|  | /**************************************************************** | 
|  | * | 
|  | * The author of this software is David M. Gay. | 
|  | * | 
|  | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. | 
|  | * | 
|  | * Permission to use, copy, modify, and distribute this software for any | 
|  | * purpose without fee is hereby granted, provided that this entire notice | 
|  | * is included in all copies of any software which is or includes a copy | 
|  | * or modification of this software and in all copies of the supporting | 
|  | * documentation for such software. | 
|  | * | 
|  | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED | 
|  | * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY | 
|  | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY | 
|  | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. | 
|  | * | 
|  | ***************************************************************/ | 
|  |  | 
|  | /* Please send bug reports to David M. Gay (dmg at acm dot org, | 
|  | * with " at " changed at "@" and " dot " changed to ".").	*/ | 
|  |  | 
|  | /* On a machine with IEEE extended-precision registers, it is | 
|  | * necessary to specify double-precision (53-bit) rounding precision | 
|  | * before invoking strtod or dtoa.  If the machine uses (the equivalent | 
|  | * of) Intel 80x87 arithmetic, the call | 
|  | *	_control87(PC_53, MCW_PC); | 
|  | * does this with many compilers.  Whether this or another call is | 
|  | * appropriate depends on the compiler; for this to work, it may be | 
|  | * necessary to #include "float.h" or another system-dependent header | 
|  | * file. | 
|  | */ | 
|  |  | 
|  | /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. | 
|  | * (Note that IEEE arithmetic is disabled by gcc's -ffast-math flag.) | 
|  | * | 
|  | * This strtod returns a nearest machine number to the input decimal | 
|  | * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are | 
|  | * broken by the IEEE round-even rule.  Otherwise ties are broken by | 
|  | * biased rounding (add half and chop). | 
|  | * | 
|  | * Inspired loosely by William D. Clinger's paper "How to Read Floating | 
|  | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. | 
|  | * | 
|  | * Modifications: | 
|  | * | 
|  | *	1. We only require IEEE, IBM, or VAX double-precision | 
|  | *		arithmetic (not IEEE double-extended). | 
|  | *	2. We get by with floating-point arithmetic in a case that | 
|  | *		Clinger missed -- when we're computing d * 10^n | 
|  | *		for a small integer d and the integer n is not too | 
|  | *		much larger than 22 (the maximum integer k for which | 
|  | *		we can represent 10^k exactly), we may be able to | 
|  | *		compute (d*10^k) * 10^(e-k) with just one roundoff. | 
|  | *	3. Rather than a bit-at-a-time adjustment of the binary | 
|  | *		result in the hard case, we use floating-point | 
|  | *		arithmetic to determine the adjustment to within | 
|  | *		one bit; only in really hard cases do we need to | 
|  | *		compute a second residual. | 
|  | *	4. Because of 3., we don't need a large table of powers of 10 | 
|  | *		for ten-to-e (just some small tables, e.g. of 10^k | 
|  | *		for 0 <= k <= 22). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * #define IEEE_8087 for IEEE-arithmetic machines where the least | 
|  | *	significant byte has the lowest address. | 
|  | * #define IEEE_MC68k for IEEE-arithmetic machines where the most | 
|  | *	significant byte has the lowest address. | 
|  | * #define Long int on machines with 32-bit ints and 64-bit longs. | 
|  | * #define IBM for IBM mainframe-style floating-point arithmetic. | 
|  | * #define VAX for VAX-style floating-point arithmetic (D_floating). | 
|  | * #define No_leftright to omit left-right logic in fast floating-point | 
|  | *	computation of dtoa.  This will cause dtoa modes 4 and 5 to be | 
|  | *	treated the same as modes 2 and 3 for some inputs. | 
|  | * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 | 
|  | *	and strtod and dtoa should round accordingly.  Unless Trust_FLT_ROUNDS | 
|  | *	is also #defined, fegetround() will be queried for the rounding mode. | 
|  | *	Note that both FLT_ROUNDS and fegetround() are specified by the C99 | 
|  | *	standard (and are specified to be consistent, with fesetround() | 
|  | *	affecting the value of FLT_ROUNDS), but that some (Linux) systems | 
|  | *	do not work correctly in this regard, so using fegetround() is more | 
|  | *	portable than using FLT_ROUNDS directly. | 
|  | * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 | 
|  | *	and Honor_FLT_ROUNDS is not #defined. | 
|  | * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines | 
|  | *	that use extended-precision instructions to compute rounded | 
|  | *	products and quotients) with IBM. | 
|  | * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic | 
|  | *	that rounds toward +Infinity. | 
|  | * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased | 
|  | *	rounding when the underlying floating-point arithmetic uses | 
|  | *	unbiased rounding.  This prevent using ordinary floating-point | 
|  | *	arithmetic when the result could be computed with one rounding error. | 
|  | * #define Inaccurate_Divide for IEEE-format with correctly rounded | 
|  | *	products but inaccurate quotients, e.g., for Intel i860. | 
|  | * #define NO_LONG_LONG on machines that do not have a "long long" | 
|  | *	integer type (of >= 64 bits).  On such machines, you can | 
|  | *	#define Just_16 to store 16 bits per 32-bit Long when doing | 
|  | *	high-precision integer arithmetic.  Whether this speeds things | 
|  | *	up or slows things down depends on the machine and the number | 
|  | *	being converted.  If long long is available and the name is | 
|  | *	something other than "long long", #define Llong to be the name, | 
|  | *	and if "unsigned Llong" does not work as an unsigned version of | 
|  | *	Llong, #define #ULLong to be the corresponding unsigned type. | 
|  | * #define KR_headers for old-style C function headers. | 
|  | * #define Bad_float_h if your system lacks a float.h or if it does not | 
|  | *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, | 
|  | *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX. | 
|  | * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) | 
|  | *	if memory is available and otherwise does something you deem | 
|  | *	appropriate.  If MALLOC is undefined, malloc will be invoked | 
|  | *	directly -- and assumed always to succeed.  Similarly, if you | 
|  | *	want something other than the system's free() to be called to | 
|  | *	recycle memory acquired from MALLOC, #define FREE to be the | 
|  | *	name of the alternate routine.  (FREE or free is only called in | 
|  | *	pathological cases, e.g., in a dtoa call after a dtoa return in | 
|  | *	mode 3 with thousands of digits requested.) | 
|  | * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making | 
|  | *	memory allocations from a private pool of memory when possible. | 
|  | *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes, | 
|  | *	unless #defined to be a different length.  This default length | 
|  | *	suffices to get rid of MALLOC calls except for unusual cases, | 
|  | *	such as decimal-to-binary conversion of a very long string of | 
|  | *	digits.  The longest string dtoa can return is about 751 bytes | 
|  | *	long.  For conversions by strtod of strings of 800 digits and | 
|  | *	all dtoa conversions in single-threaded executions with 8-byte | 
|  | *	pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte | 
|  | *	pointers, PRIVATE_MEM >= 7112 appears adequate. | 
|  | * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK | 
|  | *	#defined automatically on IEEE systems.  On such systems, | 
|  | *	when INFNAN_CHECK is #defined, strtod checks | 
|  | *	for Infinity and NaN (case insensitively).  On some systems | 
|  | *	(e.g., some HP systems), it may be necessary to #define NAN_WORD0 | 
|  | *	appropriately -- to the most significant word of a quiet NaN. | 
|  | *	(On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) | 
|  | *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, | 
|  | *	strtod also accepts (case insensitively) strings of the form | 
|  | *	NaN(x), where x is a string of hexadecimal digits and spaces; | 
|  | *	if there is only one string of hexadecimal digits, it is taken | 
|  | *	for the 52 fraction bits of the resulting NaN; if there are two | 
|  | *	or more strings of hex digits, the first is for the high 20 bits, | 
|  | *	the second and subsequent for the low 32 bits, with intervening | 
|  | *	white space ignored; but if this results in none of the 52 | 
|  | *	fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 | 
|  | *	and NAN_WORD1 are used instead. | 
|  | * #define MULTIPLE_THREADS if the system offers preemptively scheduled | 
|  | *	multiple threads.  In this case, you must provide (or suitably | 
|  | *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed | 
|  | *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed | 
|  | *	in pow5mult, ensures lazy evaluation of only one copy of high | 
|  | *	powers of 5; omitting this lock would introduce a small | 
|  | *	probability of wasting memory, but would otherwise be harmless.) | 
|  | *	You must also invoke freedtoa(s) to free the value s returned by | 
|  | *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined. | 
|  | * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that | 
|  | *	avoids underflows on inputs whose result does not underflow. | 
|  | *	If you #define NO_IEEE_Scale on a machine that uses IEEE-format | 
|  | *	floating-point numbers and flushes underflows to zero rather | 
|  | *	than implementing gradual underflow, then you must also #define | 
|  | *	Sudden_Underflow. | 
|  | * #define USE_LOCALE to use the current locale's decimal_point value. | 
|  | * #define SET_INEXACT if IEEE arithmetic is being used and extra | 
