T, typename U>
+struct ClampedOrOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename std::make_unsigned<
+ typename MaxExponentPromotion<T, U>::type>::type;
+ template <typename V>
+ static constexpr V Do(T x, U y) {
+ return static_cast<result_type>(x) | static_cast<result_type>(y);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedXorOp {};
+
+// For simplicity we support only unsigned integers.
+template <typename T, typename U>
+struct ClampedXorOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename std::make_unsigned<
+ typename MaxExponentPromotion<T, U>::type>::type;
+ template <typename V>
+ static constexpr V Do(T x, U y) {
+ return static_cast<result_type>(x) ^ static_cast<result_type>(y);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedMaxOp {};
+
+template <typename T, typename U>
+struct ClampedMaxOp<
+ T,
+ U,
+ typename std::enable_if<std::is_arithmetic<T>::value &&
+ std::is_arithmetic<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U y) {
+ return IsGreater<T, U>::Test(x, y) ? saturated_cast<V>(x)
+ : saturated_cast<V>(y);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct ClampedMinOp {};
+
+template <typename T, typename U>
+struct ClampedMinOp<
+ T,
+ U,
+ typename std::enable_if<std::is_arithmetic<T>::value &&
+ std::is_arithmetic<U>::value>::type> {
+ using result_type = typename LowestValuePromotion<T, U>::type;
+ template <typename V = result_type>
+ static constexpr V Do(T x, U y) {
+ return IsLess<T, U>::Test(x, y) ? saturated_cast<V>(x)
+ : saturated_cast<V>(y);
+ }
+};
+
+// This is just boilerplate that wraps the standard floating point arithmetic.
+// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
+#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
+ template <typename T, typename U> \
+ struct Clamped##NAME##Op< \
+ T, U, \
+ typename std::enable_if<std::is_floating_point<T>::value || \
+ std::is_floating_point<U>::value>::type> { \
+ using result_type = typename MaxExponentPromotion<T, U>::type; \
+ template <typename V = result_type> \
+ static constexpr V Do(T x, U y) { \
+ return saturated_cast<V>(x OP y); \
+ } \
+ };
+
+BASE_FLOAT_ARITHMETIC_OPS(Add, +)
+BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
+BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
+BASE_FLOAT_ARITHMETIC_OPS(Div, /)
+
+#undef BASE_FLOAT_ARITHMETIC_OPS
+
+} // namespace internal
+} // namespace base
+
+#endif // BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
diff --git a/base/numerics/math_constants.h b/base/numerics/math_constants.h
new file mode 100644
index 0000000..9a5b8ef
--- /dev/null
+++ b/base/numerics/math_constants.h
@@ -0,0 +1,15 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_MATH_CONSTANTS_H_
+#define BASE_NUMERICS_MATH_CONSTANTS_H_
+
+namespace base {
+
+constexpr double kPiDouble = 3.14159265358979323846;
+constexpr float kPiFloat = 3.14159265358979323846f;
+
+} // namespace base
+
+#endif // BASE_NUMERICS_MATH_CONSTANTS_H_
diff --git a/base/numerics/ranges.h b/base/numerics/ranges.h
new file mode 100644
index 0000000..f19320c
--- /dev/null
+++ b/base/numerics/ranges.h
@@ -0,0 +1,27 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_RANGES_H_
+#define BASE_NUMERICS_RANGES_H_
+
+#include <algorithm>
+#include <cmath>
+
+namespace base {
+
+// To be replaced with std::clamp() from C++17, someday.
+template <class T>
+constexpr const T& ClampToRange(const T& value, const T& min, const T& max) {
+ return std::min(std::max(value, min), max);
+}
+
+template <typename T>
+constexpr bool IsApproximatelyEqual(T lhs, T rhs, T tolerance) {
+ static_assert(std::is_arithmetic<T>::value, "Argument must be arithmetic");
+ return std::abs(rhs - lhs) <= tolerance;
+}
+
+} // namespace base
+
+#endif // BASE_NUMERICS_RANGES_H_
diff --git a/base/numerics/safe_conversions.h b/base/numerics/safe_conversions.h
new file mode 100644
index 0000000..9284f8f
--- /dev/null
+++ b/base/numerics/safe_conversions.h
@@ -0,0 +1,344 @@
+// Copyright 2014 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_H_
+#define BASE_NUMERICS_SAFE_CONVERSIONS_H_
+
+#include <stddef.h>
+
+#include <limits>
+#include <ostream>
+#include <type_traits>
+
+#include "base/numerics/safe_conversions_impl.h"
+
+#if !defined(__native_client__) && (defined(__ARMEL__) || defined(__arch64__))
+#include "base/numerics/safe_conversions_arm_impl.h"
+#define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (1)
+#else
+#define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (0)
+#endif
+
+namespace base {
+namespace internal {
+
+#if !BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
+template <typename Dst, typename Src>
+struct SaturateFastAsmOp {
+ static const bool is_supported = false;
+ static constexpr Dst Do(Src) {
+ // Force a compile failure if instantiated.
+ return CheckOnFailure::template HandleFailure<Dst>();
+ }
+};
+#endif // BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
+#undef BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
+
+// The following special case a few specific integer conversions where we can
+// eke out better performance than range checking.
+template <typename Dst, typename Src, typename Enable = void>
+struct IsValueInRangeFastOp {
+ static const bool is_supported = false;
+ static constexpr bool Do(Src value) {
+ // Force a compile failure if instantiated.
+ return CheckOnFailure::template HandleFailure<bool>();
+ }
+};
+
+// Signed to signed range comparison.
+template <typename Dst, typename Src>
+struct IsValueInRangeFastOp<
+ Dst,
+ Src,
+ typename std::enable_if<
+ std::is_integral<Dst>::value && std::is_integral<Src>::value &&
+ std::is_signed<Dst>::value && std::is_signed<Src>::value &&
+ !IsTypeInRangeForNumericType<Dst, Src>::value>::type> {
+ static const bool is_supported = true;
+
+ static constexpr bool Do(Src value) {
+ // Just downcast to the smaller type, sign extend it back to the original
+ // type, and then see if it matches the original value.
+ return value == static_cast<Dst>(value);
+ }
+};
+
+// Signed to unsigned range comparison.
+template <typename Dst, typename Src>
+struct IsValueInRangeFastOp<
+ Dst,
+ Src,
+ typename std::enable_if<
+ std::is_integral<Dst>::value && std::is_integral<Src>::value &&
+ !std::is_signed<Dst>::value && std::is_signed<Src>::value &&
+ !IsTypeInRangeForNumericType<Dst, Src>::value>::type> {
+ static const bool is_supported = true;
+
+ static constexpr bool Do(Src value) {
+ // We cast a signed as unsigned to overflow negative values to the top,
+ // then compare against whichever maximum is smaller, as our upper bound.
+ return as_unsigned(value) <= as_unsigned(CommonMax<Src, Dst>());
+ }
+};
+
+// Convenience function that returns true if the supplied value is in range
+// for the destination type.
+template <typename Dst, typename Src>
+constexpr bool IsValueInRangeForNumericType(Src value) {
+ using SrcType = typename internal::UnderlyingType<Src>::type;
+ return internal::IsValueInRangeFastOp<Dst, SrcType>::is_supported
+ ? internal::IsValueInRangeFastOp<Dst, SrcType>::Do(
+ static_cast<SrcType>(value))
+ : internal::DstRangeRelationToSrcRange<Dst>(
+ static_cast<SrcType>(value))
+ .IsValid();
+}
+
+// checked_cast<> is analogous to static_cast<> for numeric types,
+// except that it CHECKs that the specified numeric conversion will not
+// overflow or underflow. NaN source will always trigger a CHECK.
+template <typename Dst,
+ class CheckHandler = internal::CheckOnFailure,
+ typename Src>
+constexpr Dst checked_cast(Src value) {
+ // This throws a compile-time error on evaluating the constexpr if it can be
+ // determined at compile-time as failing, otherwise it will CHECK at runtime.
+ using SrcType = typename internal::UnderlyingType<Src>::type;
+ return BASE_NUMERICS_LIKELY((IsValueInRangeForNumericType<Dst>(value)))
+ ? static_cast<Dst>(static_cast<SrcType>(value))
+ : CheckHandler::template HandleFailure<Dst>();
+}
+
+// Default boundaries for integral/float: max/infinity, lowest/-infinity, 0/NaN.
+// You may provide your own limits (e.g. to saturated_cast) so long as you
+// implement all of the static constexpr member functions in the class below.
+template <typename T>
+struct SaturationDefaultLimits : public std::numeric_limits<T> {
+ static constexpr T NaN() {
+ return std::numeric_limits<T>::has_quiet_NaN
+ ? std::numeric_limits<T>::quiet_NaN()
+ : T();
+ }
+ using std::numeric_limits<T>::max;
+ static constexpr T Overflow() {
+ return std::numeric_limits<T>::has_infinity
+ ? std::numeric_limits<T>::infinity()
+ : std::numeric_limits<T>::max();
+ }
+ using std::numeric_limits<T>::lowest;
+ static constexpr T Underflow() {
+ return std::numeric_limits<T>::has_infinity
+ ? std::numeric_limits<T>::infinity() * -1
+ : std::numeric_limits<T>::lowest();
+ }
+};
+
+template <typename Dst, template <typename> class S, typename Src>
+constexpr Dst saturated_cast_impl(Src value, RangeCheck constraint) {
+ // For some reason clang generates much better code when the branch is
+ // structured exactly this way, rather than a sequence of checks.
