| // Copyright (c) 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "gn/input_file_manager.h" |
| |
| #include <memory> |
| #include <utility> |
| |
| #include "base/stl_util.h" |
| #include "gn/filesystem_utils.h" |
| #include "gn/parser.h" |
| #include "gn/scheduler.h" |
| #include "gn/scope_per_file_provider.h" |
| #include "gn/tokenizer.h" |
| #include "gn/trace.h" |
| #include "gn/vector_utils.h" |
| |
| namespace { |
| |
| // The opposite of std::lock_guard. |
| struct ScopedUnlock { |
| ScopedUnlock(std::unique_lock<std::mutex>& lock) : lock_(lock) { |
| lock_.unlock(); |
| } |
| ~ScopedUnlock() { lock_.lock(); } |
| |
| private: |
| std::unique_lock<std::mutex>& lock_; |
| }; |
| |
| void InvokeFileLoadCallback(const InputFileManager::FileLoadCallback& cb, |
| const ParseNode* node) { |
| cb(node); |
| } |
| |
| bool DoLoadFile(const LocationRange& origin, |
| const BuildSettings* build_settings, |
| const SourceFile& name, |
| InputFileManager::SyncLoadFileCallback load_file_callback, |
| InputFile* file, |
| std::vector<Token>* tokens, |
| std::unique_ptr<ParseNode>* root, |
| Err* err) { |
| // Do all of this stuff outside the lock. We should not give out file |
| // pointers until the read is complete. |
| if (g_scheduler->verbose_logging()) { |
| std::string logmsg = name.value(); |
| if (origin.begin().file()) |
| logmsg += " (referenced from " + origin.begin().Describe(false) + ")"; |
| g_scheduler->Log("Loading", logmsg); |
| } |
| |
| // Read. |
| base::FilePath primary_path = build_settings->GetFullPath(name); |
| ScopedTrace load_trace(TraceItem::TRACE_FILE_LOAD, name.value()); |
| if (load_file_callback) { |
| if (!load_file_callback(name, file)) { |
| *err = Err(origin, "Can't load input file.", |
| "File not mocked by load_file_callback:\n " + name.value()); |
| return false; |
| } |
| } else if (!file->Load(primary_path)) { |
| if (!build_settings->secondary_source_path().empty()) { |
| // Fall back to secondary source tree. |
| base::FilePath secondary_path = |
| build_settings->GetFullPathSecondary(name); |
| if (!file->Load(secondary_path)) { |
| *err = Err(origin, "Can't load input file.", |
| "Unable to load:\n " + FilePathToUTF8(primary_path) + |
| "\n" |
| "I also checked in the secondary tree for:\n " + |
| FilePathToUTF8(secondary_path)); |
| return false; |
| } |
| } else { |
| *err = Err(origin, |
| "Unable to load \"" + FilePathToUTF8(primary_path) + "\"."); |
| return false; |
| } |
| } |
| load_trace.Done(); |
| |
| ScopedTrace exec_trace(TraceItem::TRACE_FILE_PARSE, name.value()); |
| |
| // Tokenize. |
| *tokens = Tokenizer::Tokenize(file, err); |
| if (err->has_error()) |
| return false; |
| |
| // Parse. |
| *root = Parser::Parse(*tokens, err); |
| if (err->has_error()) |
| return false; |
| |
| exec_trace.Done(); |
| return true; |
| } |
| |
| } // namespace |
| |
| InputFileManager::InputFileData::InputFileData(const SourceFile& file_name) |
| : file(file_name), loaded(false), sync_invocation(false) {} |
| |
| InputFileManager::InputFileData::~InputFileData() = default; |
| |
| InputFileManager::InputFileManager() = default; |
| |
| InputFileManager::~InputFileManager() { |
| // Should be single-threaded by now. |
| } |
| |
| bool InputFileManager::AsyncLoadFile(const LocationRange& origin, |
| const BuildSettings* build_settings, |
| const SourceFile& file_name, |
| const FileLoadCallback& callback, |
| Err* err) { |
| // Try not to schedule callbacks while holding the lock. All cases that don't |
| // want to schedule should return early. Otherwise, this will be scheduled |
| // after we leave the lock. |
| std::function<void()> schedule_this; |
| { |
| std::lock_guard<std::mutex> lock(lock_); |
| |
| InputFileMap::const_iterator found = input_files_.find(file_name); |
| if (found == input_files_.end()) { |
| // New file, schedule load. |
| std::unique_ptr<InputFileData> data = |