|  | *	computation should be done to set the inexact flag when the | 
|  | *	result is inexact and avoid setting inexact when the result | 
|  | *	is exact.  In this case, dtoa.c must be compiled in | 
|  | *	an environment, perhaps provided by #include "dtoa.c" in a | 
|  | *	suitable wrapper, that defines two functions, | 
|  | *		int get_inexact(void); | 
|  | *		void clear_inexact(void); | 
|  | *	such that get_inexact() returns a nonzero value if the | 
|  | *	inexact bit is already set, and clear_inexact() sets the | 
|  | *	inexact bit to 0.  When SET_INEXACT is #defined, strtod | 
|  | *	also does extra computations to set the underflow and overflow | 
|  | *	flags when appropriate (i.e., when the result is tiny and | 
|  | *	inexact or when it is a numeric value rounded to +-infinity). | 
|  | * #define NO_ERRNO if strtod should not assign errno = ERANGE when | 
|  | *	the result overflows to +-Infinity or underflows to 0. | 
|  | * #define NO_HEX_FP to omit recognition of hexadecimal floating-point | 
|  | *	values by strtod. | 
|  | * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now) | 
|  | *	to disable logic for "fast" testing of very long input strings | 
|  | *	to strtod.  This testing proceeds by initially truncating the | 
|  | *	input string, then if necessary comparing the whole string with | 
|  | *	a decimal expansion to decide close cases. This logic is only | 
|  | *	used for input more than STRTOD_DIGLIM digits long (default 40). | 
|  | */ | 
|  |  | 
|  | #define IEEE_8087 | 
|  | #define NO_HEX_FP | 
|  |  | 
|  | #ifndef Long | 
|  | #if __LP64__ | 
|  | #define Long int | 
|  | #else | 
|  | #define Long long | 
|  | #endif | 
|  | #endif | 
|  | #ifndef ULong | 
|  | typedef unsigned Long ULong; | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG | 
|  | #include "stdio.h" | 
|  | #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} | 
|  | #endif | 
|  |  | 
|  | #include "stdlib.h" | 
|  | #include "string.h" | 
|  |  | 
|  | #ifdef USE_LOCALE | 
|  | #include "locale.h" | 
|  | #endif | 
|  |  | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | #ifndef Trust_FLT_ROUNDS | 
|  | #include <fenv.h> | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef MALLOC | 
|  | #ifdef KR_headers | 
|  | extern char *MALLOC(); | 
|  | #else | 
|  | extern void *MALLOC(size_t); | 
|  | #endif | 
|  | #else | 
|  | #define MALLOC malloc | 
|  | #endif | 
|  |  | 
|  | #ifndef Omit_Private_Memory | 
|  | #ifndef PRIVATE_MEM | 
|  | #define PRIVATE_MEM 2304 | 
|  | #endif | 
|  | #define PRIVATE_mem ((unsigned)((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))) | 
|  | static double private_mem[PRIVATE_mem], *pmem_next = private_mem; | 
|  | #endif | 
|  |  | 
|  | #undef IEEE_Arith | 
|  | #undef Avoid_Underflow | 
|  | #ifdef IEEE_MC68k | 
|  | #define IEEE_Arith | 
|  | #endif | 
|  | #ifdef IEEE_8087 | 
|  | #define IEEE_Arith | 
|  | #endif | 
|  |  | 
|  | #ifdef IEEE_Arith | 
|  | #ifndef NO_INFNAN_CHECK | 
|  | #undef INFNAN_CHECK | 
|  | #define INFNAN_CHECK | 
|  | #endif | 
|  | #else | 
|  | #undef INFNAN_CHECK | 
|  | #define NO_STRTOD_BIGCOMP | 
|  | #endif | 
|  |  | 
|  | #include "errno.h" | 
|  |  | 
|  | #ifdef Bad_float_h | 
|  |  | 
|  | #ifdef IEEE_Arith | 
|  | #define DBL_DIG 15 | 
|  | #define DBL_MAX_10_EXP 308 | 
|  | #define DBL_MAX_EXP 1024 | 
|  | #define FLT_RADIX 2 | 
|  | #endif /*IEEE_Arith*/ | 
|  |  | 
|  | #ifdef IBM | 
|  | #define DBL_DIG 16 | 
|  | #define DBL_MAX_10_EXP 75 | 
|  | #define DBL_MAX_EXP 63 | 
|  | #define FLT_RADIX 16 | 
|  | #define DBL_MAX 7.2370055773322621e+75 | 
|  | #endif | 
|  |  | 
|  | #ifdef VAX | 
|  | #define DBL_DIG 16 | 
|  | #define DBL_MAX_10_EXP 38 | 
|  | #define DBL_MAX_EXP 127 | 
|  | #define FLT_RADIX 2 | 
|  | #define DBL_MAX 1.7014118346046923e+38 | 
|  | #endif | 
|  |  | 
|  | #ifndef LONG_MAX | 
|  | #define LONG_MAX 2147483647 | 
|  | #endif | 
|  |  | 
|  | #else /* ifndef Bad_float_h */ | 
|  | #include "float.h" | 
|  | #endif /* Bad_float_h */ | 
|  |  | 
|  | #ifndef __MATH_H__ | 
|  | #include "math.h" | 
|  | #endif | 
|  |  | 
|  | namespace dmg_fp { | 
|  |  | 
|  | #ifndef CONST | 
|  | #ifdef KR_headers | 
|  | #define CONST /* blank */ | 
|  | #else | 
|  | #define CONST const | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 | 
|  | Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. | 
|  | #endif | 
|  |  | 
|  | typedef union { double d; ULong L[2]; } U; | 
|  |  | 
|  | #ifdef IEEE_8087 | 
|  | #define word0(x) (x)->L[1] | 
|  | #define word1(x) (x)->L[0] | 
|  | #else | 
|  | #define word0(x) (x)->L[0] | 
|  | #define word1(x) (x)->L[1] | 
|  | #endif | 
|  | #define dval(x) (x)->d | 
|  |  | 
|  | #ifndef STRTOD_DIGLIM | 
|  | #define STRTOD_DIGLIM 40 | 
|  | #endif | 
|  |  | 
|  | #ifdef DIGLIM_DEBUG | 
|  | extern int strtod_diglim; | 
|  | #else | 
|  | #define strtod_diglim STRTOD_DIGLIM | 
|  | #endif | 
|  |  | 
|  | /* The following definition of Storeinc is appropriate for MIPS processors. | 
|  | * An alternative that might be better on some machines is | 
|  | * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) | 
|  | */ | 
|  | #if defined(IEEE_8087) + defined(VAX) | 
|  | #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ | 
|  | ((unsigned short *)a)[0] = (unsigned short)c, a++) | 
|  | #else | 
|  | #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ | 
|  | ((unsigned short *)a)[1] = (unsigned short)c, a++) | 
|  | #endif | 
|  |  | 
|  | /* #define P DBL_MANT_DIG */ | 
|  | /* Ten_pmax = floor(P*log(2)/log(5)) */ | 
|  | /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ | 
|  | /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ | 
|  | /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ | 
|  |  | 
|  | #ifdef IEEE_Arith | 
|  | #define Exp_shift  20 | 
|  | #define Exp_shift1 20 | 
|  | #define Exp_msk1    0x100000 | 
|  | #define Exp_msk11   0x100000 | 
|  | #define Exp_mask  0x7ff00000 | 
|  | #define P 53 | 
|  | #define Nbits 53 | 
|  | #define Bias 1023 | 
|  | #define Emax 1023 | 
|  | #define Emin (-1022) | 
|  | #define Exp_1  0x3ff00000 | 
|  | #define Exp_11 0x3ff00000 | 
|  | #define Ebits 11 | 
|  | #define Frac_mask  0xfffff | 
|  | #define Frac_mask1 0xfffff | 
|  | #define Ten_pmax 22 | 
|  | #define Bletch 0x10 | 
|  | #define Bndry_mask  0xfffff | 
|  | #define Bndry_mask1 0xfffff | 
|  | #define LSB 1 | 
|  | #define Sign_bit 0x80000000 | 
|  | #define Log2P 1 | 
|  | #define Tiny0 0 | 
|  | #define Tiny1 1 | 
|  | #define Quick_max 14 | 
|  | #define Int_max 14 | 
|  | #ifndef NO_IEEE_Scale | 
|  | #define Avoid_Underflow | 
|  | #ifdef Flush_Denorm	/* debugging option */ | 
|  | #undef Sudden_Underflow | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifndef Flt_Rounds | 
|  | #ifdef FLT_ROUNDS | 
|  | #define Flt_Rounds FLT_ROUNDS | 
|  | #else | 
|  | #define Flt_Rounds 1 | 
|  | #endif | 
|  | #endif /*Flt_Rounds*/ | 
|  |  | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | #undef Check_FLT_ROUNDS | 
|  | #define Check_FLT_ROUNDS | 
|  | #else | 
|  | #define Rounding Flt_Rounds | 
|  | #endif | 
|  |  | 
|  | #else /* ifndef IEEE_Arith */ | 
|  | #undef Check_FLT_ROUNDS | 
|  | #undef Honor_FLT_ROUNDS | 
|  | #undef SET_INEXACT | 
|  | #undef  Sudden_Underflow | 
|  | #define Sudden_Underflow | 
|  | #ifdef IBM | 
|  | #undef Flt_Rounds | 
|  | #define Flt_Rounds 0 | 
|  | #define Exp_shift  24 | 
|  | #define Exp_shift1 24 | 
|  | #define Exp_msk1   0x1000000 | 
|  | #define Exp_msk11  0x1000000 | 
|  | #define Exp_mask  0x7f000000 | 
|  | #define P 14 | 
|  | #define Nbits 56 | 
|  | #define Bias 65 | 
|  | #define Emax 248 | 
|  | #define Emin (-260) | 
|  | #define Exp_1  0x41000000 | 
|  | #define Exp_11 0x41000000 | 
|  | #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */ | 
|  | #define Frac_mask  0xffffff | 
|  | #define Frac_mask1 0xffffff | 
|  | #define Bletch 4 | 
|  | #define Ten_pmax 22 | 
|  | #define Bndry_mask  0xefffff | 
|  | #define Bndry_mask1 0xffffff | 
|  | #define LSB 1 | 
|  | #define Sign_bit 0x80000000 | 
|  | #define Log2P 4 | 
|  | #define Tiny0 0x100000 | 
|  | #define Tiny1 0 | 
|  | #define Quick_max 14 | 
|  | #define Int_max 15 | 
|  | #else /* VAX */ | 
|  | #undef Flt_Rounds | 
|  | #define Flt_Rounds 1 | 
|  | #define Exp_shift  23 | 
|  | #define Exp_shift1 7 | 
|  | #define Exp_msk1    0x80 | 
|  | #define Exp_msk11   0x800000 | 
|  | #define Exp_mask  0x7f80 | 
|  | #define P 56 | 
|  | #define Nbits 56 | 
|  | #define Bias 129 | 
|  | #define Emax 126 | 
|  | #define Emin (-129) | 
|  | #define Exp_1  0x40800000 | 
|  | #define Exp_11 0x4080 | 
|  | #define Ebits 8 | 
|  | #define Frac_mask  0x7fffff | 
|  | #define Frac_mask1 0xffff007f | 
|  | #define Ten_pmax 24 | 
|  | #define Bletch 2 | 
|  | #define Bndry_mask  0xffff007f | 
|  | #define Bndry_mask1 0xffff007f | 
|  | #define LSB 0x10000 | 
|  | #define Sign_bit 0x8000 | 
|  | #define Log2P 1 | 
|  | #define Tiny0 0x80 | 
|  | #define Tiny1 0 | 
|  | #define Quick_max 15 | 
|  | #define Int_max 15 | 
|  | #endif /* IBM, VAX */ | 
|  | #endif /* IEEE_Arith */ | 
|  |  | 
|  | #ifndef IEEE_Arith | 
|  | #define ROUND_BIASED | 
|  | #else | 
|  | #ifdef ROUND_BIASED_without_Round_Up | 
|  | #undef  ROUND_BIASED | 
|  | #define ROUND_BIASED | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef RND_PRODQUOT | 
|  | #define rounded_product(a,b) a = rnd_prod(a, b) | 
|  | #define rounded_quotient(a,b) a = rnd_quot(a, b) | 
|  | #ifdef KR_headers | 
|  | extern double rnd_prod(), rnd_quot(); | 
|  | #else | 
|  | extern double rnd_prod(double, double), rnd_quot(double, double); | 
|  | #endif | 
|  | #else | 
|  | #define rounded_product(a,b) a *= b | 
|  | #define rounded_quotient(a,b) a /= b | 
|  | #endif | 
|  |  | 
|  | #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) | 
|  | #define Big1 0xffffffff | 
|  |  | 
|  | #ifndef Pack_32 | 
