|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include <stddef.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <limits> | 
|  | #include <vector> | 
|  |  | 
|  | #include "base/debug/activity_tracker.h" | 
|  | #include "base/logging.h" | 
|  | #include "base/synchronization/condition_variable.h" | 
|  | #include "base/synchronization/lock.h" | 
|  | #include "base/synchronization/waitable_event.h" | 
|  | #include "base/threading/scoped_blocking_call.h" | 
|  | #include "base/threading/thread_restrictions.h" | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't | 
|  | // support cross-process events (where one process can signal an event which | 
|  | // others are waiting on). Because of this, we can avoid having one thread per | 
|  | // listener in several cases. | 
|  | // | 
|  | // The WaitableEvent maintains a list of waiters, protected by a lock. Each | 
|  | // waiter is either an async wait, in which case we have a Task and the | 
|  | // MessageLoop to run it on, or a blocking wait, in which case we have the | 
|  | // condition variable to signal. | 
|  | // | 
|  | // Waiting involves grabbing the lock and adding oneself to the wait list. Async | 
|  | // waits can be canceled, which means grabbing the lock and removing oneself | 
|  | // from the list. | 
|  | // | 
|  | // Waiting on multiple events is handled by adding a single, synchronous wait to | 
|  | // the wait-list of many events. An event passes a pointer to itself when | 
|  | // firing a waiter and so we can store that pointer to find out which event | 
|  | // triggered. | 
|  | // ----------------------------------------------------------------------------- | 
|  |  | 
|  | namespace base { | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // This is just an abstract base class for waking the two types of waiters | 
|  | // ----------------------------------------------------------------------------- | 
|  | WaitableEvent::WaitableEvent(ResetPolicy reset_policy, | 
|  | InitialState initial_state) | 
|  | : kernel_(new WaitableEventKernel(reset_policy, initial_state)) {} | 
|  |  | 
|  | WaitableEvent::~WaitableEvent() = default; | 
|  |  | 
|  | void WaitableEvent::Reset() { | 
|  | base::AutoLock locked(kernel_->lock_); | 
|  | kernel_->signaled_ = false; | 
|  | } | 
|  |  | 
|  | void WaitableEvent::Signal() { | 
|  | base::AutoLock locked(kernel_->lock_); | 
|  |  | 
|  | if (kernel_->signaled_) | 
|  | return; | 
|  |  | 
|  | if (kernel_->manual_reset_) { | 
|  | SignalAll(); | 
|  | kernel_->signaled_ = true; | 
|  | } else { | 
|  | // In the case of auto reset, if no waiters were woken, we remain | 
|  | // signaled. | 
|  | if (!SignalOne()) | 
|  | kernel_->signaled_ = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool WaitableEvent::IsSignaled() { | 
|  | base::AutoLock locked(kernel_->lock_); | 
|  |  | 
|  | const bool result = kernel_->signaled_; | 
|  | if (result && !kernel_->manual_reset_) | 
|  | kernel_->signaled_ = false; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // Synchronous waits | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // This is a synchronous waiter. The thread is waiting on the given condition | 
|  | // variable and the fired flag in this object. | 
|  | // ----------------------------------------------------------------------------- | 
|  | class SyncWaiter : public WaitableEvent::Waiter { | 
|  | public: | 
|  | SyncWaiter() | 
|  | : fired_(false), signaling_event_(nullptr), lock_(), cv_(&lock_) {} | 
|  |  | 
|  | bool Fire(WaitableEvent* signaling_event) override { | 
|  | base::AutoLock locked(lock_); | 
|  |  | 
|  | if (fired_) | 
|  | return false; | 
|  |  | 
|  | fired_ = true; | 
|  | signaling_event_ = signaling_event; | 
|  |  | 
|  | cv_.Broadcast(); | 
|  |  | 
|  | // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on | 
|  | // the blocking thread's stack.  There is no |delete this;| in Fire.  The | 
|  | // SyncWaiter object is destroyed when it goes out of scope. | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | WaitableEvent* signaling_event() const { | 