+ return !constraint.IsOverflowFlagSet()
+ ? (!constraint.IsUnderflowFlagSet() ? static_cast<Dst>(value)
+ : S<Dst>::Underflow())
+ // Skip this check for integral Src, which cannot be NaN.
+ : (std::is_integral<Src>::value || !constraint.IsUnderflowFlagSet()
+ ? S<Dst>::Overflow()
+ : S<Dst>::NaN());
+}
+
+// We can reduce the number of conditions and get slightly better performance
+// for normal signed and unsigned integer ranges. And in the specific case of
+// Arm, we can use the optimized saturation instructions.
+template <typename Dst, typename Src, typename Enable = void>
+struct SaturateFastOp {
+ static const bool is_supported = false;
+ static constexpr Dst Do(Src value) {
+ // Force a compile failure if instantiated.
+ return CheckOnFailure::template HandleFailure<Dst>();
+ }
+};
+
+template <typename Dst, typename Src>
+struct SaturateFastOp<
+ Dst,
+ Src,
+ typename std::enable_if<std::is_integral<Src>::value &&
+ std::is_integral<Dst>::value>::type> {
+ static const bool is_supported = true;
+ static Dst Do(Src value) {
+ if (SaturateFastAsmOp<Dst, Src>::is_supported)
+ return SaturateFastAsmOp<Dst, Src>::Do(value);
+
+ // The exact order of the following is structured to hit the correct
+ // optimization heuristics across compilers. Do not change without
+ // checking the emitted code.
+ Dst saturated = CommonMaxOrMin<Dst, Src>(
+ IsMaxInRangeForNumericType<Dst, Src>() ||
+ (!IsMinInRangeForNumericType<Dst, Src>() && IsValueNegative(value)));
+ return BASE_NUMERICS_LIKELY(IsValueInRangeForNumericType<Dst>(value))
+ ? static_cast<Dst>(value)
+ : saturated;
+ }
+};
+
+// saturated_cast<> is analogous to static_cast<> for numeric types, except
+// that the specified numeric conversion will saturate by default rather than
+// overflow or underflow, and NaN assignment to an integral will return 0.
+// All boundary condition behaviors can be overriden with a custom handler.
+template <typename Dst,
+ template <typename> class SaturationHandler = SaturationDefaultLimits,
+ typename Src>
+constexpr Dst saturated_cast(Src value) {
+ using SrcType = typename UnderlyingType<Src>::type;
+ return !IsCompileTimeConstant(value) &&
+ SaturateFastOp<Dst, SrcType>::is_supported &&
+ std::is_same<SaturationHandler<Dst>,
+ SaturationDefaultLimits<Dst>>::value
+ ? SaturateFastOp<Dst, SrcType>::Do(static_cast<SrcType>(value))
+ : saturated_cast_impl<Dst, SaturationHandler, SrcType>(
+ static_cast<SrcType>(value),
+ DstRangeRelationToSrcRange<Dst, SaturationHandler, SrcType>(
+ static_cast<SrcType>(value)));
+}
+
+// strict_cast<> is analogous to static_cast<> for numeric types, except that
+// it will cause a compile failure if the destination type is not large enough
+// to contain any value in the source type. It performs no runtime checking.
+template <typename Dst, typename Src>
+constexpr Dst strict_cast(Src value) {
+ using SrcType = typename UnderlyingType<Src>::type;
+ static_assert(UnderlyingType<Src>::is_numeric, "Argument must be numeric.");
+ static_assert(std::is_arithmetic<Dst>::value, "Result must be numeric.");
+
+ // If you got here from a compiler error, it's because you tried to assign
+ // from a source type to a destination type that has insufficient range.
+ // The solution may be to change the destination type you're assigning to,
+ // and use one large enough to represent the source.
+ // Alternatively, you may be better served with the checked_cast<> or
+ // saturated_cast<> template functions for your particular use case.
+ static_assert(StaticDstRangeRelationToSrcRange<Dst, SrcType>::value ==
+ NUMERIC_RANGE_CONTAINED,
+ "The source type is out of range for the destination type. "
+ "Please see strict_cast<> comments for more information.");
+
+ return static_cast<Dst>(static_cast<SrcType>(value));
+}
+
+// Some wrappers to statically check that a type is in range.
+template <typename Dst, typename Src, class Enable = void>
+struct IsNumericRangeContained {
+ static const bool value = false;
+};
+
+template <typename Dst, typename Src>
+struct IsNumericRangeContained<
+ Dst,
+ Src,
+ typename std::enable_if<ArithmeticOrUnderlyingEnum<Dst>::value &&
+ ArithmeticOrUnderlyingEnum<Src>::value>::type> {
+ static const bool value = StaticDstRangeRelationToSrcRange<Dst, Src>::value ==
+ NUMERIC_RANGE_CONTAINED;
+};
+
+// StrictNumeric implements compile time range checking between numeric types by
+// wrapping assignment operations in a strict_cast. This class is intended to be
+// used for function arguments and return types, to ensure the destination type
+// can always contain the source type. This is essentially the same as enforcing
+// -Wconversion in gcc and C4302 warnings on MSVC, but it can be applied
+// incrementally at API boundaries, making it easier to convert code so that it
+// compiles cleanly with truncation warnings enabled.
+// This template should introduce no runtime overhead, but it also provides no
+// runtime checking of any of the associated mathematical operations. Use
+// CheckedNumeric for runtime range checks of the actual value being assigned.
+template <typename T>
+class StrictNumeric {
+ public:
+ using type = T;
+
+ constexpr StrictNumeric() : value_(0) {}
+
+ // Copy constructor.
+ template <typename Src>
+ constexpr StrictNumeric(const StrictNumeric<Src>& rhs)
+ : value_(strict_cast<T>(rhs.value_)) {}
+
+ // This is not an explicit constructor because we implicitly upgrade regular
+ // numerics to StrictNumerics to make them easier to use.
+ template <typename Src>
+ constexpr StrictNumeric(Src value) // NOLINT(runtime/explicit)
+ : value_(strict_cast<T>(value)) {}
+
+ // If you got here from a compiler error, it's because you tried to assign
+ // from a source type to a destination type that has insufficient range.
+ // The solution may be to change the destination type you're assigning to,
+ // and use one large enough to represent the source.
+ // If you're assigning from a CheckedNumeric<> class, you may be able to use
+ // the AssignIfValid() member function, specify a narrower destination type to
+ // the member value functions (e.g. val.template ValueOrDie<Dst>()), use one
+ // of the value helper functions (e.g. ValueOrDieForType<Dst>(val)).
+ // If you've encountered an _ambiguous overload_ you can use a static_cast<>
+ // to explicitly cast the result to the destination type.
+ // If none of that works, you may be better served with the checked_cast<> or
+ // saturated_cast<> template functions for your particular use case.
+ template <typename Dst,
+ typename std::enable_if<
+ IsNumericRangeContained<Dst, T>::value>::type* = nullptr>
+ constexpr operator Dst() const {
+ return static_cast<typename ArithmeticOrUnderlyingEnum<Dst>::type>(value_);
+ }
+
+ private:
+ const T value_;
+};
+
+// Convience wrapper returns a StrictNumeric from the provided arithmetic type.
+template <typename T>
+constexpr StrictNumeric<typename UnderlyingType<T>::type> MakeStrictNum(
+ const T value) {
+ return value;
+}
+
+// Overload the ostream output operator to make logging work nicely.
+template <typename T>
+std::ostream& operator<<(std::ostream& os, const StrictNumeric<T>& value) {
+ os << static_cast<T>(value);
+ return os;
+}
+
+#define BASE_NUMERIC_COMPARISON_OPERATORS(CLASS, NAME, OP) \
+ template <typename L, typename R, \
+ typename std::enable_if< \
+ internal::Is##CLASS##Op<L, R>::value>::type* = nullptr> \
+ constexpr bool operator OP(const L lhs, const R rhs) { \
+ return SafeCompare<NAME, typename UnderlyingType<L>::type, \
+ typename UnderlyingType<R>::type>(lhs, rhs); \
+ }
+
+BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLess, <);
+BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLessOrEqual, <=);
+BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreater, >);
+BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreaterOrEqual, >=);
+BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsEqual, ==);
+BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsNotEqual, !=);
+
+}; // namespace internal
+
+using internal::as_signed;
+using internal::as_unsigned;
+using internal::checked_cast;
+using internal::strict_cast;
+using internal::saturated_cast;
+using internal::SafeUnsignedAbs;
+using internal::StrictNumeric;
+using internal::MakeStrictNum;
+using internal::IsValueInRangeForNumericType;
+using internal::IsTypeInRangeForNumericType;
+using internal::IsValueNegative;
+
+// Explicitly make a shorter size_t alias for convenience.