| std::make_unique<InputFileData>(file_name); |
| data->scheduled_callbacks.push_back(callback); |
| schedule_this = [this, origin, build_settings, file_name, |
| file = &data->file]() { |
| BackgroundLoadFile(origin, build_settings, file_name, file); |
| }; |
| input_files_[file_name] = std::move(data); |
| |
| } else { |
| InputFileData* data = found->second.get(); |
| |
| // Prevent mixing async and sync loads. See SyncLoadFile for discussion. |
| if (data->sync_invocation) { |
| g_scheduler->FailWithError(Err( |
| origin, "Load type mismatch.", |
| "The file \"" + file_name.value() + |
| "\" was previously loaded\n" |
| "synchronously (via an import) and now you're trying to load " |
| "it " |
| "asynchronously\n(via a deps rule). This is a class 2 " |
| "misdemeanor: " |
| "a single input file must\nbe loaded the same way each time to " |
| "avoid blowing my tiny, tiny mind.")); |
| return false; |
| } |
| |
| if (data->loaded) { |
| // Can just directly issue the callback on the background thread. |
| schedule_this = [callback, root = data->parsed_root.get()]() { |
| InvokeFileLoadCallback(callback, root); |
| }; |
| } else { |
| // Load is pending on this file, schedule the invoke. |
| data->scheduled_callbacks.push_back(callback); |
| return true; |
| } |
| } |
| } |
| g_scheduler->ScheduleWork(std::move(schedule_this)); |
| return true; |
| } |
| |
| const ParseNode* InputFileManager::SyncLoadFile( |
| const LocationRange& origin, |
| const BuildSettings* build_settings, |
| const SourceFile& file_name, |
| Err* err) { |
| std::unique_lock<std::mutex> lock(lock_); |
| |
| InputFileData* data = nullptr; |
| InputFileMap::iterator found = input_files_.find(file_name); |
| if (found == input_files_.end()) { |
| // Haven't seen this file yet, start loading right now. |
| std::unique_ptr<InputFileData> new_data = |
| std::make_unique<InputFileData>(file_name); |
| data = new_data.get(); |
| data->sync_invocation = true; |
| input_files_[file_name] = std::move(new_data); |
| |
| ScopedUnlock unlock(lock); |
| if (!LoadFile(origin, build_settings, file_name, &data->file, err)) |
| return nullptr; |
| } else { |
| // This file has either been loaded or is pending loading. |
| data = found->second.get(); |
| |
| if (!data->sync_invocation) { |
| // Don't allow mixing of sync and async loads. If an async load is |
| // scheduled and then a bunch of threads need to load it synchronously |
| // and block on it loading, it could deadlock or at least cause a lot |
| // of wasted CPU while those threads wait for the load to complete (which |
| // may be far back in the input queue). |
| // |
| // We could work around this by promoting the load to a sync load. This |
| // requires a bunch of extra code to either check flags and likely do |
| // extra locking (bad) or to just do both types of load on the file and |
| // deal with the race condition. |
| // |
| // I have no practical way to test this, and generally we should have |
| // all include files processed synchronously and all build files |
| // processed asynchronously, so it doesn't happen in practice. |
| *err = Err(origin, "Load type mismatch.", |
| "The file \"" + file_name.value() + |
| "\" was previously loaded\n" |
| "asynchronously (via a deps rule) and now you're trying " |
| "to load it " |
| "synchronously.\nThis is a class 2 misdemeanor: a single " |
| "input file " |
| "must be loaded the same way\neach time to avoid blowing " |
| "my tiny, " |
| "tiny mind."); |
| return nullptr; |
| } |
| |
| if (!data->loaded) { |
| // Wait for the already-pending sync load to complete. |
| if (!data->completion_event) { |
| data->completion_event = std::make_unique<AutoResetEvent>(); |
| } |
| { |
| ScopedUnlock unlock(lock); |
| data->completion_event->Wait(); |
| } |
| // If there were multiple waiters on the same event, we now need to wake |