|  | return signaling_event_; | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | // These waiters are always stack allocated and don't delete themselves. Thus | 
|  | // there's no problem and the ABA tag is the same as the object pointer. | 
|  | // --------------------------------------------------------------------------- | 
|  | bool Compare(void* tag) override { return this == tag; } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | // Called with lock held. | 
|  | // --------------------------------------------------------------------------- | 
|  | bool fired() const { | 
|  | return fired_; | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | // During a TimedWait, we need a way to make sure that an auto-reset | 
|  | // WaitableEvent doesn't think that this event has been signaled between | 
|  | // unlocking it and removing it from the wait-list. Called with lock held. | 
|  | // --------------------------------------------------------------------------- | 
|  | void Disable() { | 
|  | fired_ = true; | 
|  | } | 
|  |  | 
|  | base::Lock* lock() { | 
|  | return &lock_; | 
|  | } | 
|  |  | 
|  | base::ConditionVariable* cv() { | 
|  | return &cv_; | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool fired_; | 
|  | WaitableEvent* signaling_event_;  // The WaitableEvent which woke us | 
|  | base::Lock lock_; | 
|  | base::ConditionVariable cv_; | 
|  | }; | 
|  |  | 
|  | void WaitableEvent::Wait() { | 
|  | bool result = TimedWaitUntil(TimeTicks::Max()); | 
|  | DCHECK(result) << "TimedWait() should never fail with infinite timeout"; | 
|  | } | 
|  |  | 
|  | bool WaitableEvent::TimedWait(const TimeDelta& wait_delta) { | 
|  | // TimeTicks takes care of overflow including the cases when wait_delta | 
|  | // is a maximum value. | 
|  | return TimedWaitUntil(TimeTicks::Now() + wait_delta); | 
|  | } | 
|  |  | 
|  | bool WaitableEvent::TimedWaitUntil(const TimeTicks& end_time) { | 
|  | internal::AssertBaseSyncPrimitivesAllowed(); | 
|  | ScopedBlockingCall scoped_blocking_call(BlockingType::MAY_BLOCK); | 
|  | // Record the event that this thread is blocking upon (for hang diagnosis). | 
|  | base::debug::ScopedEventWaitActivity event_activity(this); | 
|  |  | 
|  | const bool finite_time = !end_time.is_max(); | 
|  |  | 
|  | kernel_->lock_.Acquire(); | 
|  | if (kernel_->signaled_) { | 
|  | if (!kernel_->manual_reset_) { | 
|  | // In this case we were signaled when we had no waiters. Now that | 
|  | // someone has waited upon us, we can automatically reset. | 
|  | kernel_->signaled_ = false; | 
|  | } | 
|  |  | 
|  | kernel_->lock_.Release(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SyncWaiter sw; | 
|  | sw.lock()->Acquire(); | 
|  |  | 
|  | Enqueue(&sw); | 
|  | kernel_->lock_.Release(); | 
|  | // We are violating locking order here by holding the SyncWaiter lock but not | 
|  | // the WaitableEvent lock. However, this is safe because we don't lock @lock_ | 
|  | // again before unlocking it. | 
|  |  | 
|  | for (;;) { | 
|  | const TimeTicks current_time(TimeTicks::Now()); | 
|  |  | 
|  | if (sw.fired() || (finite_time && current_time >= end_time)) { | 
|  | const bool return_value = sw.fired(); | 
|  |  | 
|  | // We can't acquire @lock_ before releasing the SyncWaiter lock (because | 
|  | // of locking order), however, in between the two a signal could be fired | 
|  | // and @sw would accept it, however we will still return false, so the | 
|  | // signal would be lost on an auto-reset WaitableEvent. Thus we call | 
|  | // Disable which makes sw::Fire return false. | 
|  | sw.Disable(); | 
|  | sw.lock()->Release(); | 
|  |  | 
|  | // This is a bug that has been enshrined in the interface of | 
|  | // WaitableEvent now: |Dequeue| is called even when |sw.fired()| is true, | 
|  | // even though it'll always return false in that case. However, taking | 
|  | // the lock ensures that |Signal| has completed before we return and | 
|  | // means that a WaitableEvent can synchronise its own destruction. | 
|  | kernel_->lock_.Acquire(); | 
|  | kernel_->Dequeue(&sw, &sw); | 
|  | kernel_->lock_.Release(); | 
|  |  | 