+using SizeT = StrictNumeric<size_t>;
+
+} // namespace base
+
+#endif // BASE_NUMERICS_SAFE_CONVERSIONS_H_
diff --git a/base/numerics/safe_conversions_arm_impl.h b/base/numerics/safe_conversions_arm_impl.h
new file mode 100644
index 0000000..da5813f
--- /dev/null
+++ b/base/numerics/safe_conversions_arm_impl.h
@@ -0,0 +1,51 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_ARM_IMPL_H_
+#define BASE_NUMERICS_SAFE_CONVERSIONS_ARM_IMPL_H_
+
+#include <cassert>
+#include <limits>
+#include <type_traits>
+
+#include "base/numerics/safe_conversions_impl.h"
+
+namespace base {
+namespace internal {
+
+// Fast saturation to a destination type.
+template <typename Dst, typename Src>
+struct SaturateFastAsmOp {
+ static const bool is_supported =
+ std::is_signed<Src>::value && std::is_integral<Dst>::value &&
+ std::is_integral<Src>::value &&
+ IntegerBitsPlusSign<Src>::value <= IntegerBitsPlusSign<int32_t>::value &&
+ IntegerBitsPlusSign<Dst>::value <= IntegerBitsPlusSign<int32_t>::value &&
+ !IsTypeInRangeForNumericType<Dst, Src>::value;
+
+ __attribute__((always_inline)) static Dst Do(Src value) {
+ int32_t src = value;
+ typename std::conditional<std::is_signed<Dst>::value, int32_t,
+ uint32_t>::type result;
+ if (std::is_signed<Dst>::value) {
+ asm("ssat %[dst], %[shift], %[src]"
+ : [dst] "=r"(result)
+ : [src] "r"(src), [shift] "n"(IntegerBitsPlusSign<Dst>::value <= 32
+ ? IntegerBitsPlusSign<Dst>::value
+ : 32));
+ } else {
+ asm("usat %[dst], %[shift], %[src]"
+ : [dst] "=r"(result)
+ : [src] "r"(src), [shift] "n"(IntegerBitsPlusSign<Dst>::value < 32
+ ? IntegerBitsPlusSign<Dst>::value
+ : 31));
+ }
+ return static_cast<Dst>(result);
+ }
+};
+
+} // namespace internal
+} // namespace base
+
+#endif // BASE_NUMERICS_SAFE_CONVERSIONS_ARM_IMPL_H_
diff --git a/base/numerics/safe_conversions_impl.h b/base/numerics/safe_conversions_impl.h
new file mode 100644
index 0000000..2516204
--- /dev/null
+++ b/base/numerics/safe_conversions_impl.h
@@ -0,0 +1,850 @@
+// Copyright 2014 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
+#define BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
+
+#include <stdint.h>
+
+#include <limits>
+#include <type_traits>
+
+#if defined(__GNUC__) || defined(__clang__)
+#define BASE_NUMERICS_LIKELY(x) __builtin_expect(!!(x), 1)
+#define BASE_NUMERICS_UNLIKELY(x) __builtin_expect(!!(x), 0)
+#else
+#define BASE_NUMERICS_LIKELY(x) (x)
+#define BASE_NUMERICS_UNLIKELY(x) (x)
+#endif
+
+namespace base {
+namespace internal {
+
+// The std library doesn't provide a binary max_exponent for integers, however
+// we can compute an analog using std::numeric_limits<>::digits.
+template <typename NumericType>
+struct MaxExponent {
+ static const int value = std::is_floating_point<NumericType>::value
+ ? std::numeric_limits<NumericType>::max_exponent
+ : std::numeric_limits<NumericType>::digits + 1;
+};
+
+// The number of bits (including the sign) in an integer. Eliminates sizeof
+// hacks.
+template <typename NumericType>
+struct IntegerBitsPlusSign {
+ static const int value = std::numeric_limits<NumericType>::digits +
+ std::is_signed<NumericType>::value;
+};
+
+// Helper templates for integer manipulations.
+
+template <typename Integer>
+struct PositionOfSignBit {
+ static const size_t value = IntegerBitsPlusSign<Integer>::value - 1;
+};
+
+// Determines if a numeric value is negative without throwing compiler
+// warnings on: unsigned(value) < 0.
+template <typename T,
+ typename std::enable_if<std::is_signed<T>::value>::type* = nullptr>
+constexpr bool IsValueNegative(T value) {
+ static_assert(std::is_arithmetic<T>::value, "Argument must be numeric.");
+ return value < 0;
+}
+
+template <typename T,
+ typename std::enable_if<!std::is_signed<T>::value>::type* = nullptr>
+constexpr bool IsValueNegative(T) {
+ static_assert(std::is_arithmetic<T>::value, "Argument must be numeric.");
+ return false;
+}
+
+// This performs a fast negation, returning a signed value. It works on unsigned
+// arguments, but probably doesn't do what you want for any unsigned value
+// larger than max / 2 + 1 (i.e. signed min cast to unsigned).
+template <typename T>
+constexpr typename std::make_signed<T>::type ConditionalNegate(
+ T x,
+ bool is_negative) {
+ static_assert(std::is_integral<T>::value, "Type must be integral");
+ using SignedT = typename std::make_signed<T>::type;
+ using UnsignedT = typename std::make_unsigned<T>::type;
+ return static_cast<SignedT>(
+ (static_cast<UnsignedT>(x) ^ -SignedT(is_negative)) + is_negative);
+}
+
+// This performs a safe, absolute value via unsigned overflow.
+template <typename T>
+constexpr typename std::make_unsigned<T>::type SafeUnsignedAbs(T value) {
+ static_assert(std::is_integral<T>::value, "Type must be integral");
+ using UnsignedT = typename std::make_unsigned<T>::type;
+ return IsValueNegative(value) ? 0 - static_cast<UnsignedT>(value)
+ : static_cast<UnsignedT>(value);
+}
+
+// This allows us to switch paths on known compile-time constants.
+#if defined(__clang__) || defined(__GNUC__)
+constexpr bool CanDetectCompileTimeConstant() {
+ return true;
+}
+template <typename T>
+constexpr bool IsCompileTimeConstant(const T v) {
+ return __builtin_constant_p(v);
+}
+#else
+constexpr bool CanDetectCompileTimeConstant() {
+ return false;
+}
+template <typename T>
+constexpr bool IsCompileTimeConstant(const T) {
+ return false;
+}
+#endif
+template <typename T>
+constexpr bool MustTreatAsConstexpr(const T v) {
+ // Either we can't detect a compile-time constant, and must always use the
+ // constexpr path, or we know we have a compile-time constant.
+ return !CanDetectCompileTimeConstant() || IsCompileTimeConstant(v);
+}
+
+// Forces a crash, like a CHECK(false). Used for numeric boundary errors.
+// Also used in a constexpr template to trigger a compilation failure on
+// an error condition.
+struct CheckOnFailure {
+ template <typename T>
+ static T HandleFailure() {
+#if defined(_MSC_VER)
+ __debugbreak();
+#elif defined(__GNUC__) || defined(__clang__)
+ __builtin_trap();
+#else
+ ((void)(*(volatile char*)0 = 0));
+#endif
+ return T();
+ }
+};
+
+enum IntegerRepresentation {
+ INTEGER_REPRESENTATION_UNSIGNED,
+ INTEGER_REPRESENTATION_SIGNED
+};
+
+// A range for a given nunmeric Src type is contained for a given numeric Dst
+// type if both numeric_limits<Src>::max() <= numeric_limits<Dst>::max() and
+// numeric_limits<Src>::lowest() >= numeric_limits<Dst>::lowest() are true.
+// We implement this as template specializations rather than simple static
+// comparisons to ensure type correctness in our comparisons.
+enum NumericRangeRepresentation {
+ NUMERIC_RANGE_NOT_CONTAINED,
+ NUMERIC_RANGE_CONTAINED
+};
+
+// Helper templates to statically determine if our destination type can contain
+// maximum and minimum values represented by the source type.
+
+template <typename Dst,
+ typename Src,
+ IntegerRepresentation DstSign = std::is_signed<Dst>::value
+ ? INTEGER_REPRESENTATION_SIGNED
+ : INTEGER_REPRESENTATION_UNSIGNED,
+ IntegerRepresentation SrcSign = std::is_signed<Src>::value
+ ? INTEGER_REPRESENTATION_SIGNED
+ : INTEGER_REPRESENTATION_UNSIGNED>
+struct StaticDstRangeRelationToSrcRange;
+
+// Same sign: Dst is guaranteed to contain Src only if its range is equal or
+// larger.
+template <typename Dst, typename Src, IntegerRepresentation Sign>
+struct StaticDstRangeRelationToSrcRange<Dst, Src, Sign, Sign> {
+ static const NumericRangeRepresentation value =
+ MaxExponent<Dst>::value >= MaxExponent<Src>::value
+ ? NUMERIC_RANGE_CONTAINED
+ : NUMERIC_RANGE_NOT_CONTAINED;
+};
+
+// Unsigned to signed: Dst is guaranteed to contain source only if its range is
+// larger.
+template <typename Dst, typename Src>
+struct StaticDstRangeRelationToSrcRange<Dst,
+ Src,
+ INTEGER_REPRESENTATION_SIGNED,
+ INTEGER_REPRESENTATION_UNSIGNED> {
+ static const NumericRangeRepresentation value =
+ MaxExponent<Dst>::value > MaxExponent<Src>::value
+ ? NUMERIC_RANGE_CONTAINED
+ : NUMERIC_RANGE_NOT_CONTAINED;
+};
+
+// Signed to unsigned: Dst cannot be statically determined to contain Src.