|  | #define Pack_32 | 
|  | #endif | 
|  |  | 
|  | typedef struct BCinfo BCinfo; | 
|  | struct | 
|  | BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; }; | 
|  |  | 
|  | #ifdef KR_headers | 
|  | #define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff) | 
|  | #else | 
|  | #define FFFFFFFF 0xffffffffUL | 
|  | #endif | 
|  |  | 
|  | #ifdef NO_LONG_LONG | 
|  | #undef ULLong | 
|  | #ifdef Just_16 | 
|  | #undef Pack_32 | 
|  | /* When Pack_32 is not defined, we store 16 bits per 32-bit Long. | 
|  | * This makes some inner loops simpler and sometimes saves work | 
|  | * during multiplications, but it often seems to make things slightly | 
|  | * slower.  Hence the default is now to store 32 bits per Long. | 
|  | */ | 
|  | #endif | 
|  | #else	/* long long available */ | 
|  | #ifndef Llong | 
|  | #define Llong long long | 
|  | #endif | 
|  | #ifndef ULLong | 
|  | #define ULLong unsigned Llong | 
|  | #endif | 
|  | #endif /* NO_LONG_LONG */ | 
|  |  | 
|  | #ifndef MULTIPLE_THREADS | 
|  | #define ACQUIRE_DTOA_LOCK(n)	/*nothing*/ | 
|  | #define FREE_DTOA_LOCK(n)	/*nothing*/ | 
|  | #endif | 
|  |  | 
|  | #define Kmax 7 | 
|  |  | 
|  | double strtod(const char *s00, char **se); | 
|  | char *dtoa(double d, int mode, int ndigits, | 
|  | int *decpt, int *sign, char **rve); | 
|  |  | 
|  | struct | 
|  | Bigint { | 
|  | struct Bigint *next; | 
|  | int k, maxwds, sign, wds; | 
|  | ULong x[1]; | 
|  | }; | 
|  |  | 
|  | typedef struct Bigint Bigint; | 
|  |  | 
|  | static Bigint *freelist[Kmax+1]; | 
|  |  | 
|  | static Bigint * | 
|  | Balloc | 
|  | #ifdef KR_headers | 
|  | (k) int k; | 
|  | #else | 
|  | (int k) | 
|  | #endif | 
|  | { | 
|  | int x; | 
|  | Bigint *rv; | 
|  | #ifndef Omit_Private_Memory | 
|  | unsigned int len; | 
|  | #endif | 
|  |  | 
|  | ACQUIRE_DTOA_LOCK(0); | 
|  | /* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */ | 
|  | /* but this case seems very unlikely. */ | 
|  | if (k <= Kmax && freelist[k]) { | 
|  | rv = freelist[k]; | 
|  | freelist[k] = rv->next; | 
|  | } | 
|  | else { | 
|  | x = 1 << k; | 
|  | #ifdef Omit_Private_Memory | 
|  | rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong)); | 
|  | #else | 
|  | len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) | 
|  | /sizeof(double); | 
|  | if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) { | 
|  | rv = (Bigint*)pmem_next; | 
|  | pmem_next += len; | 
|  | } | 
|  | else | 
|  | rv = (Bigint*)MALLOC(len*sizeof(double)); | 
|  | #endif | 
|  | rv->k = k; | 
|  | rv->maxwds = x; | 
|  | } | 
|  | FREE_DTOA_LOCK(0); | 
|  | rv->sign = rv->wds = 0; | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | static void | 
|  | Bfree | 
|  | #ifdef KR_headers | 
|  | (v) Bigint *v; | 
|  | #else | 
|  | (Bigint *v) | 
|  | #endif | 
|  | { | 
|  | if (v) { | 
|  | if (v->k > Kmax) | 
|  | #ifdef FREE | 
|  | FREE((void*)v); | 
|  | #else | 
|  | free((void*)v); | 
|  | #endif | 
|  | else { | 
|  | ACQUIRE_DTOA_LOCK(0); | 
|  | v->next = freelist[v->k]; | 
|  | freelist[v->k] = v; | 
|  | FREE_DTOA_LOCK(0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ | 
|  | y->wds*sizeof(Long) + 2*sizeof(int)) | 
|  |  | 
|  | static Bigint * | 
|  | multadd | 
|  | #ifdef KR_headers | 
|  | (b, m, a) Bigint *b; int m, a; | 
|  | #else | 
|  | (Bigint *b, int m, int a)	/* multiply by m and add a */ | 
|  | #endif | 
|  | { | 
|  | int i, wds; | 
|  | #ifdef ULLong | 
|  | ULong *x; | 
|  | ULLong carry, y; | 
|  | #else | 
|  | ULong carry, *x, y; | 
|  | #ifdef Pack_32 | 
|  | ULong xi, z; | 
|  | #endif | 
|  | #endif | 
|  | Bigint *b1; | 
|  |  | 
|  | wds = b->wds; | 
|  | x = b->x; | 
|  | i = 0; | 
|  | carry = a; | 
|  | do { | 
|  | #ifdef ULLong | 
|  | y = *x * (ULLong)m + carry; | 
|  | carry = y >> 32; | 
|  | *x++ = y & FFFFFFFF; | 
|  | #else | 
|  | #ifdef Pack_32 | 
|  | xi = *x; | 
|  | y = (xi & 0xffff) * m + carry; | 
|  | z = (xi >> 16) * m + (y >> 16); | 
|  | carry = z >> 16; | 
|  | *x++ = (z << 16) + (y & 0xffff); | 
|  | #else | 
|  | y = *x * m + carry; | 
|  | carry = y >> 16; | 
|  | *x++ = y & 0xffff; | 
|  | #endif | 
|  | #endif | 
|  | } | 
|  | while(++i < wds); | 
|  | if (carry) { | 
|  | if (wds >= b->maxwds) { | 
|  | b1 = Balloc(b->k+1); | 
|  | Bcopy(b1, b); | 
|  | Bfree(b); | 
|  | b = b1; | 
|  | } | 
|  | b->x[wds++] = (ULong)carry; | 
|  | b->wds = wds; | 
|  | } | 
|  | return b; | 
|  | } | 
|  |  | 
|  | static Bigint * | 
|  | s2b | 
|  | #ifdef KR_headers | 
|  | (s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9; | 
|  | #else | 
|  | (const char *s, int nd0, int nd, ULong y9, int dplen) | 
|  | #endif | 
|  | { | 
|  | Bigint *b; | 
|  | int i, k; | 
|  | Long x, y; | 
|  |  | 
|  | x = (nd + 8) / 9; | 
|  | for(k = 0, y = 1; x > y; y <<= 1, k++) ; | 
|  | #ifdef Pack_32 | 
|  | b = Balloc(k); | 
|  | b->x[0] = y9; | 
|  | b->wds = 1; | 
|  | #else | 
|  | b = Balloc(k+1); | 
|  | b->x[0] = y9 & 0xffff; | 
|  | b->wds = (b->x[1] = y9 >> 16) ? 2 : 1; | 
|  | #endif | 
|  |  | 
|  | i = 9; | 
|  | if (9 < nd0) { | 
|  | s += 9; | 
|  | do b = multadd(b, 10, *s++ - '0'); | 
|  | while(++i < nd0); | 
|  | s += dplen; | 
|  | } | 
|  | else | 
|  | s += dplen + 9; | 
|  | for(; i < nd; i++) | 
|  | b = multadd(b, 10, *s++ - '0'); | 
|  | return b; | 
|  | } | 
|  |  | 
|  | static int | 
|  | hi0bits | 
|  | #ifdef KR_headers | 
|  | (x) ULong x; | 
|  | #else | 
|  | (ULong x) | 
|  | #endif | 
|  | { | 
|  | int k = 0; | 
|  |  | 
|  | if (!(x & 0xffff0000)) { | 
|  | k = 16; | 
|  | x <<= 16; | 
|  | } | 
|  | if (!(x & 0xff000000)) { | 
|  | k += 8; | 
|  | x <<= 8; | 
|  | } | 
|  | if (!(x & 0xf0000000)) { | 
|  | k += 4; | 
|  | x <<= 4; | 
|  | } | 
|  | if (!(x & 0xc0000000)) { | 
|  | k += 2; | 
|  | x <<= 2; | 
|  | } | 
|  | if (!(x & 0x80000000)) { | 
|  | k++; | 
|  | if (!(x & 0x40000000)) | 
|  | return 32; | 
|  | } | 
|  | return k; | 
|  | } | 
|  |  | 
|  | static int | 
|  | lo0bits | 
|  | #ifdef KR_headers | 
|  | (y) ULong *y; | 
|  | #else | 
|  | (ULong *y) | 
|  | #endif | 
|  | { | 
|  | int k; | 
|  | ULong x = *y; | 
|  |  | 
|  | if (x & 7) { | 
|  | if (x & 1) | 
|  | return 0; | 
|  | if (x & 2) { | 
|  | *y = x >> 1; | 
|  | return 1; | 
|  | } | 
|  | *y = x >> 2; | 
|  | return 2; | 
|  | } | 
|  | k = 0; | 
|  | if (!(x & 0xffff)) { | 
|  | k = 16; | 
|  | x >>= 16; | 
|  | } | 
|  | if (!(x & 0xff)) { | 
|  | k += 8; | 
|  | x >>= 8; | 
|  | } | 
|  | if (!(x & 0xf)) { | 
|  | k += 4; | 
|  | x >>= 4; | 
|  | } | 
|  | if (!(x & 0x3)) { | 
|  | k += 2; | 
|  | x >>= 2; | 
|  | } | 
|  | if (!(x & 1)) { | 
|  | k++; | 
|  | x >>= 1; | 
|  | if (!x) | 
|  | return 32; | 
|  | } | 
|  | *y = x; | 
|  | return k; | 
|  | } | 
|  |  | 
|  | static Bigint * | 
|  | i2b | 
|  | #ifdef KR_headers | 
|  | (i) int i; | 
|  | #else | 
|  | (int i) | 
|  | #endif | 
|  | { | 
|  | Bigint *b; | 
|  |  | 
|  | b = Balloc(1); | 
|  | b->x[0] = i; | 
|  | b->wds = 1; | 
|  | return b; | 
|  | } | 
|  |  | 
|  | static Bigint * | 
|  | mult | 
|  | #ifdef KR_headers | 
|  | (a, b) Bigint *a, *b; | 
|  | #else | 
|  | (Bigint *a, Bigint *b) | 
|  | #endif | 
|  | { | 
|  | Bigint *c; | 
|  | int k, wa, wb, wc; | 
|  | ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; | 
|  | ULong y; | 
|  | #ifdef ULLong | 
|  | ULLong carry, z; | 
|  | #else | 
|  | ULong carry, z; | 
|  | #ifdef Pack_32 | 
|  | ULong z2; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | if (a->wds < b->wds) { | 
|  | c = a; | 
|  | a = b; | 
|  | b = c; | 
|  | } | 
|  | k = a->k; | 
|  | wa = a->wds; | 
|  | wb = b->wds; | 
|  | wc = wa + wb; | 
|  | if (wc > a->maxwds) | 
|  | k++; | 
|  | c = Balloc(k); | 
|  | for(x = c->x, xa = x + wc; x < xa; x++) | 
|  | *x = 0; | 
|  | xa = a->x; | 
|  | xae = xa + wa; | 
|  | xb = b->x; | 
|  | xbe = xb + wb; | 
|  | xc0 = c->x; | 
|  | #ifdef ULLong | 
|  | for(; xb < xbe; xc0++) { | 
|  | y = *xb++; | 
|  | if (y) { | 
|  | x = xa; | 
|  | xc = xc0; | 
|  | carry = 0; | 
|  | do { | 
|  | z = *x++ * (ULLong)y + *xc + carry; | 
|  | carry = z >> 32; | 
|  | *xc++ = z & FFFFFFFF; | 
|  | } | 
|  | while(x < xae); | 
|  | *xc = (ULong)carry; | 
|  | } | 
|  | } | 
|  | #else | 
|  | #ifdef Pack_32 | 
|  | for(; xb < xbe; xb++, xc0++) { | 
|  | if (y = *xb & 0xffff) { | 
|  | x = xa; | 
|  | xc = xc0; | 
|  | carry = 0; | 
|  | do { | 
|  | z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; | 
|  | carry = z >> 16; | 
|  | z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; | 
|  | carry = z2 >> 16; | 
|  | Storeinc(xc, z2, z); | 
|  | } | 
|  | while(x < xae); | 
|  | *xc = carry; | 
|  | } | 
|  | if (y = *xb >> 16) { | 
|  | x = xa; | 
|  | xc = xc0; | 
|  | carry = 0; | 
|  | z2 = *xc; | 
|  | do { | 
|  | z = (*x & 0xffff) * y + (*xc >> 16) + carry; | 
|  | carry = z >> 16; | 
|  | Storeinc(xc, z, z2); | 
|  | z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; | 
|  | carry = z2 >> 16; | 
|  | } | 
|  | while(x < xae); | 
|  | *xc = z2; | 
|  | } | 
|  | } | 
|  | #else | 
|  | for(; xb < xbe; xc0++) { | 
|  | if (y = *xb++) { | 
|  | x = xa; | 
|  | xc = xc0; | 
|  | carry = 0; | 
|  | do { | 
|  | z = *x++ * y + *xc + carry; | 
|  | carry = z >> 16; | 
|  | *xc++ = z & 0xffff; | 
|  | } | 
|  | while(x < xae); | 
|  | *xc = carry; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  | for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; | 
|  | c->wds = wc; | 
|  | return c; | 
|  | } | 
|  |  | 
|  | static Bigint *p5s; | 
|  |  | 
|  | static Bigint * | 
|  | pow5mult | 
|  | #ifdef KR_headers | 
|  | (b, k) Bigint *b; int k; | 
|  | #else | 
|  | (Bigint *b, int k) | 
|  | #endif | 
|  | { | 
|  | Bigint *b1, *p5, *p51; | 
|  | int i; | 
|  | static int p05[3] = { 5, 25, 125 }; | 
|  |  | 
|  | i = k & 3; | 
|  | if (i) | 
|  | b = multadd(b, p05[i-1], 0); | 
|  |  | 
|  | if (!(k >>= 2)) | 
|  | return b; | 
|  | p5 = p5s; | 