|  | return return_value; | 
|  | } | 
|  |  | 
|  | if (finite_time) { | 
|  | const TimeDelta max_wait(end_time - current_time); | 
|  | sw.cv()->TimedWait(max_wait); | 
|  | } else { | 
|  | sw.cv()->Wait(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // Synchronous waiting on multiple objects. | 
|  |  | 
|  | static bool  // StrictWeakOrdering | 
|  | cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a, | 
|  | const std::pair<WaitableEvent*, unsigned> &b) { | 
|  | return a.first < b.first; | 
|  | } | 
|  |  | 
|  | // static | 
|  | size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables, | 
|  | size_t count) { | 
|  | internal::AssertBaseSyncPrimitivesAllowed(); | 
|  | DCHECK(count) << "Cannot wait on no events"; | 
|  | ScopedBlockingCall scoped_blocking_call(BlockingType::MAY_BLOCK); | 
|  | // Record an event (the first) that this thread is blocking upon. | 
|  | base::debug::ScopedEventWaitActivity event_activity(raw_waitables[0]); | 
|  |  | 
|  | // We need to acquire the locks in a globally consistent order. Thus we sort | 
|  | // the array of waitables by address. We actually sort a pairs so that we can | 
|  | // map back to the original index values later. | 
|  | std::vector<std::pair<WaitableEvent*, size_t> > waitables; | 
|  | waitables.reserve(count); | 
|  | for (size_t i = 0; i < count; ++i) | 
|  | waitables.push_back(std::make_pair(raw_waitables[i], i)); | 
|  |  | 
|  | DCHECK_EQ(count, waitables.size()); | 
|  |  | 
|  | sort(waitables.begin(), waitables.end(), cmp_fst_addr); | 
|  |  | 
|  | // The set of waitables must be distinct. Since we have just sorted by | 
|  | // address, we can check this cheaply by comparing pairs of consecutive | 
|  | // elements. | 
|  | for (size_t i = 0; i < waitables.size() - 1; ++i) { | 
|  | DCHECK(waitables[i].first != waitables[i+1].first); | 
|  | } | 
|  |  | 
|  | SyncWaiter sw; | 
|  |  | 
|  | const size_t r = EnqueueMany(&waitables[0], count, &sw); | 
|  | if (r < count) { | 
|  | // One of the events is already signaled. The SyncWaiter has not been | 
|  | // enqueued anywhere. | 
|  | return waitables[r].second; | 
|  | } | 
|  |  | 
|  | // At this point, we hold the locks on all the WaitableEvents and we have | 
|  | // enqueued our waiter in them all. | 
|  | sw.lock()->Acquire(); | 
|  | // Release the WaitableEvent locks in the reverse order | 
|  | for (size_t i = 0; i < count; ++i) { | 
|  | waitables[count - (1 + i)].first->kernel_->lock_.Release(); | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | if (sw.fired()) | 
|  | break; | 
|  |  | 
|  | sw.cv()->Wait(); | 
|  | } | 
|  | sw.lock()->Release(); | 
|  |  | 
|  | // The address of the WaitableEvent which fired is stored in the SyncWaiter. | 
|  | WaitableEvent *const signaled_event = sw.signaling_event(); | 
|  | // This will store the index of the raw_waitables which fired. | 
|  | size_t signaled_index = 0; | 
|  |  | 
|  | // Take the locks of each WaitableEvent in turn (except the signaled one) and | 
|  | // remove our SyncWaiter from the wait-list | 
|  | for (size_t i = 0; i < count; ++i) { | 
|  | if (raw_waitables[i] != signaled_event) { | 
|  | raw_waitables[i]->kernel_->lock_.Acquire(); | 
|  | // There's no possible ABA issue with the address of the SyncWaiter here | 
|  | // because it lives on the stack. Thus the tag value is just the pointer | 
|  | // value again. | 
|  | raw_waitables[i]->kernel_->Dequeue(&sw, &sw); | 
|  | raw_waitables[i]->kernel_->lock_.Release(); | 
|  | } else { | 
|  | // By taking this lock here we ensure that |Signal| has completed by the | 
|  | // time we return, because |Signal| holds this lock. This matches the | 
|  | // behaviour of |Wait| and |TimedWait|. | 
|  | raw_waitables[i]->kernel_->lock_.Acquire(); | 
|  | raw_waitables[i]->kernel_->lock_.Release(); | 
|  | signaled_index = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | return signaled_index; | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // If return value == count: | 
|  | //   The locks of the WaitableEvents have been taken in order and the Waiter has | 