+template <typename Dst, typename Src>
+struct StaticDstRangeRelationToSrcRange<Dst,
+ Src,
+ INTEGER_REPRESENTATION_UNSIGNED,
+ INTEGER_REPRESENTATION_SIGNED> {
+ static const NumericRangeRepresentation value = NUMERIC_RANGE_NOT_CONTAINED;
+};
+
+// This class wraps the range constraints as separate booleans so the compiler
+// can identify constants and eliminate unused code paths.
+class RangeCheck {
+ public:
+ constexpr RangeCheck(bool is_in_lower_bound, bool is_in_upper_bound)
+ : is_underflow_(!is_in_lower_bound), is_overflow_(!is_in_upper_bound) {}
+ constexpr RangeCheck() : is_underflow_(0), is_overflow_(0) {}
+ constexpr bool IsValid() const { return !is_overflow_ && !is_underflow_; }
+ constexpr bool IsInvalid() const { return is_overflow_ && is_underflow_; }
+ constexpr bool IsOverflow() const { return is_overflow_ && !is_underflow_; }
+ constexpr bool IsUnderflow() const { return !is_overflow_ && is_underflow_; }
+ constexpr bool IsOverflowFlagSet() const { return is_overflow_; }
+ constexpr bool IsUnderflowFlagSet() const { return is_underflow_; }
+ constexpr bool operator==(const RangeCheck rhs) const {
+ return is_underflow_ == rhs.is_underflow_ &&
+ is_overflow_ == rhs.is_overflow_;
+ }
+ constexpr bool operator!=(const RangeCheck rhs) const {
+ return !(*this == rhs);
+ }
+
+ private:
+ // Do not change the order of these member variables. The integral conversion
+ // optimization depends on this exact order.
+ const bool is_underflow_;
+ const bool is_overflow_;
+};
+
+// The following helper template addresses a corner case in range checks for
+// conversion from a floating-point type to an integral type of smaller range
+// but larger precision (e.g. float -> unsigned). The problem is as follows:
+// 1. Integral maximum is always one less than a power of two, so it must be
+// truncated to fit the mantissa of the floating point. The direction of
+// rounding is implementation defined, but by default it's always IEEE
+// floats, which round to nearest and thus result in a value of larger
+// magnitude than the integral value.
+// Example: float f = UINT_MAX; // f is 4294967296f but UINT_MAX
+// // is 4294967295u.
+// 2. If the floating point value is equal to the promoted integral maximum
+// value, a range check will erroneously pass.
+// Example: (4294967296f <= 4294967295u) // This is true due to a precision
+// // loss in rounding up to float.
+// 3. When the floating point value is then converted to an integral, the
+// resulting value is out of range for the target integral type and
+// thus is implementation defined.
+// Example: unsigned u = (float)INT_MAX; // u will typically overflow to 0.
+// To fix this bug we manually truncate the maximum value when the destination
+// type is an integral of larger precision than the source floating-point type,
+// such that the resulting maximum is represented exactly as a floating point.
+template <typename Dst, typename Src, template <typename> class Bounds>
+struct NarrowingRange {
+ using SrcLimits = std::numeric_limits<Src>;
+ using DstLimits = typename std::numeric_limits<Dst>;
+
+ // Computes the mask required to make an accurate comparison between types.
+ static const int kShift =
+ (MaxExponent<Src>::value > MaxExponent<Dst>::value &&
+ SrcLimits::digits < DstLimits::digits)
+ ? (DstLimits::digits - SrcLimits::digits)
+ : 0;
+ template <
+ typename T,
+ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+
+ // Masks out the integer bits that are beyond the precision of the
+ // intermediate type used for comparison.
+ static constexpr T Adjust(T value) {
+ static_assert(std::is_same<T, Dst>::value, "");
+ static_assert(kShift < DstLimits::digits, "");
+ return static_cast<T>(
+ ConditionalNegate(SafeUnsignedAbs(value) & ~((T(1) << kShift) - T(1)),
+ IsValueNegative(value)));
+ }
+
+ template <typename T,
+ typename std::enable_if<std::is_floating_point<T>::value>::type* =
+ nullptr>
+ static constexpr T Adjust(T value) {
+ static_assert(std::is_same<T, Dst>::value, "");
+ static_assert(kShift == 0, "");
+ return value;
+ }
+
+ static constexpr Dst max() { return Adjust(Bounds<Dst>::max()); }
+ static constexpr Dst lowest() { return Adjust(Bounds<Dst>::lowest()); }
+};
+
+template <typename Dst,
+ typename Src,
+ template <typename> class Bounds,
+ IntegerRepresentation DstSign = std::is_signed<Dst>::value
+ ? INTEGER_REPRESENTATION_SIGNED
+ : INTEGER_REPRESENTATION_UNSIGNED,
+ IntegerRepresentation SrcSign = std::is_signed<Src>::value
+ ? INTEGER_REPRESENTATION_SIGNED
+ : INTEGER_REPRESENTATION_UNSIGNED,
+ NumericRangeRepresentation DstRange =
+ StaticDstRangeRelationToSrcRange<Dst, Src>::value>
+struct DstRangeRelationToSrcRangeImpl;
+
+// The following templates are for ranges that must be verified at runtime. We
+// split it into checks based on signedness to avoid confusing casts and
+// compiler warnings on signed an unsigned comparisons.
+
+// Same sign narrowing: The range is contained for normal limits.
+template <typename Dst,
+ typename Src,
+ template <typename> class Bounds,
+ IntegerRepresentation DstSign,
+ IntegerRepresentation SrcSign>
+struct DstRangeRelationToSrcRangeImpl<Dst,
+ Src,
+ Bounds,
+ DstSign,
+ SrcSign,
+ NUMERIC_RANGE_CONTAINED> {
+ static constexpr RangeCheck Check(Src value) {
+ using SrcLimits = std::numeric_limits<Src>;
+ using DstLimits = NarrowingRange<Dst, Src, Bounds>;
+ return RangeCheck(
+ static_cast<Dst>(SrcLimits::lowest()) >= DstLimits::lowest() ||
+ static_cast<Dst>(value) >= DstLimits::lowest(),
+ static_cast<Dst>(SrcLimits::max()) <= DstLimits::max() ||
+ static_cast<Dst>(value) <= DstLimits::max());
+ }
+};
+
+// Signed to signed narrowing: Both the upper and lower boundaries may be
+// exceeded for standard limits.
+template <typename Dst, typename Src, template <typename> class Bounds>
+struct DstRangeRelationToSrcRangeImpl<Dst,
+ Src,
+ Bounds,
+ INTEGER_REPRESENTATION_SIGNED,
+ INTEGER_REPRESENTATION_SIGNED,
+ NUMERIC_RANGE_NOT_CONTAINED> {
+ static constexpr RangeCheck Check(Src value) {
+ using DstLimits = NarrowingRange<Dst, Src, Bounds>;
+ return RangeCheck(value >= DstLimits::lowest(), value <= DstLimits::max());
+ }
+};
+
+// Unsigned to unsigned narrowing: Only the upper bound can be exceeded for
+// standard limits.
+template <typename Dst, typename Src, template <typename> class Bounds>
+struct DstRangeRelationToSrcRangeImpl<Dst,
+ Src,
+ Bounds,
+ INTEGER_REPRESENTATION_UNSIGNED,
+ INTEGER_REPRESENTATION_UNSIGNED,
+ NUMERIC_RANGE_NOT_CONTAINED> {
+ static constexpr RangeCheck Check(Src value) {
+ using DstLimits = NarrowingRange<Dst, Src, Bounds>;
+ return RangeCheck(
+ DstLimits::lowest() == Dst(0) || value >= DstLimits::lowest(),
+ value <= DstLimits::max());
+ }
+};
+
+// Unsigned to signed: Only the upper bound can be exceeded for standard limits.
+template <typename Dst, typename Src, template <typename> class Bounds>
+struct DstRangeRelationToSrcRangeImpl<Dst,
+ Src,
+ Bounds,
+ INTEGER_REPRESENTATION_SIGNED,
+ INTEGER_REPRESENTATION_UNSIGNED,
+ NUMERIC_RANGE_NOT_CONTAINED> {
+ static constexpr RangeCheck Check(Src value) {
+ using DstLimits = NarrowingRange<Dst, Src, Bounds>;
+ using Promotion = decltype(Src() + Dst());
+ return RangeCheck(DstLimits::lowest() <= Dst(0) ||
+ static_cast<Promotion>(value) >=
+ static_cast<Promotion>(DstLimits::lowest()),
+ static_cast<Promotion>(value) <=
+ static_cast<Promotion>(DstLimits::max()));
+ }
+};
+
+// Signed to unsigned: The upper boundary may be exceeded for a narrower Dst,
+// and any negative value exceeds the lower boundary for standard limits.