|  | if (!p5) { | 
|  | /* first time */ | 
|  | #ifdef MULTIPLE_THREADS | 
|  | ACQUIRE_DTOA_LOCK(1); | 
|  | p5 = p5s; | 
|  | if (!p5) { | 
|  | p5 = p5s = i2b(625); | 
|  | p5->next = 0; | 
|  | } | 
|  | FREE_DTOA_LOCK(1); | 
|  | #else | 
|  | p5 = p5s = i2b(625); | 
|  | p5->next = 0; | 
|  | #endif | 
|  | } | 
|  | for(;;) { | 
|  | if (k & 1) { | 
|  | b1 = mult(b, p5); | 
|  | Bfree(b); | 
|  | b = b1; | 
|  | } | 
|  | if (!(k >>= 1)) | 
|  | break; | 
|  | p51 = p5->next; | 
|  | if (!p51) { | 
|  | #ifdef MULTIPLE_THREADS | 
|  | ACQUIRE_DTOA_LOCK(1); | 
|  | p51 = p5->next; | 
|  | if (!p51) { | 
|  | p51 = p5->next = mult(p5,p5); | 
|  | p51->next = 0; | 
|  | } | 
|  | FREE_DTOA_LOCK(1); | 
|  | #else | 
|  | p51 = p5->next = mult(p5,p5); | 
|  | p51->next = 0; | 
|  | #endif | 
|  | } | 
|  | p5 = p51; | 
|  | } | 
|  | return b; | 
|  | } | 
|  |  | 
|  | static Bigint * | 
|  | lshift | 
|  | #ifdef KR_headers | 
|  | (b, k) Bigint *b; int k; | 
|  | #else | 
|  | (Bigint *b, int k) | 
|  | #endif | 
|  | { | 
|  | int i, k1, n, n1; | 
|  | Bigint *b1; | 
|  | ULong *x, *x1, *xe, z; | 
|  |  | 
|  | #ifdef Pack_32 | 
|  | n = k >> 5; | 
|  | #else | 
|  | n = k >> 4; | 
|  | #endif | 
|  | k1 = b->k; | 
|  | n1 = n + b->wds + 1; | 
|  | for(i = b->maxwds; n1 > i; i <<= 1) | 
|  | k1++; | 
|  | b1 = Balloc(k1); | 
|  | x1 = b1->x; | 
|  | for(i = 0; i < n; i++) | 
|  | *x1++ = 0; | 
|  | x = b->x; | 
|  | xe = x + b->wds; | 
|  | #ifdef Pack_32 | 
|  | if (k &= 0x1f) { | 
|  | k1 = 32 - k; | 
|  | z = 0; | 
|  | do { | 
|  | *x1++ = *x << k | z; | 
|  | z = *x++ >> k1; | 
|  | } | 
|  | while(x < xe); | 
|  | *x1 = z; | 
|  | if (*x1) | 
|  | ++n1; | 
|  | } | 
|  | #else | 
|  | if (k &= 0xf) { | 
|  | k1 = 16 - k; | 
|  | z = 0; | 
|  | do { | 
|  | *x1++ = *x << k  & 0xffff | z; | 
|  | z = *x++ >> k1; | 
|  | } | 
|  | while(x < xe); | 
|  | if (*x1 = z) | 
|  | ++n1; | 
|  | } | 
|  | #endif | 
|  | else do | 
|  | *x1++ = *x++; | 
|  | while(x < xe); | 
|  | b1->wds = n1 - 1; | 
|  | Bfree(b); | 
|  | return b1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | cmp | 
|  | #ifdef KR_headers | 
|  | (a, b) Bigint *a, *b; | 
|  | #else | 
|  | (Bigint *a, Bigint *b) | 
|  | #endif | 
|  | { | 
|  | ULong *xa, *xa0, *xb, *xb0; | 
|  | int i, j; | 
|  |  | 
|  | i = a->wds; | 
|  | j = b->wds; | 
|  | #ifdef DEBUG | 
|  | if (i > 1 && !a->x[i-1]) | 
|  | Bug("cmp called with a->x[a->wds-1] == 0"); | 
|  | if (j > 1 && !b->x[j-1]) | 
|  | Bug("cmp called with b->x[b->wds-1] == 0"); | 
|  | #endif | 
|  | if (i -= j) | 
|  | return i; | 
|  | xa0 = a->x; | 
|  | xa = xa0 + j; | 
|  | xb0 = b->x; | 
|  | xb = xb0 + j; | 
|  | for(;;) { | 
|  | if (*--xa != *--xb) | 
|  | return *xa < *xb ? -1 : 1; | 
|  | if (xa <= xa0) | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static Bigint * | 
|  | diff | 
|  | #ifdef KR_headers | 
|  | (a, b) Bigint *a, *b; | 
|  | #else | 
|  | (Bigint *a, Bigint *b) | 
|  | #endif | 
|  | { | 
|  | Bigint *c; | 
|  | int i, wa, wb; | 
|  | ULong *xa, *xae, *xb, *xbe, *xc; | 
|  | #ifdef ULLong | 
|  | ULLong borrow, y; | 
|  | #else | 
|  | ULong borrow, y; | 
|  | #ifdef Pack_32 | 
|  | ULong z; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | i = cmp(a,b); | 
|  | if (!i) { | 
|  | c = Balloc(0); | 
|  | c->wds = 1; | 
|  | c->x[0] = 0; | 
|  | return c; | 
|  | } | 
|  | if (i < 0) { | 
|  | c = a; | 
|  | a = b; | 
|  | b = c; | 
|  | i = 1; | 
|  | } | 
|  | else | 
|  | i = 0; | 
|  | c = Balloc(a->k); | 
|  | c->sign = i; | 
|  | wa = a->wds; | 
|  | xa = a->x; | 
|  | xae = xa + wa; | 
|  | wb = b->wds; | 
|  | xb = b->x; | 
|  | xbe = xb + wb; | 
|  | xc = c->x; | 
|  | borrow = 0; | 
|  | #ifdef ULLong | 
|  | do { | 
|  | y = (ULLong)*xa++ - *xb++ - borrow; | 
|  | borrow = y >> 32 & (ULong)1; | 
|  | *xc++ = y & FFFFFFFF; | 
|  | } | 
|  | while(xb < xbe); | 
|  | while(xa < xae) { | 
|  | y = *xa++ - borrow; | 
|  | borrow = y >> 32 & (ULong)1; | 
|  | *xc++ = y & FFFFFFFF; | 
|  | } | 
|  | #else | 
|  | #ifdef Pack_32 | 
|  | do { | 
|  | y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; | 
|  | borrow = (y & 0x10000) >> 16; | 
|  | z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; | 
|  | borrow = (z & 0x10000) >> 16; | 
|  | Storeinc(xc, z, y); | 
|  | } | 
|  | while(xb < xbe); | 
|  | while(xa < xae) { | 
|  | y = (*xa & 0xffff) - borrow; | 
|  | borrow = (y & 0x10000) >> 16; | 
|  | z = (*xa++ >> 16) - borrow; | 
|  | borrow = (z & 0x10000) >> 16; | 
|  | Storeinc(xc, z, y); | 
|  | } | 
|  | #else | 
|  | do { | 
|  | y = *xa++ - *xb++ - borrow; | 
|  | borrow = (y & 0x10000) >> 16; | 
|  | *xc++ = y & 0xffff; | 
|  | } | 
|  | while(xb < xbe); | 
|  | while(xa < xae) { | 
|  | y = *xa++ - borrow; | 
|  | borrow = (y & 0x10000) >> 16; | 
|  | *xc++ = y & 0xffff; | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  | while(!*--xc) | 
|  | wa--; | 
|  | c->wds = wa; | 
|  | return c; | 
|  | } | 
|  |  | 
|  | static double | 
|  | ulp | 
|  | #ifdef KR_headers | 
|  | (x) U *x; | 
|  | #else | 
|  | (U *x) | 
|  | #endif | 
|  | { | 
|  | Long L; | 
|  | U u; | 
|  |  | 
|  | L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; | 
|  | #ifndef Avoid_Underflow | 
|  | #ifndef Sudden_Underflow | 
|  | if (L > 0) { | 
|  | #endif | 
|  | #endif | 
|  | #ifdef IBM | 
|  | L |= Exp_msk1 >> 4; | 
|  | #endif | 
|  | word0(&u) = L; | 
|  | word1(&u) = 0; | 
|  | #ifndef Avoid_Underflow | 
|  | #ifndef Sudden_Underflow | 
|  | } | 
|  | else { | 
|  | L = -L >> Exp_shift; | 
|  | if (L < Exp_shift) { | 
|  | word0(&u) = 0x80000 >> L; | 
|  | word1(&u) = 0; | 
|  | } | 
|  | else { | 
|  | word0(&u) = 0; | 
|  | L -= Exp_shift; | 
|  | word1(&u) = L >= 31 ? 1 : 1 << 31 - L; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  | return dval(&u); | 
|  | } | 
|  |  | 
|  | static double | 
|  | b2d | 
|  | #ifdef KR_headers | 
|  | (a, e) Bigint *a; int *e; | 
|  | #else | 
|  | (Bigint *a, int *e) | 
|  | #endif | 
|  | { | 
|  | ULong *xa, *xa0, w, y, z; | 
|  | int k; | 
|  | U d; | 
|  | #ifdef VAX | 
|  | ULong d0, d1; | 
|  | #else | 
|  | #define d0 word0(&d) | 
|  | #define d1 word1(&d) | 
|  | #endif | 
|  |  | 
|  | xa0 = a->x; | 
|  | xa = xa0 + a->wds; | 
|  | y = *--xa; | 
|  | #ifdef DEBUG | 
|  | if (!y) Bug("zero y in b2d"); | 
|  | #endif | 
|  | k = hi0bits(y); | 
|  | *e = 32 - k; | 
|  | #ifdef Pack_32 | 
|  | if (k < Ebits) { | 
|  | d0 = Exp_1 | y >> (Ebits - k); | 
|  | w = xa > xa0 ? *--xa : 0; | 
|  | d1 = y << ((32-Ebits) + k) | w >> (Ebits - k); | 
|  | goto ret_d; | 
|  | } | 
|  | z = xa > xa0 ? *--xa : 0; | 
|  | if (k -= Ebits) { | 
|  | d0 = Exp_1 | y << k | z >> (32 - k); | 
|  | y = xa > xa0 ? *--xa : 0; | 
|  | d1 = z << k | y >> (32 - k); | 
|  | } | 
|  | else { | 
|  | d0 = Exp_1 | y; | 
|  | d1 = z; | 
|  | } | 
|  | #else | 
|  | if (k < Ebits + 16) { | 
|  | z = xa > xa0 ? *--xa : 0; | 
|  | d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; | 
|  | w = xa > xa0 ? *--xa : 0; | 
|  | y = xa > xa0 ? *--xa : 0; | 
|  | d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; | 
|  | goto ret_d; | 
|  | } | 
|  | z = xa > xa0 ? *--xa : 0; | 
|  | w = xa > xa0 ? *--xa : 0; | 
|  | k -= Ebits + 16; | 
|  | d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; | 
|  | y = xa > xa0 ? *--xa : 0; | 
|  | d1 = w << k + 16 | y << k; | 
|  | #endif | 
|  | ret_d: | 
|  | #ifdef VAX | 
|  | word0(&d) = d0 >> 16 | d0 << 16; | 
|  | word1(&d) = d1 >> 16 | d1 << 16; | 
|  | #else | 
|  | #undef d0 | 
|  | #undef d1 | 
|  | #endif | 
|  | return dval(&d); | 
|  | } | 
|  |  | 
|  | static Bigint * | 
|  | d2b | 
|  | #ifdef KR_headers | 
|  | (d, e, bits) U *d; int *e, *bits; | 
|  | #else | 
|  | (U *d, int *e, int *bits) | 
|  | #endif | 
|  | { | 
|  | Bigint *b; | 
|  | int de, k; | 
|  | ULong *x, y, z; | 
|  | #ifndef Sudden_Underflow | 
|  | int i; | 
|  | #endif | 
|  | #ifdef VAX | 
|  | ULong d0, d1; | 
|  | d0 = word0(d) >> 16 | word0(d) << 16; | 
|  | d1 = word1(d) >> 16 | word1(d) << 16; | 
|  | #else | 
|  | #define d0 word0(d) | 
|  | #define d1 word1(d) | 
|  | #endif | 
|  |  | 
|  | #ifdef Pack_32 | 
|  | b = Balloc(1); | 
|  | #else | 
|  | b = Balloc(2); | 
|  | #endif | 
|  | x = b->x; | 
|  |  | 
|  | z = d0 & Frac_mask; | 
|  | d0 &= 0x7fffffff;	/* clear sign bit, which we ignore */ | 
|  | #ifdef Sudden_Underflow | 
|  | de = (int)(d0 >> Exp_shift); | 
|  | #ifndef IBM | 
|  | z |= Exp_msk11; | 
|  | #endif | 
|  | #else | 
|  | de = (int)(d0 >> Exp_shift); | 
|  | if (de) | 
|  | z |= Exp_msk1; | 
|  | #endif | 
|  | #ifdef Pack_32 | 
|  | y = d1; | 
|  | if (y) { | 
|  | k = lo0bits(&y); | 
|  | if (k) { | 
|  | x[0] = y | z << (32 - k); | 
|  | z >>= k; | 
|  | } | 
|  | else | 
|  | x[0] = y; | 
|  | x[1] = z; | 
|  | b->wds = x[1] ? 2 : 1; | 
|  | #ifndef Sudden_Underflow | 
|  | i = b->wds; | 
|  | #endif | 
|  | } | 
|  | else { | 
|  | k = lo0bits(&z); | 
|  | x[0] = z; | 
|  | #ifndef Sudden_Underflow | 
|  | i = | 
|  | #endif | 
|  | b->wds = 1; | 
|  | k += 32; | 
|  | } | 
|  | #else | 
|  | if (y = d1) { | 
|  | if (k = lo0bits(&y)) | 
|  | if (k >= 16) { | 
|  | x[0] = y | z << 32 - k & 0xffff; | 
|  | x[1] = z >> k - 16 & 0xffff; | 
|  | x[2] = z >> k; | 
|  | i = 2; | 
|  | } | 
|  | else { | 
|  | x[0] = y & 0xffff; | 
|  | x[1] = y >> 16 | z << 16 - k & 0xffff; | 
|  | x[2] = z >> k & 0xffff; | 
|  | x[3] = z >> k+16; | 
|  | i = 3; | 
|  | } | 
|  | else { | 
|  | x[0] = y & 0xffff; | 
|  | x[1] = y >> 16; | 
|  | x[2] = z & 0xffff; | 
|  | x[3] = z >> 16; | 
|  | i = 3; | 
|  | } | 
|  | } | 
|  | else { | 
|  | #ifdef DEBUG | 
|  | if (!z) | 
|  | Bug("Zero passed to d2b"); | 
|  | #endif | 
|  | k = lo0bits(&z); | 
|  | if (k >= 16) { | 
|  | x[0] = z; | 
|  | i = 0; | 
|  | } | 
|  | else { | 
|  | x[0] = z & 0xffff; | 
|  | x[1] = z >> 16; | 
|  | i = 1; | 
|  | } | 
|  | k += 32; | 
|  | } | 
|  | while(!x[i]) | 