|  | //   been enqueued in the wait-list of each. None of the WaitableEvents are | 
|  | //   currently signaled | 
|  | // else: | 
|  | //   None of the WaitableEvent locks are held. The Waiter has not been enqueued | 
|  | //   in any of them and the return value is the index of the WaitableEvent which | 
|  | //   was signaled with the lowest input index from the original WaitMany call. | 
|  | // ----------------------------------------------------------------------------- | 
|  | // static | 
|  | size_t WaitableEvent::EnqueueMany(std::pair<WaitableEvent*, size_t>* waitables, | 
|  | size_t count, | 
|  | Waiter* waiter) { | 
|  | size_t winner = count; | 
|  | size_t winner_index = count; | 
|  | for (size_t i = 0; i < count; ++i) { | 
|  | auto& kernel = waitables[i].first->kernel_; | 
|  | kernel->lock_.Acquire(); | 
|  | if (kernel->signaled_ && waitables[i].second < winner) { | 
|  | winner = waitables[i].second; | 
|  | winner_index = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | // No events signaled. All locks acquired. Enqueue the Waiter on all of them | 
|  | // and return. | 
|  | if (winner == count) { | 
|  | for (size_t i = 0; i < count; ++i) | 
|  | waitables[i].first->Enqueue(waiter); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | // Unlock in reverse order and possibly clear the chosen winner's signal | 
|  | // before returning its index. | 
|  | for (auto* w = waitables + count - 1; w >= waitables; --w) { | 
|  | auto& kernel = w->first->kernel_; | 
|  | if (w->second == winner) { | 
|  | if (!kernel->manual_reset_) | 
|  | kernel->signaled_ = false; | 
|  | } | 
|  | kernel->lock_.Release(); | 
|  | } | 
|  |  | 
|  | return winner_index; | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  |  | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // Private functions... | 
|  |  | 
|  | WaitableEvent::WaitableEventKernel::WaitableEventKernel( | 
|  | ResetPolicy reset_policy, | 
|  | InitialState initial_state) | 
|  | : manual_reset_(reset_policy == ResetPolicy::MANUAL), | 
|  | signaled_(initial_state == InitialState::SIGNALED) {} | 
|  |  | 
|  | WaitableEvent::WaitableEventKernel::~WaitableEventKernel() = default; | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // Wake all waiting waiters. Called with lock held. | 
|  | // ----------------------------------------------------------------------------- | 
|  | bool WaitableEvent::SignalAll() { | 
|  | bool signaled_at_least_one = false; | 
|  |  | 
|  | for (std::list<Waiter*>::iterator | 
|  | i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) { | 
|  | if ((*i)->Fire(this)) | 
|  | signaled_at_least_one = true; | 
|  | } | 
|  |  | 
|  | kernel_->waiters_.clear(); | 
|  | return signaled_at_least_one; | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | // Try to wake a single waiter. Return true if one was woken. Called with lock | 
|  | // held. | 
|  | // --------------------------------------------------------------------------- | 
|  | bool WaitableEvent::SignalOne() { | 
|  | for (;;) { | 
|  | if (kernel_->waiters_.empty()) | 
|  | return false; | 
|  |  | 
|  | const bool r = (*kernel_->waiters_.begin())->Fire(this); | 
|  | kernel_->waiters_.pop_front(); | 
|  | if (r) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // Add a waiter to the list of those waiting. Called with lock held. | 
|  | // ----------------------------------------------------------------------------- | 
|  | void WaitableEvent::Enqueue(Waiter* waiter) { | 
|  | kernel_->waiters_.push_back(waiter); | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // Remove a waiter from the list of those waiting. Return true if the waiter was | 
|  | // actually removed. Called with lock held. | 
|  | // ----------------------------------------------------------------------------- | 
|  | bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) { | 
|  | for (std::list<Waiter*>::iterator | 
|  | i = waiters_.begin(); i != waiters_.end(); ++i) { | 
|  | if (*i == waiter && (*i)->Compare(tag)) { | 
|  | waiters_.erase(i); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  |  | 
|  | }  // namespace base |