+template <typename Dst, typename Src, template <typename> class Bounds>
+struct DstRangeRelationToSrcRangeImpl<Dst,
+ Src,
+ Bounds,
+ INTEGER_REPRESENTATION_UNSIGNED,
+ INTEGER_REPRESENTATION_SIGNED,
+ NUMERIC_RANGE_NOT_CONTAINED> {
+ static constexpr RangeCheck Check(Src value) {
+ using SrcLimits = std::numeric_limits<Src>;
+ using DstLimits = NarrowingRange<Dst, Src, Bounds>;
+ using Promotion = decltype(Src() + Dst());
+ return RangeCheck(
+ value >= Src(0) && (DstLimits::lowest() == 0 ||
+ static_cast<Dst>(value) >= DstLimits::lowest()),
+ static_cast<Promotion>(SrcLimits::max()) <=
+ static_cast<Promotion>(DstLimits::max()) ||
+ static_cast<Promotion>(value) <=
+ static_cast<Promotion>(DstLimits::max()));
+ }
+};
+
+// Simple wrapper for statically checking if a type's range is contained.
+template <typename Dst, typename Src>
+struct IsTypeInRangeForNumericType {
+ static const bool value = StaticDstRangeRelationToSrcRange<Dst, Src>::value ==
+ NUMERIC_RANGE_CONTAINED;
+};
+
+template <typename Dst,
+ template <typename> class Bounds = std::numeric_limits,
+ typename Src>
+constexpr RangeCheck DstRangeRelationToSrcRange(Src value) {
+ static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
+ static_assert(std::is_arithmetic<Dst>::value, "Result must be numeric.");
+ static_assert(Bounds<Dst>::lowest() < Bounds<Dst>::max(), "");
+ return DstRangeRelationToSrcRangeImpl<Dst, Src, Bounds>::Check(value);
+}
+
+// Integer promotion templates used by the portable checked integer arithmetic.
+template <size_t Size, bool IsSigned>
+struct IntegerForDigitsAndSign;
+
+#define INTEGER_FOR_DIGITS_AND_SIGN(I) \
+ template <> \
+ struct IntegerForDigitsAndSign<IntegerBitsPlusSign<I>::value, \
+ std::is_signed<I>::value> { \
+ using type = I; \
+ }
+
+INTEGER_FOR_DIGITS_AND_SIGN(int8_t);
+INTEGER_FOR_DIGITS_AND_SIGN(uint8_t);
+INTEGER_FOR_DIGITS_AND_SIGN(int16_t);
+INTEGER_FOR_DIGITS_AND_SIGN(uint16_t);
+INTEGER_FOR_DIGITS_AND_SIGN(int32_t);
+INTEGER_FOR_DIGITS_AND_SIGN(uint32_t);
+INTEGER_FOR_DIGITS_AND_SIGN(int64_t);
+INTEGER_FOR_DIGITS_AND_SIGN(uint64_t);
+#undef INTEGER_FOR_DIGITS_AND_SIGN
+
+// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
+// support 128-bit math, then the ArithmeticPromotion template below will need
+// to be updated (or more likely replaced with a decltype expression).
+static_assert(IntegerBitsPlusSign<intmax_t>::value == 64,
+ "Max integer size not supported for this toolchain.");
+
+template <typename Integer, bool IsSigned = std::is_signed<Integer>::value>
+struct TwiceWiderInteger {
+ using type =
+ typename IntegerForDigitsAndSign<IntegerBitsPlusSign<Integer>::value * 2,
+ IsSigned>::type;
+};
+
+enum ArithmeticPromotionCategory {
+ LEFT_PROMOTION, // Use the type of the left-hand argument.
+ RIGHT_PROMOTION // Use the type of the right-hand argument.
+};
+
+// Determines the type that can represent the largest positive value.
+template <typename Lhs,
+ typename Rhs,
+ ArithmeticPromotionCategory Promotion =
+ (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value)
+ ? LEFT_PROMOTION
+ : RIGHT_PROMOTION>
+struct MaxExponentPromotion;
+
+template <typename Lhs, typename Rhs>
+struct MaxExponentPromotion<Lhs, Rhs, LEFT_PROMOTION> {
+ using type = Lhs;
+};
+
+template <typename Lhs, typename Rhs>
+struct MaxExponentPromotion<Lhs, Rhs, RIGHT_PROMOTION> {
+ using type = Rhs;
+};
+
+// Determines the type that can represent the lowest arithmetic value.
+template <typename Lhs,
+ typename Rhs,
+ ArithmeticPromotionCategory Promotion =
+ std::is_signed<Lhs>::value
+ ? (std::is_signed<Rhs>::value
+ ? (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value
+ ? LEFT_PROMOTION
+ : RIGHT_PROMOTION)
+ : LEFT_PROMOTION)
+ : (std::is_signed<Rhs>::value
+ ? RIGHT_PROMOTION
+ : (MaxExponent<Lhs>::value < MaxExponent<Rhs>::value
+ ? LEFT_PROMOTION
+ : RIGHT_PROMOTION))>
+struct LowestValuePromotion;
+
+template <typename Lhs, typename Rhs>
+struct LowestValuePromotion<Lhs, Rhs, LEFT_PROMOTION> {
+ using type = Lhs;
+};
+
+template <typename Lhs, typename Rhs>
+struct LowestValuePromotion<Lhs, Rhs, RIGHT_PROMOTION> {
+ using type = Rhs;
+};
+
+// Determines the type that is best able to represent an arithmetic result.
+template <
+ typename Lhs,
+ typename Rhs = Lhs,
+ bool is_intmax_type =
+ std::is_integral<typename MaxExponentPromotion<Lhs, Rhs>::type>::value&&
+ IntegerBitsPlusSign<typename MaxExponentPromotion<Lhs, Rhs>::type>::
+ value == IntegerBitsPlusSign<intmax_t>::value,
+ bool is_max_exponent =
+ StaticDstRangeRelationToSrcRange<
+ typename MaxExponentPromotion<Lhs, Rhs>::type,
+ Lhs>::value ==
+ NUMERIC_RANGE_CONTAINED&& StaticDstRangeRelationToSrcRange<
+ typename MaxExponentPromotion<Lhs, Rhs>::type,
+ Rhs>::value == NUMERIC_RANGE_CONTAINED>
+struct BigEnoughPromotion;
+
+// The side with the max exponent is big enough.
+template <typename Lhs, typename Rhs, bool is_intmax_type>
+struct BigEnoughPromotion<Lhs, Rhs, is_intmax_type, true> {
+ using type = typename MaxExponentPromotion<Lhs, Rhs>::type;
+ static const bool is_contained = true;
+};
+
+// We can use a twice wider type to fit.
+template <typename Lhs, typename Rhs>
+struct BigEnoughPromotion<Lhs, Rhs, false, false> {
+ using type =
+ typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type,
+ std::is_signed<Lhs>::value ||
+ std::is_signed<Rhs>::value>::type;
+ static const bool is_contained = true;
+};
+
+// No type is large enough.
+template <typename Lhs, typename Rhs>
+struct BigEnoughPromotion<Lhs, Rhs, true, false> {
+ using type = typename MaxExponentPromotion<Lhs, Rhs>::type;
+ static const bool is_contained = false;
+};
+
+// We can statically check if operations on the provided types can wrap, so we
+// can skip the checked operations if they're not needed. So, for an integer we
+// care if the destination type preserves the sign and is twice the width of
+// the source.
+template <typename T, typename Lhs, typename Rhs = Lhs>
+struct IsIntegerArithmeticSafe {
+ static const bool value =
+ !std::is_floating_point<T>::value &&
+ !std::is_floating_point<Lhs>::value &&
+ !std::is_floating_point<Rhs>::value &&
+ std::is_signed<T>::value >= std::is_signed<Lhs>::value &&
+ IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Lhs>::value) &&
+ std::is_signed<T>::value >= std::is_signed<Rhs>::value &&
+ IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Rhs>::value);
+};
+
+// Promotes to a type that can represent any possible result of a binary
+// arithmetic operation with the source types.
+template <typename Lhs,
+ typename Rhs,
+ bool is_promotion_possible = IsIntegerArithmeticSafe<
+ typename std::conditional<std::is_signed<Lhs>::value ||
+ std::is_signed<Rhs>::value,
+ intmax_t,
+ uintmax_t>::type,
+ typename MaxExponentPromotion<Lhs, Rhs>::type>::value>
+struct FastIntegerArithmeticPromotion;
+
+template <typename Lhs, typename Rhs>
+struct FastIntegerArithmeticPromotion<Lhs, Rhs, true> {
+ using type =
+ typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type,
+ std::is_signed<Lhs>::value ||
+ std::is_signed<Rhs>::value>::type;
+ static_assert(IsIntegerArithmeticSafe<type, Lhs, Rhs>::value, "");
+ static const bool is_contained = true;
+};
+
+template <typename Lhs, typename Rhs>
+struct FastIntegerArithmeticPromotion<Lhs, Rhs, false> {
+ using type = typename BigEnoughPromotion<Lhs, Rhs>::type;
+ static const bool is_contained = false;
+};
+
+// Extracts the underlying type from an enum.
+template <typename T, bool is_enum = std::is_enum<T>::value>
+struct ArithmeticOrUnderlyingEnum;
+
+template <typename T>
+struct ArithmeticOrUnderlyingEnum<T, true> {
+ using type = typename std::underlying_type<T>::type;
+ static const bool value = std::is_arithmetic<type>::value;
+};
+
+template <typename T>
+struct ArithmeticOrUnderlyingEnum<T, false> {
+ using type = T;
+ static const bool value = std::is_arithmetic<type>::value;
+};
+
+// The following are helper templates used in the CheckedNumeric class.