|  | --i; | 
|  | b->wds = i + 1; | 
|  | #endif | 
|  | #ifndef Sudden_Underflow | 
|  | if (de) { | 
|  | #endif | 
|  | #ifdef IBM | 
|  | *e = (de - Bias - (P-1) << 2) + k; | 
|  | *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask); | 
|  | #else | 
|  | *e = de - Bias - (P-1) + k; | 
|  | *bits = P - k; | 
|  | #endif | 
|  | #ifndef Sudden_Underflow | 
|  | } | 
|  | else { | 
|  | *e = de - Bias - (P-1) + 1 + k; | 
|  | #ifdef Pack_32 | 
|  | *bits = 32*i - hi0bits(x[i-1]); | 
|  | #else | 
|  | *bits = (i+2)*16 - hi0bits(x[i]); | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  | return b; | 
|  | } | 
|  | #undef d0 | 
|  | #undef d1 | 
|  |  | 
|  | static double | 
|  | ratio | 
|  | #ifdef KR_headers | 
|  | (a, b) Bigint *a, *b; | 
|  | #else | 
|  | (Bigint *a, Bigint *b) | 
|  | #endif | 
|  | { | 
|  | U da, db; | 
|  | int k, ka, kb; | 
|  |  | 
|  | dval(&da) = b2d(a, &ka); | 
|  | dval(&db) = b2d(b, &kb); | 
|  | #ifdef Pack_32 | 
|  | k = ka - kb + 32*(a->wds - b->wds); | 
|  | #else | 
|  | k = ka - kb + 16*(a->wds - b->wds); | 
|  | #endif | 
|  | #ifdef IBM | 
|  | if (k > 0) { | 
|  | word0(&da) += (k >> 2)*Exp_msk1; | 
|  | if (k &= 3) | 
|  | dval(&da) *= 1 << k; | 
|  | } | 
|  | else { | 
|  | k = -k; | 
|  | word0(&db) += (k >> 2)*Exp_msk1; | 
|  | if (k &= 3) | 
|  | dval(&db) *= 1 << k; | 
|  | } | 
|  | #else | 
|  | if (k > 0) | 
|  | word0(&da) += k*Exp_msk1; | 
|  | else { | 
|  | k = -k; | 
|  | word0(&db) += k*Exp_msk1; | 
|  | } | 
|  | #endif | 
|  | return dval(&da) / dval(&db); | 
|  | } | 
|  |  | 
|  | static CONST double | 
|  | tens[] = { | 
|  | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, | 
|  | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, | 
|  | 1e20, 1e21, 1e22 | 
|  | #ifdef VAX | 
|  | , 1e23, 1e24 | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static CONST double | 
|  | #ifdef IEEE_Arith | 
|  | bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; | 
|  | static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, | 
|  | #ifdef Avoid_Underflow | 
|  | 9007199254740992.*9007199254740992.e-256 | 
|  | /* = 2^106 * 1e-256 */ | 
|  | #else | 
|  | 1e-256 | 
|  | #endif | 
|  | }; | 
|  | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ | 
|  | /* flag unnecessarily.  It leads to a song and dance at the end of strtod. */ | 
|  | #define Scale_Bit 0x10 | 
|  | #define n_bigtens 5 | 
|  | #else | 
|  | #ifdef IBM | 
|  | bigtens[] = { 1e16, 1e32, 1e64 }; | 
|  | static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 }; | 
|  | #define n_bigtens 3 | 
|  | #else | 
|  | bigtens[] = { 1e16, 1e32 }; | 
|  | static CONST double tinytens[] = { 1e-16, 1e-32 }; | 
|  | #define n_bigtens 2 | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #undef Need_Hexdig | 
|  | #ifdef INFNAN_CHECK | 
|  | #ifndef No_Hex_NaN | 
|  | #define Need_Hexdig | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifndef Need_Hexdig | 
|  | #ifndef NO_HEX_FP | 
|  | #define Need_Hexdig | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef Need_Hexdig /*{*/ | 
|  | #if 0 | 
|  | static unsigned char hexdig[256]; | 
|  |  | 
|  | static void | 
|  | htinit(unsigned char *h, unsigned char *s, int inc) | 
|  | { | 
|  | int i, j; | 
|  | for(i = 0; (j = s[i]) !=0; i++) | 
|  | h[j] = (unsigned char)(i + inc); | 
|  | } | 
|  |  | 
|  | static void | 
|  | hexdig_init(void)	/* Use of hexdig_init omitted 20121220 to avoid a */ | 
|  | /* race condition when multiple threads are used. */ | 
|  | { | 
|  | #define USC (unsigned char *) | 
|  | htinit(hexdig, USC "0123456789", 0x10); | 
|  | htinit(hexdig, USC "abcdef", 0x10 + 10); | 
|  | htinit(hexdig, USC "ABCDEF", 0x10 + 10); | 
|  | } | 
|  | #else | 
|  | static const unsigned char hexdig[256] = { | 
|  | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | 
|  | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | 
|  | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | 
|  | 16,17,18,19,20,21,22,23,24,25,0,0,0,0,0,0, | 
|  | 0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0, | 
|  | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | 
|  | 0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0, | 
|  | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | 
|  | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | 
|  | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | 
|  | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | 
|  | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | 
|  | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | 
|  | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | 
|  | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | 
|  | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 | 
|  | }; | 
|  | #endif | 
|  | #endif /* } Need_Hexdig */ | 
|  |  | 
|  | #ifdef INFNAN_CHECK | 
|  |  | 
|  | #ifndef NAN_WORD0 | 
|  | #define NAN_WORD0 0x7ff80000 | 
|  | #endif | 
|  |  | 
|  | #ifndef NAN_WORD1 | 
|  | #define NAN_WORD1 0 | 
|  | #endif | 
|  |  | 
|  | static int | 
|  | match | 
|  | #ifdef KR_headers | 
|  | (sp, t) char **sp, *t; | 
|  | #else | 
|  | (const char **sp, const char *t) | 
|  | #endif | 
|  | { | 
|  | int c, d; | 
|  | CONST char *s = *sp; | 
|  |  | 
|  | for(d = *t++; d; d = *t++) { | 
|  | if ((c = *++s) >= 'A' && c <= 'Z') | 
|  | c += 'a' - 'A'; | 
|  | if (c != d) | 
|  | return 0; | 
|  | } | 
|  | *sp = s + 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #ifndef No_Hex_NaN | 
|  | static void | 
|  | hexnan | 
|  | #ifdef KR_headers | 
|  | (rvp, sp) U *rvp; CONST char **sp; | 
|  | #else | 
|  | (U *rvp, const char **sp) | 
|  | #endif | 
|  | { | 
|  | ULong c, x[2]; | 
|  | CONST char *s; | 
|  | int c1, havedig, udx0, xshift; | 
|  |  | 
|  | /**** if (!hexdig['0']) hexdig_init(); ****/ | 
|  | x[0] = x[1] = 0; | 
|  | havedig = xshift = 0; | 
|  | udx0 = 1; | 
|  | s = *sp; | 
|  | /* allow optional initial 0x or 0X */ | 
|  | for(c = *(CONST unsigned char*)(s+1); c && c <= ' '; c = *(CONST unsigned char*)(s+1)) | 
|  | ++s; | 
|  | if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X')) | 
|  | s += 2; | 
|  | for(c = *(CONST unsigned char*)++s; c; c = *(CONST unsigned char*)++s) { | 
|  | c1 = hexdig[c]; | 
|  | if (c1) | 
|  | c  = c1 & 0xf; | 
|  | else if (c <= ' ') { | 
|  | if (udx0 && havedig) { | 
|  | udx0 = 0; | 
|  | xshift = 1; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | #ifdef GDTOA_NON_PEDANTIC_NANCHECK | 
|  | else if (/*(*/ c == ')' && havedig) { | 
|  | *sp = s + 1; | 
|  | break; | 
|  | } | 
|  | else | 
|  | return;	/* invalid form: don't change *sp */ | 
|  | #else | 
|  | else { | 
|  | do { | 
|  | if (/*(*/ c == ')') { | 
|  | *sp = s + 1; | 
|  | break; | 
|  | } | 
|  | c = *++s; | 
|  | } while(c); | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | havedig = 1; | 
|  | if (xshift) { | 
|  | xshift = 0; | 
|  | x[0] = x[1]; | 
|  | x[1] = 0; | 
|  | } | 
|  | if (udx0) | 
|  | x[0] = (x[0] << 4) | (x[1] >> 28); | 
|  | x[1] = (x[1] << 4) | c; | 
|  | } | 
|  | if ((x[0] &= 0xfffff) || x[1]) { | 
|  | word0(rvp) = Exp_mask | x[0]; | 
|  | word1(rvp) = x[1]; | 
|  | } | 
|  | } | 
|  | #endif /*No_Hex_NaN*/ | 
|  | #endif /* INFNAN_CHECK */ | 
|  |  | 
|  | #ifdef Pack_32 | 
|  | #define ULbits 32 | 
|  | #define kshift 5 | 
|  | #define kmask 31 | 
|  | #else | 
|  | #define ULbits 16 | 
|  | #define kshift 4 | 
|  | #define kmask 15 | 
|  | #endif | 
|  |  | 
|  | #if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/ | 
|  | static Bigint * | 
|  | #ifdef KR_headers | 
|  | increment(b) Bigint *b; | 
|  | #else | 
|  | increment(Bigint *b) | 
|  | #endif | 
|  | { | 
|  | ULong *x, *xe; | 
|  | Bigint *b1; | 
|  |  | 
|  | x = b->x; | 
|  | xe = x + b->wds; | 
|  | do { | 
|  | if (*x < (ULong)0xffffffffL) { | 
|  | ++*x; | 
|  | return b; | 
|  | } | 
|  | *x++ = 0; | 
|  | } while(x < xe); | 
|  | { | 
|  | if (b->wds >= b->maxwds) { | 
|  | b1 = Balloc(b->k+1); | 
|  | Bcopy(b1,b); | 
|  | Bfree(b); | 
|  | b = b1; | 
|  | } | 
|  | b->x[b->wds++] = 1; | 
|  | } | 
|  | return b; | 
|  | } | 
|  |  | 
|  | #endif /*}*/ | 
|  |  | 
|  | #ifndef NO_HEX_FP /*{*/ | 
|  |  | 
|  | static void | 
|  | #ifdef KR_headers | 
|  | rshift(b, k) Bigint *b; int k; | 
|  | #else | 
|  | rshift(Bigint *b, int k) | 
|  | #endif | 
|  | { | 
|  | ULong *x, *x1, *xe, y; | 
|  | int n; | 
|  |  | 
|  | x = x1 = b->x; | 
|  | n = k >> kshift; | 
|  | if (n < b->wds) { | 
|  | xe = x + b->wds; | 
|  | x += n; | 
|  | if (k &= kmask) { | 
|  | n = 32 - k; | 
|  | y = *x++ >> k; | 
|  | while(x < xe) { | 
|  | *x1++ = (y | (*x << n)) & 0xffffffff; | 
|  | y = *x++ >> k; | 
|  | } | 
|  | if ((*x1 = y) !=0) | 
|  | x1++; | 
|  | } | 
|  | else | 
|  | while(x < xe) | 
|  | *x1++ = *x++; | 
|  | } | 
|  | if ((b->wds = x1 - b->x) == 0) | 
|  | b->x[0] = 0; | 
|  | } | 
|  |  | 
|  | static ULong | 
|  | #ifdef KR_headers | 
|  | any_on(b, k) Bigint *b; int k; | 
|  | #else | 
|  | any_on(Bigint *b, int k) | 
|  | #endif | 
|  | { | 
|  | int n, nwds; | 
|  | ULong *x, *x0, x1, x2; | 
|  |  | 
|  | x = b->x; | 
|  | nwds = b->wds; | 
|  | n = k >> kshift; | 
|  | if (n > nwds) | 
|  | n = nwds; | 
|  | else if (n < nwds && (k &= kmask)) { | 
|  | x1 = x2 = x[n]; | 
|  | x1 >>= k; | 
|  | x1 <<= k; | 
|  | if (x1 != x2) | 
|  | return 1; | 
|  | } | 
|  | x0 = x; | 
|  | x += n; | 
|  | while(x > x0) | 
|  | if (*--x) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | enum {	/* rounding values: same as FLT_ROUNDS */ | 
|  | Round_zero = 0, | 
|  | Round_near = 1, | 
|  | Round_up = 2, | 
|  | Round_down = 3 | 
|  | }; | 
|  |  | 
|  | void | 
|  | #ifdef KR_headers | 
|  | gethex(sp, rvp, rounding, sign) | 
|  | CONST char **sp; U *rvp; int rounding, sign; | 
|  | #else | 
|  | gethex( CONST char **sp, U *rvp, int rounding, int sign) | 
|  | #endif | 
|  | { | 
|  | Bigint *b; | 
|  | CONST unsigned char *decpt, *s0, *s, *s1; | 