| // up the next one. |
| data->completion_event->Signal(); |
| } |
| } |
| |
| // The other load could have failed. It is possible that this thread's error |
| // will be reported to the scheduler before the other thread's (and the first |
| // error reported "wins"). Forward the parse error from the other load for |
| // this thread so that the error message is useful. |
| if (!data->parsed_root) |
| *err = data->parse_error; |
| return data->parsed_root.get(); |
| } |
| |
| void InputFileManager::AddDynamicInput( |
| const SourceFile& name, |
| InputFile** file, |
| std::vector<Token>** tokens, |
| std::unique_ptr<ParseNode>** parse_root) { |
| std::unique_ptr<InputFileData> data = std::make_unique<InputFileData>(name); |
| *file = &data->file; |
| *tokens = &data->tokens; |
| *parse_root = &data->parsed_root; |
| { |
| std::lock_guard<std::mutex> lock(lock_); |
| dynamic_inputs_.push_back(std::move(data)); |
| } |
| } |
| |
| int InputFileManager::GetInputFileCount() const { |
| std::lock_guard<std::mutex> lock(lock_); |
| return static_cast<int>(input_files_.size()); |
| } |
| |
| void InputFileManager::AddAllPhysicalInputFileNamesToVectorSetSorter( |
| VectorSetSorter<base::FilePath>* sorter) const { |
| std::lock_guard<std::mutex> lock(lock_); |
| |
| for (const auto& file : input_files_) { |
| if (!file.second->file.physical_name().empty()) |
| sorter->Add(file.second->file.physical_name()); |
| } |
| } |
| |
| void InputFileManager::BackgroundLoadFile(const LocationRange& origin, |
| const BuildSettings* build_settings, |
| const SourceFile& name, |
| InputFile* file) { |
| Err err; |
| if (!LoadFile(origin, build_settings, name, file, &err)) |
| g_scheduler->FailWithError(err); |
| } |
| |
| bool InputFileManager::LoadFile(const LocationRange& origin, |
| const BuildSettings* build_settings, |
| const SourceFile& name, |
| InputFile* file, |
| Err* err) { |
| std::vector<Token> tokens; |
| std::unique_ptr<ParseNode> root; |
| bool success = |
| DoLoadFile(origin, build_settings, name, load_file_callback_, file, &tokens, &root, err); |
| // Can't return early. We have to ensure that the completion event is |
| // signaled in all cases because another thread could be blocked on this one. |
| |
| // Save this pointer for running the callbacks below, which happens after the |
| // scoped ptr ownership is taken away inside the lock. |
| ParseNode* unowned_root = root.get(); |
| |
| std::vector<FileLoadCallback> callbacks; |
| { |
| std::lock_guard<std::mutex> lock(lock_); |
| DCHECK(input_files_.find(name) != input_files_.end()); |
| |
| InputFileData* data = input_files_[name].get(); |
| data->loaded = true; |
| if (success) { |
| data->tokens = std::move(tokens); |
| data->parsed_root = std::move(root); |
| } else { |
| data->parse_error = *err; |
| } |
| |
| // Unblock waiters on this event. |
| // |
| // It's somewhat bad to signal this inside the lock. When it's used, it's |
| // lazily created inside the lock. So we need to do the check and signal |
| // inside the lock to avoid race conditions on the lazy creation of the |
| // lock. |
| // |
| // We could avoid this by creating the lock every time, but the lock is |
| // very seldom used and will generally be NULL, so my current theory is that |
| // several signals of a completion event inside a lock is better than |
| // creating about 1000 extra locks (one for each file). |
| if (data->completion_event) |
| data->completion_event->Signal(); |
| |
| callbacks = std::move(data->scheduled_callbacks); |
| } |
| |
| // Run pending invocations. Theoretically we could schedule each of these |
| // separately to get some parallelism. But normally there will only be one |
| // item in the list, so that's extra overhead and complexity for no gain. |
| if (success) { |
| for (const auto& cb : callbacks) |
| cb(unowned_root); |
| } |
| return success; |
| } |