+template <typename T>
+class CheckedNumeric;
+
+template <typename T>
+class ClampedNumeric;
+
+template <typename T>
+class StrictNumeric;
+
+// Used to treat CheckedNumeric and arithmetic underlying types the same.
+template <typename T>
+struct UnderlyingType {
+ using type = typename ArithmeticOrUnderlyingEnum<T>::type;
+ static const bool is_numeric = std::is_arithmetic<type>::value;
+ static const bool is_checked = false;
+ static const bool is_clamped = false;
+ static const bool is_strict = false;
+};
+
+template <typename T>
+struct UnderlyingType<CheckedNumeric<T>> {
+ using type = T;
+ static const bool is_numeric = true;
+ static const bool is_checked = true;
+ static const bool is_clamped = false;
+ static const bool is_strict = false;
+};
+
+template <typename T>
+struct UnderlyingType<ClampedNumeric<T>> {
+ using type = T;
+ static const bool is_numeric = true;
+ static const bool is_checked = false;
+ static const bool is_clamped = true;
+ static const bool is_strict = false;
+};
+
+template <typename T>
+struct UnderlyingType<StrictNumeric<T>> {
+ using type = T;
+ static const bool is_numeric = true;
+ static const bool is_checked = false;
+ static const bool is_clamped = false;
+ static const bool is_strict = true;
+};
+
+template <typename L, typename R>
+struct IsCheckedOp {
+ static const bool value =
+ UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
+ (UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked);
+};
+
+template <typename L, typename R>
+struct IsClampedOp {
+ static const bool value =
+ UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
+ (UnderlyingType<L>::is_clamped || UnderlyingType<R>::is_clamped) &&
+ !(UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked);
+};
+
+template <typename L, typename R>
+struct IsStrictOp {
+ static const bool value =
+ UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
+ (UnderlyingType<L>::is_strict || UnderlyingType<R>::is_strict) &&
+ !(UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked) &&
+ !(UnderlyingType<L>::is_clamped || UnderlyingType<R>::is_clamped);
+};
+
+// as_signed<> returns the supplied integral value (or integral castable
+// Numeric template) cast as a signed integral of equivalent precision.
+// I.e. it's mostly an alias for: static_cast<std::make_signed<T>::type>(t)
+template <typename Src>
+constexpr typename std::make_signed<
+ typename base::internal::UnderlyingType<Src>::type>::type
+as_signed(const Src value) {
+ static_assert(std::is_integral<decltype(as_signed(value))>::value,
+ "Argument must be a signed or unsigned integer type.");
+ return static_cast<decltype(as_signed(value))>(value);
+}
+
+// as_unsigned<> returns the supplied integral value (or integral castable
+// Numeric template) cast as an unsigned integral of equivalent precision.
+// I.e. it's mostly an alias for: static_cast<std::make_unsigned<T>::type>(t)
+template <typename Src>
+constexpr typename std::make_unsigned<
+ typename base::internal::UnderlyingType<Src>::type>::type
+as_unsigned(const Src value) {
+ static_assert(std::is_integral<decltype(as_unsigned(value))>::value,
+ "Argument must be a signed or unsigned integer type.");
+ return static_cast<decltype(as_unsigned(value))>(value);
+}
+
+template <typename L, typename R>
+constexpr bool IsLessImpl(const L lhs,
+ const R rhs,
+ const RangeCheck l_range,
+ const RangeCheck r_range) {
+ return l_range.IsUnderflow() || r_range.IsOverflow() ||
+ (l_range == r_range &&
+ static_cast<decltype(lhs + rhs)>(lhs) <
+ static_cast<decltype(lhs + rhs)>(rhs));
+}
+
+template <typename L, typename R>
+struct IsLess {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return IsLessImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
+ DstRangeRelationToSrcRange<L>(rhs));
+ }
+};
+
+template <typename L, typename R>
+constexpr bool IsLessOrEqualImpl(const L lhs,
+ const R rhs,
+ const RangeCheck l_range,
+ const RangeCheck r_range) {
+ return l_range.IsUnderflow() || r_range.IsOverflow() ||
+ (l_range == r_range &&
+ static_cast<decltype(lhs + rhs)>(lhs) <=
+ static_cast<decltype(lhs + rhs)>(rhs));
+}
+
+template <typename L, typename R>
+struct IsLessOrEqual {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return IsLessOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
+ DstRangeRelationToSrcRange<L>(rhs));
+ }
+};
+
+template <typename L, typename R>
+constexpr bool IsGreaterImpl(const L lhs,
+ const R rhs,
+ const RangeCheck l_range,
+ const RangeCheck r_range) {
+ return l_range.IsOverflow() || r_range.IsUnderflow() ||
+ (l_range == r_range &&
+ static_cast<decltype(lhs + rhs)>(lhs) >
+ static_cast<decltype(lhs + rhs)>(rhs));
+}
+
+template <typename L, typename R>
+struct IsGreater {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return IsGreaterImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
+ DstRangeRelationToSrcRange<L>(rhs));
+ }
+};
+
+template <typename L, typename R>
+constexpr bool IsGreaterOrEqualImpl(const L lhs,
+ const R rhs,
+ const RangeCheck l_range,
+ const RangeCheck r_range) {
+ return l_range.IsOverflow() || r_range.IsUnderflow() ||
+ (l_range == r_range &&
+ static_cast<decltype(lhs + rhs)>(lhs) >=
+ static_cast<decltype(lhs + rhs)>(rhs));
+}
+
+template <typename L, typename R>
+struct IsGreaterOrEqual {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return IsGreaterOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
+ DstRangeRelationToSrcRange<L>(rhs));
+ }
+};
+
+template <typename L, typename R>
+struct IsEqual {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return DstRangeRelationToSrcRange<R>(lhs) ==
+ DstRangeRelationToSrcRange<L>(rhs) &&
+ static_cast<decltype(lhs + rhs)>(lhs) ==
+ static_cast<decltype(lhs + rhs)>(rhs);
+ }
+};
+
+template <typename L, typename R>
+struct IsNotEqual {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return DstRangeRelationToSrcRange<R>(lhs) !=
+ DstRangeRelationToSrcRange<L>(rhs) ||
+ static_cast<decltype(lhs + rhs)>(lhs) !=
+ static_cast<decltype(lhs + rhs)>(rhs);
+ }
+};
+
+// These perform the actual math operations on the CheckedNumerics.
+// Binary arithmetic operations.
+template <template <typename, typename> class C, typename L, typename R>
+constexpr bool SafeCompare(const L lhs, const R rhs) {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ using Promotion = BigEnoughPromotion<L, R>;
+ using BigType = typename Promotion::type;
+ return Promotion::is_contained
+ // Force to a larger type for speed if both are contained.
+ ? C<BigType, BigType>::Test(
+ static_cast<BigType>(static_cast<L>(lhs)),
+ static_cast<BigType>(static_cast<R>(rhs)))
+ // Let the template functions figure it out for mixed types.
+ : C<L, R>::Test(lhs, rhs);
+}
+
+template <typename Dst, typename Src>
+constexpr bool IsMaxInRangeForNumericType() {
+ return IsGreaterOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::max(),
+ std::numeric_limits<Src>::max());
+}
+
+template <typename Dst, typename Src>
+constexpr bool IsMinInRangeForNumericType() {
+ return IsLessOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::lowest(),
+ std::numeric_limits<Src>::lowest());
+}
+
+template <typename Dst, typename Src>
+constexpr Dst CommonMax() {
+ return !IsMaxInRangeForNumericType<Dst, Src>()
+ ? Dst(std::numeric_limits<Dst>::max())
+ : Dst(std::numeric_limits<Src>::max());
+}
+
+template <typename Dst, typename Src>
+constexpr Dst CommonMin() {
+ return !IsMinInRangeForNumericType<Dst, Src>()
+ ? Dst(std::numeric_limits<Dst>::lowest())
+ : Dst(std::numeric_limits<Src>::lowest());
+}
+
+// This is a wrapper to generate return the max or min for a supplied type.
+// If the argument is false, the returned value is the maximum. If true the
+// returned value is the minimum.
+template <typename Dst, typename Src = Dst>
+constexpr Dst CommonMaxOrMin(bool is_min) {
+ return is_min ? CommonMin<Dst, Src>() : CommonMax<Dst, Src>();
+}
+
+} // namespace internal
+} // namespace base
+
+#endif // BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
diff --git a/base/numerics/safe_math.h b/base/numerics/safe_math.h
new file mode 100644
index 0000000..e30be90
--- /dev/null
+++ b/base/numerics/safe_math.h
@@ -0,0 +1,12 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_SAFE_MATH_H_
+#define BASE_NUMERICS_SAFE_MATH_H_
+
+#include "base/numerics/checked_math.h"
+#include "base/numerics/clamped_math.h"
+#include "base/numerics/safe_conversions.h"
+
+#endif // BASE_NUMERICS_SAFE_MATH_H_
diff --git a/base/numerics/safe_math_arm_impl.h b/base/numerics/safe_math_arm_impl.h
new file mode 100644
index 0000000..a7cda1b
--- /dev/null
+++ b/base/numerics/safe_math_arm_impl.h
@@ -0,0 +1,122 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_
+#define BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_
+
+#include <cassert>
+#include <limits>
+#include <type_traits>
+
+#include "base/numerics/safe_conversions.h"
+
+namespace base {
+namespace internal {
+
+template <typename T, typename U>
+struct CheckedMulFastAsmOp {
+ static const bool is_supported =
+ FastIntegerArithmeticPromotion<T, U>::is_contained;
+
+ // The following is much more efficient than the Clang and GCC builtins for
+ // performing overflow-checked multiplication when a twice wider type is
+ // available. The below compiles down to 2-3 instructions, depending on the
+ // width of the types in use.