|  | Long e, e1; | 
|  | ULong L, lostbits, *x; | 
|  | int big, denorm, esign, havedig, k, n, nbits, up, zret; | 
|  | #ifdef IBM | 
|  | int j; | 
|  | #endif | 
|  | enum { | 
|  | #ifdef IEEE_Arith /*{{*/ | 
|  | emax = 0x7fe - Bias - P + 1, | 
|  | emin = Emin - P + 1 | 
|  | #else /*}{*/ | 
|  | emin = Emin - P, | 
|  | #ifdef VAX | 
|  | emax = 0x7ff - Bias - P + 1 | 
|  | #endif | 
|  | #ifdef IBM | 
|  | emax = 0x7f - Bias - P | 
|  | #endif | 
|  | #endif /*}}*/ | 
|  | }; | 
|  | #ifdef USE_LOCALE | 
|  | int i; | 
|  | #ifdef NO_LOCALE_CACHE | 
|  | const unsigned char *decimalpoint = (unsigned char*) | 
|  | localeconv()->decimal_point; | 
|  | #else | 
|  | const unsigned char *decimalpoint; | 
|  | static unsigned char *decimalpoint_cache; | 
|  | if (!(s0 = decimalpoint_cache)) { | 
|  | s0 = (unsigned char*)localeconv()->decimal_point; | 
|  | if ((decimalpoint_cache = (unsigned char*) | 
|  | MALLOC(strlen((CONST char*)s0) + 1))) { | 
|  | strcpy((char*)decimalpoint_cache, (CONST char*)s0); | 
|  | s0 = decimalpoint_cache; | 
|  | } | 
|  | } | 
|  | decimalpoint = s0; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /**** if (!hexdig['0']) hexdig_init(); ****/ | 
|  | havedig = 0; | 
|  | s0 = *(CONST unsigned char **)sp + 2; | 
|  | while(s0[havedig] == '0') | 
|  | havedig++; | 
|  | s0 += havedig; | 
|  | s = s0; | 
|  | decpt = 0; | 
|  | zret = 0; | 
|  | e = 0; | 
|  | if (hexdig[*s]) | 
|  | havedig++; | 
|  | else { | 
|  | zret = 1; | 
|  | #ifdef USE_LOCALE | 
|  | for(i = 0; decimalpoint[i]; ++i) { | 
|  | if (s[i] != decimalpoint[i]) | 
|  | goto pcheck; | 
|  | } | 
|  | decpt = s += i; | 
|  | #else | 
|  | if (*s != '.') | 
|  | goto pcheck; | 
|  | decpt = ++s; | 
|  | #endif | 
|  | if (!hexdig[*s]) | 
|  | goto pcheck; | 
|  | while(*s == '0') | 
|  | s++; | 
|  | if (hexdig[*s]) | 
|  | zret = 0; | 
|  | havedig = 1; | 
|  | s0 = s; | 
|  | } | 
|  | while(hexdig[*s]) | 
|  | s++; | 
|  | #ifdef USE_LOCALE | 
|  | if (*s == *decimalpoint && !decpt) { | 
|  | for(i = 1; decimalpoint[i]; ++i) { | 
|  | if (s[i] != decimalpoint[i]) | 
|  | goto pcheck; | 
|  | } | 
|  | decpt = s += i; | 
|  | #else | 
|  | if (*s == '.' && !decpt) { | 
|  | decpt = ++s; | 
|  | #endif | 
|  | while(hexdig[*s]) | 
|  | s++; | 
|  | }/*}*/ | 
|  | if (decpt) | 
|  | e = -(((Long)(s-decpt)) << 2); | 
|  | pcheck: | 
|  | s1 = s; | 
|  | big = esign = 0; | 
|  | switch(*s) { | 
|  | case 'p': | 
|  | case 'P': | 
|  | switch(*++s) { | 
|  | case '-': | 
|  | esign = 1; | 
|  | FALLTHROUGH; | 
|  | case '+': | 
|  | s++; | 
|  | } | 
|  | if ((n = hexdig[*s]) == 0 || n > 0x19) { | 
|  | s = s1; | 
|  | break; | 
|  | } | 
|  | e1 = n - 0x10; | 
|  | while((n = hexdig[*++s]) !=0 && n <= 0x19) { | 
|  | if (e1 & 0xf8000000) | 
|  | big = 1; | 
|  | e1 = 10*e1 + n - 0x10; | 
|  | } | 
|  | if (esign) | 
|  | e1 = -e1; | 
|  | e += e1; | 
|  | } | 
|  | *sp = (char*)s; | 
|  | if (!havedig) | 
|  | *sp = (char*)s0 - 1; | 
|  | if (zret) | 
|  | goto retz1; | 
|  | if (big) { | 
|  | if (esign) { | 
|  | #ifdef IEEE_Arith | 
|  | switch(rounding) { | 
|  | case Round_up: | 
|  | if (sign) | 
|  | break; | 
|  | goto ret_tiny; | 
|  | case Round_down: | 
|  | if (!sign) | 
|  | break; | 
|  | goto ret_tiny; | 
|  | } | 
|  | #endif | 
|  | goto retz; | 
|  | #ifdef IEEE_Arith | 
|  | ret_tinyf: | 
|  | Bfree(b); | 
|  | ret_tiny: | 
|  | #ifndef NO_ERRNO | 
|  | errno = ERANGE; | 
|  | #endif | 
|  | word0(rvp) = 0; | 
|  | word1(rvp) = 1; | 
|  | return; | 
|  | #endif /* IEEE_Arith */ | 
|  | } | 
|  | switch(rounding) { | 
|  | case Round_near: | 
|  | goto ovfl1; | 
|  | case Round_up: | 
|  | if (!sign) | 
|  | goto ovfl1; | 
|  | goto ret_big; | 
|  | case Round_down: | 
|  | if (sign) | 
|  | goto ovfl1; | 
|  | goto ret_big; | 
|  | } | 
|  | ret_big: | 
|  | word0(rvp) = Big0; | 
|  | word1(rvp) = Big1; | 
|  | return; | 
|  | } | 
|  | n = s1 - s0 - 1; | 
|  | for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1) | 
|  | k++; | 
|  | b = Balloc(k); | 
|  | x = b->x; | 
|  | n = 0; | 
|  | L = 0; | 
|  | #ifdef USE_LOCALE | 
|  | for(i = 0; decimalpoint[i+1]; ++i); | 
|  | #endif | 
|  | while(s1 > s0) { | 
|  | #ifdef USE_LOCALE | 
|  | if (*--s1 == decimalpoint[i]) { | 
|  | s1 -= i; | 
|  | continue; | 
|  | } | 
|  | #else | 
|  | if (*--s1 == '.') | 
|  | continue; | 
|  | #endif | 
|  | if (n == ULbits) { | 
|  | *x++ = L; | 
|  | L = 0; | 
|  | n = 0; | 
|  | } | 
|  | L |= (hexdig[*s1] & 0x0f) << n; | 
|  | n += 4; | 
|  | } | 
|  | *x++ = L; | 
|  | b->wds = n = x - b->x; | 
|  | n = ULbits*n - hi0bits(L); | 
|  | nbits = Nbits; | 
|  | lostbits = 0; | 
|  | x = b->x; | 
|  | if (n > nbits) { | 
|  | n -= nbits; | 
|  | if (any_on(b,n)) { | 
|  | lostbits = 1; | 
|  | k = n - 1; | 
|  | if (x[k>>kshift] & 1 << (k & kmask)) { | 
|  | lostbits = 2; | 
|  | if (k > 0 && any_on(b,k)) | 
|  | lostbits = 3; | 
|  | } | 
|  | } | 
|  | rshift(b, n); | 
|  | e += n; | 
|  | } | 
|  | else if (n < nbits) { | 
|  | n = nbits - n; | 
|  | b = lshift(b, n); | 
|  | e -= n; | 
|  | x = b->x; | 
|  | } | 
|  | if (e > Emax) { | 
|  | ovfl: | 
|  | Bfree(b); | 
|  | ovfl1: | 
|  | #ifndef NO_ERRNO | 
|  | errno = ERANGE; | 
|  | #endif | 
|  | word0(rvp) = Exp_mask; | 
|  | word1(rvp) = 0; | 
|  | return; | 
|  | } | 
|  | denorm = 0; | 
|  | if (e < emin) { | 
|  | denorm = 1; | 
|  | n = emin - e; | 
|  | if (n >= nbits) { | 
|  | #ifdef IEEE_Arith /*{*/ | 
|  | switch (rounding) { | 
|  | case Round_near: | 
|  | if (n == nbits && (n < 2 || any_on(b,n-1))) | 
|  | goto ret_tinyf; | 
|  | break; | 
|  | case Round_up: | 
|  | if (!sign) | 
|  | goto ret_tinyf; | 
|  | break; | 
|  | case Round_down: | 
|  | if (sign) | 
|  | goto ret_tinyf; | 
|  | } | 
|  | #endif /* } IEEE_Arith */ | 
|  | Bfree(b); | 
|  | retz: | 
|  | #ifndef NO_ERRNO | 
|  | errno = ERANGE; | 
|  | #endif | 
|  | retz1: | 
|  | rvp->d = 0.; | 
|  | return; | 
|  | } | 
|  | k = n - 1; | 
|  | if (lostbits) | 
|  | lostbits = 1; | 
|  | else if (k > 0) | 
|  | lostbits = any_on(b,k); | 
|  | if (x[k>>kshift] & 1 << (k & kmask)) | 
|  | lostbits |= 2; | 
|  | nbits -= n; | 
|  | rshift(b,n); | 
|  | e = emin; | 
|  | } | 
|  | if (lostbits) { | 
|  | up = 0; | 
|  | switch(rounding) { | 
|  | case Round_zero: | 
|  | break; | 
|  | case Round_near: | 
|  | if (lostbits & 2 | 
|  | && (lostbits & 1) | (x[0] & 1)) | 
|  | up = 1; | 
|  | break; | 
|  | case Round_up: | 
|  | up = 1 - sign; | 
|  | break; | 
|  | case Round_down: | 
|  | up = sign; | 
|  | } | 
|  | if (up) { | 
|  | k = b->wds; | 
|  | b = increment(b); | 
|  | x = b->x; | 
|  | if (denorm) { | 
|  | #if 0 | 
|  | if (nbits == Nbits - 1 | 
|  | && x[nbits >> kshift] & 1 << (nbits & kmask)) | 
|  | denorm = 0; /* not currently used */ | 
|  | #endif | 
|  | } | 
|  | else if (b->wds > k | 
|  | || ((n = nbits & kmask) !=0 | 
|  | && hi0bits(x[k-1]) < 32-n)) { | 
|  | rshift(b,1); | 
|  | if (++e > Emax) | 
|  | goto ovfl; | 
|  | } | 
|  | } | 
|  | } | 
|  | #ifdef IEEE_Arith | 
|  | if (denorm) | 
|  | word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0; | 
|  | else | 
|  | word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20); | 
|  | word1(rvp) = b->x[0]; | 
|  | #endif | 
|  | #ifdef IBM | 
|  | if ((j = e & 3)) { | 
|  | k = b->x[0] & ((1 << j) - 1); | 
|  | rshift(b,j); | 
|  | if (k) { | 
|  | switch(rounding) { | 
|  | case Round_up: | 
|  | if (!sign) | 
|  | increment(b); | 
|  | break; | 
|  | case Round_down: | 
|  | if (sign) | 
|  | increment(b); | 
|  | break; | 
|  | case Round_near: | 
|  | j = 1 << (j-1); | 
|  | if (k & j && ((k & (j-1)) | lostbits)) | 
|  | increment(b); | 
|  | } | 
|  | } | 
|  | } | 
|  | e >>= 2; | 
|  | word0(rvp) = b->x[1] | ((e + 65 + 13) << 24); | 
|  | word1(rvp) = b->x[0]; | 
|  | #endif | 
|  | #ifdef VAX | 
|  | /* The next two lines ignore swap of low- and high-order 2 bytes. */ | 
|  | /* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */ | 
|  | /* word1(rvp) = b->x[0]; */ | 
|  | word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16); | 
|  | word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16); | 
|  | #endif | 
|  | Bfree(b); | 
|  | } | 
|  | #endif /*!NO_HEX_FP}*/ | 
|  |  | 
|  | static int | 
|  | #ifdef KR_headers | 
|  | dshift(b, p2) Bigint *b; int p2; | 
|  | #else | 
|  | dshift(Bigint *b, int p2) | 
|  | #endif | 
|  | { | 
|  | int rv = hi0bits(b->x[b->wds-1]) - 4; | 
|  | if (p2 > 0) | 
|  | rv -= p2; | 
|  | return rv & kmask; | 
|  | } | 
|  |  | 
|  | static int | 
|  | quorem | 
|  | #ifdef KR_headers | 
|  | (b, S) Bigint *b, *S; | 
|  | #else | 
|  | (Bigint *b, Bigint *S) | 
|  | #endif | 
|  | { | 
|  | int n; | 
|  | ULong *bx, *bxe, q, *sx, *sxe; | 
|  | #ifdef ULLong | 
|  | ULLong borrow, carry, y, ys; | 
|  | #else | 
|  | ULong borrow, carry, y, ys; | 
|  | #ifdef Pack_32 | 
|  | ULong si, z, zs; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | n = S->wds; | 
|  | #ifdef DEBUG | 
|  | /*debug*/ if (b->wds > n) | 
|  | /*debug*/	Bug("oversize b in quorem"); | 
|  | #endif | 
|  | if (b->wds < n) | 
|  | return 0; | 
|  | sx = S->x; | 
|  | sxe = sx + --n; | 
|  | bx = b->x; | 
|  | bxe = bx + n; | 
|  | q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */ | 
|  | #ifdef DEBUG | 
|  | #ifdef NO_STRTOD_BIGCOMP | 
|  | /*debug*/ if (q > 9) | 
|  | #else | 
|  | /* An oversized q is possible when quorem is called from bigcomp and */ | 
|  | /* the input is near, e.g., twice the smallest denormalized number. */ | 
|  | /*debug*/ if (q > 15) | 
|  | #endif | 
|  | /*debug*/	Bug("oversized quotient in quorem"); | 
|  | #endif | 
|  | if (q) { | 
|  | borrow = 0; | 
|  | carry = 0; | 
|  | do { | 
|  | #ifdef ULLong | 
|  | ys = *sx++ * (ULLong)q + carry; | 
|  | carry = ys >> 32; | 
|  | y = *bx - (ys & FFFFFFFF) - borrow; | 
|  | borrow = y >> 32 & (ULong)1; | 
|  | *bx++ = y & FFFFFFFF; | 
|  | #else | 
|  | #ifdef Pack_32 | 
|  | si = *sx++; | 
|  | ys = (si & 0xffff) * q + carry; | 
|  | zs = (si >> 16) * q + (ys >> 16); | 
|  | carry = zs >> 16; | 
|  | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; | 
|  | borrow = (y & 0x10000) >> 16; | 
|  | z = (*bx >> 16) - (zs & 0xffff) - borrow; | 
|  | borrow = (z & 0x10000) >> 16; | 
|  | Storeinc(bx, z, y); | 
|  | #else | 
|  | ys = *sx++ * q + carry; | 
|  | carry = ys >> 16; | 
|  | y = *bx - (ys & 0xffff) - borrow; | 
|  | borrow = (y & 0x10000) >> 16; | 
|  | *bx++ = y & 0xffff; | 
|  | #endif | 
|  | #endif | 
|  | } | 
|  | while(sx <= sxe); | 
|  | if (!*bxe) { | 
|  | bx = b->x; | 
|  | while(--bxe > bx && !*bxe) | 
|  | --n; | 
|  | b->wds = n; | 
|  | } | 
|  | } | 
|  | if (cmp(b, S) >= 0) { | 
|  | q++; | 
|  | borrow = 0; | 
|  | carry = 0; | 
|  | bx = b->x; | 
|  | sx = S->x; | 
|  | do { | 
|  | #ifdef ULLong | 
|  | ys = *sx++ + carry; | 
|  | carry = ys >> 32; | 
|  | y = *bx - (ys & FFFFFFFF) - borrow; | 
|  | borrow = y >> 32 & (ULong)1; | 
|  | *bx++ = y & FFFFFFFF; | 
|  | #else | 
|  | #ifdef Pack_32 | 
|  | si = *sx++; | 
|  | ys = (si & 0xffff) + carry; | 
|  | zs = (si >> 16) + (ys >> 16); | 
|  | carry = zs >> 16; | 
|  | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; | 
|  | borrow = (y & 0x10000) >> 16; | 
|  | z = (*bx >> 16) - (zs & 0xffff) - borrow; | 
|  | borrow = (z & 0x10000) >> 16; | 
|  | Storeinc(bx, z, y); | 
|  | #else | 
|  | ys = *sx++ + carry; | 
|  | carry = ys >> 16; | 
|  | y = *bx - (ys & 0xffff) - borrow; | 
|  | borrow = (y & 0x10000) >> 16; | 
|  | *bx++ = y & 0xffff; | 
|  | #endif | 
|  | #endif | 
|  | } | 
|  | while(sx <= sxe); | 
|  | bx = b->x; | 
|  | bxe = bx + n; | 
|  | if (!*bxe) { | 
|  | while(--bxe > bx && !*bxe) | 
|  | --n; | 
|  | b->wds = n; | 
|  | } | 
|  | } | 
|  | return q; | 
|  | } | 
|  |  | 
|  | #if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/ | 
|  | static double | 
|  | sulp | 
|  | #ifdef KR_headers | 
|  | (x, bc) U *x; BCinfo *bc; | 
|  | #else | 
|  | (U *x, BCinfo *bc) | 
|  | #endif | 
|  | { | 
|  | U u; | 
|  | double rv; | 
|  | int i; | 
|  |  | 
|  | rv = ulp(x); | 
|  | if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0) | 
|  | return rv; /* Is there an example where i <= 0 ? */ | 
|  | word0(&u) = Exp_1 + (i << Exp_shift); | 
|  | word1(&u) = 0; | 
|  | return rv * u.d; | 
|  | } | 
|  | #endif /*}*/ | 
|  |  | 
|  | #ifndef NO_STRTOD_BIGCOMP | 
|  | static void | 
|  | bigcomp | 
|  | #ifdef KR_headers | 
|  | (rv, s0, bc) | 
|  | U *rv; CONST char *s0; BCinfo *bc; | 
|  | #else | 
|  | (U *rv, const char *s0, BCinfo *bc) | 
|  | #endif | 
|  | { | 
|  | Bigint *b, *d; | 
|  | int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase; | 
|  |  | 
|  | dsign = bc->dsign; | 
|  | nd = bc->nd; | 
|  | nd0 = bc->nd0; | 
|  | p5 = nd + bc->e0 - 1; | 
|  | dd = speccase = 0; | 
|  | #ifndef Sudden_Underflow | 
|  | if (rv->d == 0.) {	/* special case: value near underflow-to-zero */ | 
|  | /* threshold was rounded to zero */ | 
|  | b = i2b(1); | 
|  | p2 = Emin - P + 1; | 
|  | bbits = 1; | 
|  | #ifdef Avoid_Underflow | 
|  | word0(rv) = (P+2) << Exp_shift; | 
|  | #else | 
|  | word1(rv) = 1; | 
|  | #endif | 
|  | i = 0; | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | if (bc->rounding == 1) | 
|  | #endif | 
|  | { | 
|  | speccase = 1; | 
|  | --p2; | 
|  | dsign = 0; | 
|  | goto have_i; | 
|  | } | 
|  | } | 
|  | else | 
|  | #endif | 
|  | b = d2b(rv, &p2, &bbits); | 
|  | #ifdef Avoid_Underflow | 
|  | p2 -= bc->scale; | 
|  | #endif | 
|  | /* floor(log2(rv)) == bbits - 1 + p2 */ | 
|  | /* Check for denormal case. */ | 
|  | i = P - bbits; | 
|  | if (i > (j = P - Emin - 1 + p2)) { | 
|  | #ifdef Sudden_Underflow | 
|  | Bfree(b); | 
|  | b = i2b(1); | 
|  | p2 = Emin; | 
|  | i = P - 1; | 
|  | #ifdef Avoid_Underflow | 
|  | word0(rv) = (1 + bc->scale) << Exp_shift; | 
|  | #else | 
|  | word0(rv) = Exp_msk1; | 
|  | #endif | 
|  | word1(rv) = 0; | 
|  | #else | 
|  | i = j; | 
|  | #endif | 
|  | } | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | if (bc->rounding != 1) { | 
|  | if (i > 0) | 
|  | b = lshift(b, i); | 
|  | if (dsign) | 
|  | b = increment(b); | 
|  | } | 
|  | else | 
|  | #endif | 
|  | { | 
|  | b = lshift(b, ++i); | 
|  | b->x[0] |= 1; | 
|  | } | 
|  | #ifndef Sudden_Underflow | 
|  | have_i: | 
|  | #endif | 
|  | p2 -= p5 + i; | 
|  | d = i2b(1); | 
|  | /* Arrange for convenient computation of quotients: | 
|  | * shift left if necessary so divisor has 4 leading 0 bits. | 
|  | */ | 
|  | if (p5 > 0) | 
|  | d = pow5mult(d, p5); | 
|  | else if (p5 < 0) | 
|  | b = pow5mult(b, -p5); | 
|  | if (p2 > 0) { | 
|  | b2 = p2; | 
|  | d2 = 0; | 
|  | } | 
|  | else { | 
|  | b2 = 0; | 
|  | d2 = -p2; | 
|  | } | 
|  | i = dshift(d, d2); | 
|  | if ((b2 += i) > 0) | 
|  | b = lshift(b, b2); | 
|  | if ((d2 += i) > 0) | 
|  | d = lshift(d, d2); | 
|  |  | 
|  | /* Now b/d = exactly half-way between the two floating-point values */ | 
|  | /* on either side of the input string.  Compute first digit of b/d. */ | 
|  |  | 
|  | dig = quorem(b,d); | 
|  | if (!dig) { | 
|  | b = multadd(b, 10, 0);	/* very unlikely */ | 
|  | dig = quorem(b,d); | 
|  | } | 
|  |  | 
|  | /* Compare b/d with s0 */ | 
|  |  | 
|  | for(i = 0; i < nd0; ) { | 
|  | dd = s0[i++] - '0' - dig; | 
|  | if (dd) | 
|  | goto ret; | 
|  | if (!b->x[0] && b->wds == 1) { | 
|  | if (i < nd) | 
|  | dd = 1; | 
|  | goto ret; | 
|  | } | 
|  | b = multadd(b, 10, 0); | 
|  | dig = quorem(b,d); | 
|  | } | 
|  | for(j = bc->dp1; i++ < nd;) { | 
|  | dd = s0[j++] - '0' - dig; | 
|  | if (dd) | 
|  | goto ret; | 
|  | if (!b->x[0] && b->wds == 1) { | 
|  | if (i < nd) | 
|  | dd = 1; | 
|  | goto ret; | 
|  | } | 
|  | b = multadd(b, 10, 0); | 
|  | dig = quorem(b,d); | 
|  | } | 
|  | if (dig > 0 || b->x[0] || b->wds > 1) | 
|  | dd = -1; | 
|  | ret: | 
|  | Bfree(b); | 
|  | Bfree(d); | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | if (bc->rounding != 1) { | 
|  | if (dd < 0) { | 
|  | if (bc->rounding == 0) { | 
|  | if (!dsign) | 
|  | goto retlow1; | 
|  | } | 
|  | else if (dsign) | 
|  | goto rethi1; | 
|  | } | 
|  | else if (dd > 0) { | 
|  | if (bc->rounding == 0) { | 
|  | if (dsign) | 
|  | goto rethi1; | 
|  | goto ret1; | 
|  | } | 
|  | if (!dsign) | 
|  | goto rethi1; | 
|  | dval(rv) += 2.*sulp(rv,bc); | 
|  | } | 
|  | else { | 
|  | bc->inexact = 0; | 
|  | if (dsign) | 
|  | goto rethi1; | 
|  | } | 
|  | } | 
|  | else | 
|  | #endif | 
|  | if (speccase) { | 
|  | if (dd <= 0) | 
|  | rv->d = 0.; | 
|  | } | 
|  | else if (dd < 0) { | 
|  | if (!dsign)	/* does not happen for round-near */ | 
|  | retlow1: | 
|  | dval(rv) -= sulp(rv,bc); | 
|  | } | 
|  | else if (dd > 0) { | 
|  | if (dsign) { | 
|  | rethi1: | 
|  | dval(rv) += sulp(rv,bc); | 
|  | } | 
|  | } | 
|  | else { | 
|  | /* Exact half-way case:  apply round-even rule. */ | 
|  | if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) { | 
|  | i = 1 - j; | 
|  | if (i <= 31) { | 
|  | if (word1(rv) & (0x1 << i)) | 
|  | goto odd; | 
|  | } | 
|  | else if (word0(rv) & (0x1 << (i-32))) | 
|  | goto odd; | 
|  | } | 
|  | else if (word1(rv) & 1) { | 
|  | odd: | 
|  | if (dsign) | 
|  | goto rethi1; | 
|  | goto retlow1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | ret1: | 
|  | #endif | 
|  | return; | 
|  | } | 
|  | #endif /* NO_STRTOD_BIGCOMP */ | 
|  |  | 
|  | double | 
|  | strtod | 
|  | #ifdef KR_headers | 
|  | (s00, se) CONST char *s00; char **se; | 
|  | #else | 
|  | (const char *s00, char **se) | 
|  | #endif | 
|  | { | 
|  | int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1; | 
|  | int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign; | 
|  | CONST char *s, *s0, *s1; | 
|  | double aadj, aadj1; | 
|  | Long L; | 
|  | U aadj2, adj, rv, rv0; | 
|  | ULong y, z; | 
|  | BCinfo bc; | 
|  | Bigint *bb = nullptr, *bb1, *bd = nullptr, *bd0, *bs = nullptr, *delta = nullptr; | 
|  | #ifdef Avoid_Underflow | 
|  | ULong Lsb, Lsb1; | 
|  | #endif | 
|  | #ifdef SET_INEXACT | 
|  | int oldinexact; | 
|  | #endif | 
|  | #ifndef NO_STRTOD_BIGCOMP | 
|  | int req_bigcomp = 0; | 
|  | #endif | 
|  | #ifdef Honor_FLT_ROUNDS /*{*/ | 
|  | #ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */ | 
|  | bc.rounding = Flt_Rounds; | 
|  | #else /*}{*/ | 
|  | bc.rounding = 1; | 
|  | switch(fegetround()) { | 
|  | case FE_TOWARDZERO:	bc.rounding = 0; break; | 
|  | case FE_UPWARD:	bc.rounding = 2; break; | 
|  | case FE_DOWNWARD:	bc.rounding = 3; | 
|  | } | 
|  | #endif /*}}*/ | 
|  | #endif /*}*/ | 
|  | #ifdef USE_LOCALE | 
|  | CONST char *s2; | 
|  | #endif | 
|  |  | 
|  | sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0; | 
|  | dval(&rv) = 0.; | 
|  | for(s = s00;;s++) switch(*s) { | 
|  | case '-': | 
|  | sign = 1; | 
|  | FALLTHROUGH; | 
|  | case '+': | 
|  | if (*++s) | 
|  | goto break2; | 
|  | FALLTHROUGH; | 
|  | case 0: | 
|  | goto ret0; | 
|  | case '\t': | 
|  | case '\n': | 
|  | case '\v': | 
|  | case '\f': | 
|  | case '\r': | 
|  | case ' ': | 
|  | continue; | 
|  | default: | 
|  | goto break2; | 
|  | } | 
|  | break2: | 
|  | if (*s == '0') { | 
|  | #ifndef NO_HEX_FP /*{*/ | 
|  | switch(s[1]) { | 
|  | case 'x': | 
|  | case 'X': | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | gethex(&s, &rv, bc.rounding, sign); | 
|  | #else | 
|  | gethex(&s, &rv, 1, sign); | 
|  | #endif | 
|  | goto ret; | 
|  | } | 
|  | #endif /*}*/ | 
|  | nz0 = 1; | 
|  | while(*++s == '0') ; | 
|  | if (!*s) | 
|  | goto ret; | 
|  | } | 
|  | s0 = s; | 
|  | y = z = 0; | 
|  | for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) | 
|  | if (nd < 9) | 
|  | y = 10*y + c - '0'; | 
|  | else if (nd < DBL_DIG + 2) | 
|  | z = 10*z + c - '0'; | 
|  | nd0 = nd; | 
|  | bc.dp0 = bc.dp1 = s - s0; | 
|  | for(s1 = s; s1 > s0 && *--s1 == '0'; ) | 
|  | ++nz1; | 
|  | #ifdef USE_LOCALE | 