+ // As an example, an int32_t multiply compiles to:
+ // smull r0, r1, r0, r1
+ // cmp r1, r1, asr #31
+ // And an int16_t multiply compiles to:
+ // smulbb r1, r1, r0
+ // asr r2, r1, #16
+ // cmp r2, r1, asr #15
+ template <typename V>
+ __attribute__((always_inline)) static bool Do(T x, U y, V* result) {
+ using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
+ Promotion presult;
+
+ presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
+ *result = static_cast<V>(presult);
+ return IsValueInRangeForNumericType<V>(presult);
+ }
+};
+
+template <typename T, typename U>
+struct ClampedAddFastAsmOp {
+ static const bool is_supported =
+ BigEnoughPromotion<T, U>::is_contained &&
+ IsTypeInRangeForNumericType<
+ int32_t,
+ typename BigEnoughPromotion<T, U>::type>::value;
+
+ template <typename V>
+ __attribute__((always_inline)) static V Do(T x, U y) {
+ // This will get promoted to an int, so let the compiler do whatever is
+ // clever and rely on the saturated cast to bounds check.
+ if (IsIntegerArithmeticSafe<int, T, U>::value)
+ return saturated_cast<V>(x + y);
+
+ int32_t result;
+ int32_t x_i32 = x;
+ int32_t y_i32 = y;
+
+ asm("qadd %[result], %[first], %[second]"
+ : [result] "=r"(result)
+ : [first] "r"(x_i32), [second] "r"(y_i32));
+ return saturated_cast<V>(result);
+ }
+};
+
+template <typename T, typename U>
+struct ClampedSubFastAsmOp {
+ static const bool is_supported =
+ BigEnoughPromotion<T, U>::is_contained &&
+ IsTypeInRangeForNumericType<
+ int32_t,
+ typename BigEnoughPromotion<T, U>::type>::value;
+
+ template <typename V>
+ __attribute__((always_inline)) static V Do(T x, U y) {
+ // This will get promoted to an int, so let the compiler do whatever is
+ // clever and rely on the saturated cast to bounds check.
+ if (IsIntegerArithmeticSafe<int, T, U>::value)
+ return saturated_cast<V>(x - y);
+
+ int32_t result;
+ int32_t x_i32 = x;
+ int32_t y_i32 = y;
+
+ asm("qsub %[result], %[first], %[second]"
+ : [result] "=r"(result)
+ : [first] "r"(x_i32), [second] "r"(y_i32));
+ return saturated_cast<V>(result);
+ }
+};
+
+template <typename T, typename U>
+struct ClampedMulFastAsmOp {
+ static const bool is_supported = CheckedMulFastAsmOp<T, U>::is_supported;
+
+ template <typename V>
+ __attribute__((always_inline)) static V Do(T x, U y) {
+ // Use the CheckedMulFastAsmOp for full-width 32-bit values, because
+ // it's fewer instructions than promoting and then saturating.
+ if (!IsIntegerArithmeticSafe<int32_t, T, U>::value &&
+ !IsIntegerArithmeticSafe<uint32_t, T, U>::value) {
+ V result;
+ if (CheckedMulFastAsmOp<T, U>::Do(x, y, &result))
+ return result;
+ return CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y));
+ }
+
+ assert((FastIntegerArithmeticPromotion<T, U>::is_contained));
+ using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
+ return saturated_cast<V>(static_cast<Promotion>(x) *
+ static_cast<Promotion>(y));
+ }
+};
+
+} // namespace internal
+} // namespace base
+
+#endif // BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_
diff --git a/base/numerics/safe_math_clang_gcc_impl.h b/base/numerics/safe_math_clang_gcc_impl.h
new file mode 100644
index 0000000..1760338
--- /dev/null
+++ b/base/numerics/safe_math_clang_gcc_impl.h
@@ -0,0 +1,157 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_SAFE_MATH_CLANG_GCC_IMPL_H_
+#define BASE_NUMERICS_SAFE_MATH_CLANG_GCC_IMPL_H_
+
+#include <cassert>
+#include <limits>
+#include <type_traits>
+
+#include "base/numerics/safe_conversions.h"
+
+#if !defined(__native_client__) && (defined(__ARMEL__) || defined(__arch64__))
+#include "base/numerics/safe_math_arm_impl.h"
+#define BASE_HAS_ASSEMBLER_SAFE_MATH (1)
+#else
+#define BASE_HAS_ASSEMBLER_SAFE_MATH (0)
+#endif
+
+namespace base {
+namespace internal {
+
+// These are the non-functioning boilerplate implementations of the optimized
+// safe math routines.
+#if !BASE_HAS_ASSEMBLER_SAFE_MATH
+template <typename T, typename U>
+struct CheckedMulFastAsmOp {
+ static const bool is_supported = false;
+ template <typename V>
+ static constexpr bool Do(T, U, V*) {
+ // Force a compile failure if instantiated.
+ return CheckOnFailure::template HandleFailure<bool>();
+ }
+};
+
+template <typename T, typename U>
+struct ClampedAddFastAsmOp {
+ static const bool is_supported = false;
+ template <typename V>
+ static constexpr V Do(T, U) {
+ // Force a compile failure if instantiated.
+ return CheckOnFailure::template HandleFailure<V>();
+ }
+};
+
+template <typename T, typename U>
+struct ClampedSubFastAsmOp {
+ static const bool is_supported = false;
+ template <typename V>
+ static constexpr V Do(T, U) {
+ // Force a compile failure if instantiated.
+ return CheckOnFailure::template HandleFailure<V>();
+ }
+};
+
+template <typename T, typename U>
+struct ClampedMulFastAsmOp {
+ static const bool is_supported = false;
+ template <typename V>
+ static constexpr V Do(T, U) {
+ // Force a compile failure if instantiated.
+ return CheckOnFailure::template HandleFailure<V>();
+ }
+};
+#endif // BASE_HAS_ASSEMBLER_SAFE_MATH
+#undef BASE_HAS_ASSEMBLER_SAFE_MATH
+
+template <typename T, typename U>
+struct CheckedAddFastOp {
+ static const bool is_supported = true;
+ template <typename V>
+ __attribute__((always_inline)) static constexpr bool Do(T x, U y, V* result) {
+ return !__builtin_add_overflow(x, y, result);
+ }
+};
+
+template <typename T, typename U>
+struct CheckedSubFastOp {
+ static const bool is_supported = true;
+ template <typename V>
+ __attribute__((always_inline)) static constexpr bool Do(T x, U y, V* result) {
+ return !__builtin_sub_overflow(x, y, result);
+ }
+};
+
+template <typename T, typename U>
+struct CheckedMulFastOp {
+#if defined(__clang__)
+ // TODO(jschuh): Get the Clang runtime library issues sorted out so we can
+ // support full-width, mixed-sign multiply builtins.
+ // https://crbug.com/613003
+ // We can support intptr_t, uintptr_t, or a smaller common type.
+ static const bool is_supported =
+ (IsTypeInRangeForNumericType<intptr_t, T>::value &&
+ IsTypeInRangeForNumericType<intptr_t, U>::value) ||
+ (IsTypeInRangeForNumericType<uintptr_t, T>::value &&
+ IsTypeInRangeForNumericType<uintptr_t, U>::value);
+#else
+ static const bool is_supported = true;
+#endif
+ template <typename V>
+ __attribute__((always_inline)) static constexpr bool Do(T x, U y, V* result) {
+ return CheckedMulFastAsmOp<T, U>::is_supported
+ ? CheckedMulFastAsmOp<T, U>::Do(x, y, result)
+ : !__builtin_mul_overflow(x, y, result);
+ }
+};
+
+template <typename T, typename U>
+struct ClampedAddFastOp {
+ static const bool is_supported = ClampedAddFastAsmOp<T, U>::is_supported;
+ template <typename V>
+ __attribute__((always_inline)) static V Do(T x, U y) {
+ return ClampedAddFastAsmOp<T, U>::template Do<V>(x, y);
+ }
+};
+
+template <typename T, typename U>
+struct ClampedSubFastOp {
+ static const bool is_supported = ClampedSubFastAsmOp<T, U>::is_supported;
+ template <typename V>
+ __attribute__((always_inline)) static V Do(T x, U y) {
+ return ClampedSubFastAsmOp<T, U>::template Do<V>(x, y);
+ }
+};
+
+template <typename T, typename U>
+struct ClampedMulFastOp {
+ static const bool is_supported = ClampedMulFastAsmOp<T, U>::is_supported;
+ template <typename V>
+ __attribute__((always_inline)) static V Do(T x, U y) {
+ return ClampedMulFastAsmOp<T, U>::template Do<V>(x, y);
+ }
+};
+
+template <typename T>
+struct ClampedNegFastOp {
+ static const bool is_supported = std::is_signed<T>::value;
+ __attribute__((always_inline)) static T Do(T value) {
+ // Use this when there is no assembler path available.
+ if (!ClampedSubFastAsmOp<T, T>::is_supported) {
+ T result;
+ return !__builtin_sub_overflow(T(0), value, &result)
+ ? result
+ : std::numeric_limits<T>::max();
+ }
+
+ // Fallback to the normal subtraction path.
+ return ClampedSubFastOp<T, T>::template Do<T>(T(0), value);
+ }
+};
+
+} // namespace internal
+} // namespace base
+
+#endif // BASE_NUMERICS_SAFE_MATH_CLANG_GCC_IMPL_H_
diff --git a/base/numerics/safe_math_shared_impl.h b/base/numerics/safe_math_shared_impl.h
new file mode 100644
index 0000000..583c487
--- /dev/null
+++ b/base/numerics/safe_math_shared_impl.h
@@ -0,0 +1,237 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_
+#define BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include <cassert>
+#include <climits>
+#include <cmath>
+#include <cstdlib>
+#include <limits>
+#include <type_traits>
+
+#include "base/numerics/safe_conversions.h"
+
+// Where available use builtin math overflow support on Clang and GCC.
+#if !defined(__native_client__) && \
+ ((defined(__clang__) && \
+ ((__clang_major__ > 3) || \
+ (__clang_major__ == 3 && __clang_minor__ >= 4))) || \
+ (defined(__GNUC__) && __GNUC__ >= 5))
+#include "base/numerics/safe_math_clang_gcc_impl.h"
+#define BASE_HAS_OPTIMIZED_SAFE_MATH (1)
+#else
+#define BASE_HAS_OPTIMIZED_SAFE_MATH (0)
+#endif
+
+namespace base {
+namespace internal {
+
+// These are the non-functioning boilerplate implementations of the optimized
+// safe math routines.
+#if !BASE_HAS_OPTIMIZED_SAFE_MATH
+template <typename T, typename U>
+struct CheckedAddFastOp {
+ static const bool is_supported = false;
+ template <typename V>
+ static constexpr bool Do(T, U, V*) {
+ // Force a compile failure if instantiated.
+ return CheckOnFailure::template HandleFailure<bool>();
+ }
+};
+
+template <typename T, typename U>
+struct CheckedSubFastOp {
+ static const bool is_supported = false;
+ template <typename V>
+ static constexpr bool Do(T, U, V*) {
+ // Force a compile failure if instantiated.
+ return CheckOnFailure::template HandleFailure<bool>();
+ }
+};
+
+template <typename T, typename U>
+struct CheckedMulFastOp {
+ static const bool is_supported = false;
+ template <typename V>
+ static constexpr bool Do(T, U, V*) {
+ // Force a compile failure if instantiated.
+ return CheckOnFailure::template HandleFailure<bool>();
+ }
+};
+
+template <typename T, typename U>
+struct ClampedAddFastOp {
+ static const bool is_supported = false;
+ template <typename V>
+ static constexpr V Do(T, U) {
+ // Force a compile failure if instantiated.
+ return CheckOnFailure::template HandleFailure<V>();
+ }
+};
+
+template <typename T, typename U>
+struct ClampedSubFastOp {
+ static const bool is_supported = false;
+ template <typename V>
+ static constexpr V Do(T, U) {
+ // Force a compile failure if instantiated.
+ return CheckOnFailure::template HandleFailure<V>();
+ }
+};
+
+template <typename T, typename U>
+struct ClampedMulFastOp {
+ static const bool is_supported = false;
+ template <typename V>
+ static constexpr V Do(T, U) {
+ // Force a compile failure if instantiated.
+ return CheckOnFailure::template HandleFailure<V>();
+ }
+};
+
+template <typename T>
+struct ClampedNegFastOp {
+ static const bool is_supported = false;
+ static constexpr T Do(T) {
+ // Force a compile failure if instantiated.
+ return CheckOnFailure::template HandleFailure<T>();
+ }
+};
+#endif // BASE_HAS_OPTIMIZED_SAFE_MATH
+#undef BASE_HAS_OPTIMIZED_SAFE_MATH
+
+// This is used for UnsignedAbs, where we need to support floating-point
+// template instantiations even though we don't actually support the operations.
+// However, there is no corresponding implementation of e.g. SafeUnsignedAbs,
+// so the float versions will not compile.
+template <typename Numeric,
+ bool IsInteger = std::is_integral<Numeric>::value,
+ bool IsFloat = std::is_floating_point<Numeric>::value>
+struct UnsignedOrFloatForSize;
+
+template <typename Numeric>
+struct UnsignedOrFloatForSize<Numeric, true, false> {
+ using type = typename std::make_unsigned<Numeric>::type;
+};
+
+template <typename Numeric>
+struct UnsignedOrFloatForSize<Numeric, false, true> {
+ using type = Numeric;
+};
+
+// Wrap the unary operations to allow SFINAE when instantiating integrals versus
+// floating points. These don't perform any overflow checking. Rather, they
+// exhibit well-defined overflow semantics and rely on the caller to detect
+// if an overflow occured.
+
+template <typename T,
+ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+constexpr T NegateWrapper(T value) {
+ using UnsignedT = typename std::make_unsigned<T>::type;
+ // This will compile to a NEG on Intel, and is normal negation on ARM.
+ return static_cast<T>(UnsignedT(0) - static_cast<UnsignedT>(value));
+}
+
+template <
+ typename T,
+ typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
+constexpr T NegateWrapper(T value) {
+ return -value;
+}
+
+template <typename T,
+ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+constexpr typename std::make_unsigned<T>::type InvertWrapper(T value) {
+ return ~value;
+}
+
+template <typename T,
+ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+constexpr T AbsWrapper(T value) {
+ return static_cast<T>(SafeUnsignedAbs(value));
+}
+
+template <
+ typename T,
+ typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
+constexpr T AbsWrapper(T value) {
+ return value < 0 ? -value : value;
+}
+
+template <template <typename, typename, typename> class M,
+ typename L,
+ typename R>
+struct MathWrapper {
+ using math = M<typename UnderlyingType<L>::type,
+ typename UnderlyingType<R>::type,
+ void>;
+ using type = typename math::result_type;
+};
+
+// These variadic templates work out the return types.
+// TODO(jschuh): Rip all this out once we have C++14 non-trailing auto support.
+template <template <typename, typename, typename> class M,
+ typename L,
+ typename R,
+ typename... Args>
+struct ResultType;
+
+template <template <typename, typename, typename> class M,
+ typename L,
+ typename R>
+struct ResultType<M, L, R> {
+ using type = typename MathWrapper<M, L, R>::type;
+};
+
+template <template <typename, typename, typename> class M,
+ typename L,
+ typename R,
+ typename... Args>
+struct ResultType {
+ using type =
+ typename ResultType<M, typename ResultType<M, L, R>::type, Args...>::type;
+};
+
+// The following macros are just boilerplate for the standard arithmetic
+// operator overloads and variadic function templates. A macro isn't the nicest
+// solution, but it beats rewriting these over and over again.
+#define BASE_NUMERIC_ARITHMETIC_VARIADIC(CLASS, CL_ABBR, OP_NAME) \
+ template <typename L, typename R, typename... Args> \
+ constexpr CLASS##Numeric< \
+ typename ResultType<CLASS##OP_NAME##Op, L, R, Args...>::type> \
+ CL_ABBR##OP_NAME(const L lhs, const R rhs, const Args... args) { \
+ return CL_ABBR##MathOp<CLASS##OP_NAME##Op, L, R, Args...>(lhs, rhs, \
+ args...); \
+ }
+
+#define BASE_NUMERIC_ARITHMETIC_OPERATORS(CLASS, CL_ABBR, OP_NAME, OP, CMP_OP) \
+ /* Binary arithmetic operator for all CLASS##Numeric operations. */ \
+ template <typename L, typename R, \
+ typename std::enable_if<Is##CLASS##Op<L, R>::value>::type* = \
+ nullptr> \
+ constexpr CLASS##Numeric< \
+ typename MathWrapper<CLASS##OP_NAME##Op, L, R>::type> \
+ operator OP(const L lhs, const R rhs) { \
+ return decltype(lhs OP rhs)::template MathOp<CLASS##OP_NAME##Op>(lhs, \
+ rhs); \
+ } \
+ /* Assignment arithmetic operator implementation from CLASS##Numeric. */ \
+ template <typename L> \
+ template <typename R> \
+ constexpr CLASS##Numeric<L>& CLASS##Numeric<L>::operator CMP_OP( \
+ const R rhs) { \
+ return MathOp<CLASS##OP_NAME##Op>(rhs); \
+ } \
+ /* Variadic arithmetic functions that return CLASS##Numeric. */ \
+ BASE_NUMERIC_ARITHMETIC_VARIADIC(CLASS, CL_ABBR, OP_NAME)
+
+} // namespace internal
+} // namespace base
+
+#endif // BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_