|  | s1 = localeconv()->decimal_point; | 
|  | if (c == *s1) { | 
|  | c = '.'; | 
|  | if (*++s1) { | 
|  | s2 = s; | 
|  | for(;;) { | 
|  | if (*++s2 != *s1) { | 
|  | c = 0; | 
|  | break; | 
|  | } | 
|  | if (!*++s1) { | 
|  | s = s2; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  | if (c == '.') { | 
|  | c = *++s; | 
|  | bc.dp1 = s - s0; | 
|  | bc.dplen = bc.dp1 - bc.dp0; | 
|  | if (!nd) { | 
|  | for(; c == '0'; c = *++s) | 
|  | nz++; | 
|  | if (c > '0' && c <= '9') { | 
|  | bc.dp0 = s0 - s; | 
|  | bc.dp1 = bc.dp0 + bc.dplen; | 
|  | s0 = s; | 
|  | nf += nz; | 
|  | nz = 0; | 
|  | goto have_dig; | 
|  | } | 
|  | goto dig_done; | 
|  | } | 
|  | for(; c >= '0' && c <= '9'; c = *++s) { | 
|  | have_dig: | 
|  | nz++; | 
|  | if (c -= '0') { | 
|  | nf += nz; | 
|  | for(i = 1; i < nz; i++) | 
|  | if (nd++ < 9) | 
|  | y *= 10; | 
|  | else if (nd <= DBL_DIG + 2) | 
|  | z *= 10; | 
|  | if (nd++ < 9) | 
|  | y = 10*y + c; | 
|  | else if (nd <= DBL_DIG + 2) | 
|  | z = 10*z + c; | 
|  | nz = nz1 = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | dig_done: | 
|  | e = 0; | 
|  | if (c == 'e' || c == 'E') { | 
|  | if (!nd && !nz && !nz0) { | 
|  | goto ret0; | 
|  | } | 
|  | s00 = s; | 
|  | esign = 0; | 
|  | switch(c = *++s) { | 
|  | case '-': | 
|  | esign = 1; | 
|  | FALLTHROUGH; | 
|  | case '+': | 
|  | c = *++s; | 
|  | } | 
|  | if (c >= '0' && c <= '9') { | 
|  | while(c == '0') | 
|  | c = *++s; | 
|  | if (c > '0' && c <= '9') { | 
|  | L = c - '0'; | 
|  | s1 = s; | 
|  | while((c = *++s) >= '0' && c <= '9') { | 
|  | if (L < (INT_MAX - 10) / 10) { | 
|  | L = 10*L + (c - '0'); | 
|  | } | 
|  | } | 
|  | if (s - s1 > 8 || L > 19999) | 
|  | /* Avoid confusion from exponents | 
|  | * so large that e might overflow. | 
|  | */ | 
|  | e = 19999; /* safe for 16 bit ints */ | 
|  | else | 
|  | e = (int)L; | 
|  | if (esign) | 
|  | e = -e; | 
|  | } | 
|  | else | 
|  | e = 0; | 
|  | } | 
|  | else | 
|  | s = s00; | 
|  | } | 
|  | if (!nd) { | 
|  | if (!nz && !nz0) { | 
|  | #ifdef INFNAN_CHECK | 
|  | /* Check for Nan and Infinity */ | 
|  | if (!bc.dplen) | 
|  | switch(c) { | 
|  | case 'i': | 
|  | case 'I': | 
|  | if (match(&s,"nf")) { | 
|  | --s; | 
|  | if (!match(&s,"inity")) | 
|  | ++s; | 
|  | word0(&rv) = 0x7ff00000; | 
|  | word1(&rv) = 0; | 
|  | goto ret; | 
|  | } | 
|  | break; | 
|  | case 'n': | 
|  | case 'N': | 
|  | if (match(&s, "an")) { | 
|  | word0(&rv) = NAN_WORD0; | 
|  | word1(&rv) = NAN_WORD1; | 
|  | #ifndef No_Hex_NaN | 
|  | if (*s == '(') /*)*/ | 
|  | hexnan(&rv, &s); | 
|  | #endif | 
|  | goto ret; | 
|  | } | 
|  | } | 
|  | #endif /* INFNAN_CHECK */ | 
|  | ret0: | 
|  | s = s00; | 
|  | sign = 0; | 
|  | } | 
|  | goto ret; | 
|  | } | 
|  | bc.e0 = e1 = e -= nf; | 
|  |  | 
|  | /* Now we have nd0 digits, starting at s0, followed by a | 
|  | * decimal point, followed by nd-nd0 digits.  The number we're | 
|  | * after is the integer represented by those digits times | 
|  | * 10**e */ | 
|  |  | 
|  | if (!nd0) | 
|  | nd0 = nd; | 
|  | k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2; | 
|  | dval(&rv) = y; | 
|  | if (k > 9) { | 
|  | #ifdef SET_INEXACT | 
|  | if (k > DBL_DIG) | 
|  | oldinexact = get_inexact(); | 
|  | #endif | 
|  | dval(&rv) = tens[k - 9] * dval(&rv) + z; | 
|  | } | 
|  | bd0 = 0; | 
|  | if (nd <= DBL_DIG | 
|  | #ifndef RND_PRODQUOT | 
|  | #ifndef Honor_FLT_ROUNDS | 
|  | && Flt_Rounds == 1 | 
|  | #endif | 
|  | #endif | 
|  | ) { | 
|  | if (!e) | 
|  | goto ret; | 
|  | #ifndef ROUND_BIASED_without_Round_Up | 
|  | if (e > 0) { | 
|  | if (e <= Ten_pmax) { | 
|  | #ifdef VAX | 
|  | goto vax_ovfl_check; | 
|  | #else | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | /* round correctly FLT_ROUNDS = 2 or 3 */ | 
|  | if (sign) { | 
|  | rv.d = -rv.d; | 
|  | sign = 0; | 
|  | } | 
|  | #endif | 
|  | /* rv = */ rounded_product(dval(&rv), tens[e]); | 
|  | goto ret; | 
|  | #endif | 
|  | } | 
|  | i = DBL_DIG - nd; | 
|  | if (e <= Ten_pmax + i) { | 
|  | /* A fancier test would sometimes let us do | 
|  | * this for larger i values. | 
|  | */ | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | /* round correctly FLT_ROUNDS = 2 or 3 */ | 
|  | if (sign) { | 
|  | rv.d = -rv.d; | 
|  | sign = 0; | 
|  | } | 
|  | #endif | 
|  | e -= i; | 
|  | dval(&rv) *= tens[i]; | 
|  | #ifdef VAX | 
|  | /* VAX exponent range is so narrow we must | 
|  | * worry about overflow here... | 
|  | */ | 
|  | vax_ovfl_check: | 
|  | word0(&rv) -= P*Exp_msk1; | 
|  | /* rv = */ rounded_product(dval(&rv), tens[e]); | 
|  | if ((word0(&rv) & Exp_mask) | 
|  | > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) | 
|  | goto ovfl; | 
|  | word0(&rv) += P*Exp_msk1; | 
|  | #else | 
|  | /* rv = */ rounded_product(dval(&rv), tens[e]); | 
|  | #endif | 
|  | goto ret; | 
|  | } | 
|  | } | 
|  | #ifndef Inaccurate_Divide | 
|  | else if (e >= -Ten_pmax) { | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | /* round correctly FLT_ROUNDS = 2 or 3 */ | 
|  | if (sign) { | 
|  | rv.d = -rv.d; | 
|  | sign = 0; | 
|  | } | 
|  | #endif | 
|  | /* rv = */ rounded_quotient(dval(&rv), tens[-e]); | 
|  | goto ret; | 
|  | } | 
|  | #endif | 
|  | #endif /* ROUND_BIASED_without_Round_Up */ | 
|  | } | 
|  | e1 += nd - k; | 
|  |  | 
|  | #ifdef IEEE_Arith | 
|  | #ifdef SET_INEXACT | 
|  | bc.inexact = 1; | 
|  | if (k <= DBL_DIG) | 
|  | oldinexact = get_inexact(); | 
|  | #endif | 
|  | #ifdef Avoid_Underflow | 
|  | bc.scale = 0; | 
|  | #endif | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | if (bc.rounding >= 2) { | 
|  | if (sign) | 
|  | bc.rounding = bc.rounding == 2 ? 0 : 2; | 
|  | else | 
|  | if (bc.rounding != 2) | 
|  | bc.rounding = 0; | 
|  | } | 
|  | #endif | 
|  | #endif /*IEEE_Arith*/ | 
|  |  | 
|  | /* Get starting approximation = rv * 10**e1 */ | 
|  |  | 
|  | if (e1 > 0) { | 
|  | i = e1 & 15; | 
|  | if (i) | 
|  | dval(&rv) *= tens[i]; | 
|  | if (e1 &= ~15) { | 
|  | if (e1 > DBL_MAX_10_EXP) { | 
|  | ovfl: | 
|  | /* Can't trust HUGE_VAL */ | 
|  | #ifdef IEEE_Arith | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | switch(bc.rounding) { | 
|  | case 0: /* toward 0 */ | 
|  | case 3: /* toward -infinity */ | 
|  | word0(&rv) = Big0; | 
|  | word1(&rv) = Big1; | 
|  | break; | 
|  | default: | 
|  | word0(&rv) = Exp_mask; | 
|  | word1(&rv) = 0; | 
|  | } | 
|  | #else /*Honor_FLT_ROUNDS*/ | 
|  | word0(&rv) = Exp_mask; | 
|  | word1(&rv) = 0; | 
|  | #endif /*Honor_FLT_ROUNDS*/ | 
|  | #ifdef SET_INEXACT | 
|  | /* set overflow bit */ | 
|  | dval(&rv0) = 1e300; | 
|  | dval(&rv0) *= dval(&rv0); | 
|  | #endif | 
|  | #else /*IEEE_Arith*/ | 
|  | word0(&rv) = Big0; | 
|  | word1(&rv) = Big1; | 
|  | #endif /*IEEE_Arith*/ | 
|  | range_err: | 
|  | if (bd0) { | 
|  | Bfree(bb); | 
|  | Bfree(bd); | 
|  | Bfree(bs); | 
|  | Bfree(bd0); | 
|  | Bfree(delta); | 
|  | } | 
|  | #ifndef NO_ERRNO | 
|  | errno = ERANGE; | 
|  | #endif | 
|  | goto ret; | 
|  | } | 
|  | e1 >>= 4; | 
|  | for(j = 0; e1 > 1; j++, e1 >>= 1) | 
|  | if (e1 & 1) | 
|  | dval(&rv) *= bigtens[j]; | 
|  | /* The last multiplication could overflow. */ | 
|  | word0(&rv) -= P*Exp_msk1; | 
|  | dval(&rv) *= bigtens[j]; | 
|  | if ((z = word0(&rv) & Exp_mask) | 
|  | > Exp_msk1*(DBL_MAX_EXP+Bias-P)) | 
|  | goto ovfl; | 
|  | if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { | 
|  | /* set to largest number */ | 
|  | /* (Can't trust DBL_MAX) */ | 
|  | word0(&rv) = Big0; | 
|  | word1(&rv) = Big1; | 
|  | } | 
|  | else | 
|  | word0(&rv) += P*Exp_msk1; | 
|  | } | 
|  | } | 
|  | else if (e1 < 0) { | 
|  | e1 = -e1; | 
|  | i = e1 & 15; | 
|  | if (i) | 
|  | dval(&rv) /= tens[i]; | 
|  | if (e1 >>= 4) { | 
|  | if (e1 >= 1 << n_bigtens) | 
|  | goto undfl; | 
|  | #ifdef Avoid_Underflow | 
|  | if (e1 & Scale_Bit) | 
|  | bc.scale = 2*P; | 
|  | for(j = 0; e1 > 0; j++, e1 >>= 1) | 
|  | if (e1 & 1) | 
|  | dval(&rv) *= tinytens[j]; | 
|  | if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask) | 
|  | >> Exp_shift)) > 0) { | 
|  | /* scaled rv is denormal; clear j low bits */ | 
|  | if (j >= 32) { | 
|  | if (j > 54) | 
|  | goto undfl; | 
|  | word1(&rv) = 0; | 
|  | if (j >= 53) | 
|  | word0(&rv) = (P+2)*Exp_msk1; | 
|  | else | 
|  | word0(&rv) &= 0xffffffff << (j-32); | 
|  | } | 
|  | else | 
|  | word1(&rv) &= 0xffffffff << j; | 
|  | } | 
|  | #else | 
|  | for(j = 0; e1 > 1; j++, e1 >>= 1) | 
|  | if (e1 & 1) | 
|  | dval(&rv) *= tinytens[j]; | 
|  | /* The last multiplication could underflow. */ | 
|  | dval(&rv0) = dval(&rv); | 
|  | dval(&rv) *= tinytens[j]; | 
|  | if (!dval(&rv)) { | 
|  | dval(&rv) = 2.*dval(&rv0); | 
|  | dval(&rv) *= tinytens[j]; | 
|  | #endif | 
|  | if (!dval(&rv)) { | 
|  | undfl: | 
|  | dval(&rv) = 0.; | 
|  | goto range_err; | 
|  | } | 
|  | #ifndef Avoid_Underflow | 
|  | word0(&rv) = Tiny0; | 
|  | word1(&rv) = Tiny1; | 
|  | /* The refinement below will clean | 
|  | * this approximation up. | 
|  | */ | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now the hard part -- adjusting rv to the correct value.*/ | 
|  |  | 
|  | /* Put digits into bd: true value = bd * 10^e */ | 
|  |  | 
|  | bc.nd = nd - nz1; | 
|  | #ifndef NO_STRTOD_BIGCOMP | 
|  | bc.nd0 = nd0;	/* Only needed if nd > strtod_diglim, but done here */ | 
|  | /* to silence an erroneous warning about bc.nd0 */ | 
|  | /* possibly not being initialized. */ | 
|  | if (nd > strtod_diglim) { | 
|  | /* ASSERT(strtod_diglim >= 18); 18 == one more than the */ | 
|  | /* minimum number of decimal digits to distinguish double values */ | 
|  | /* in IEEE arithmetic. */ | 
|  | i = j = 18; | 
|  | if (i > nd0) | 
|  | j += bc.dplen; | 
|  | for(;;) { | 
|  | if (--j < bc.dp1 && j >= bc.dp0) | 
|  | j = bc.dp0 - 1; | 
|  | if (s0[j] != '0') | 
|  | break; | 
|  | --i; | 
|  | } | 
|  | e += nd - i; | 
|  | nd = i; | 
|  | if (nd0 > nd) | 
|  | nd0 = nd; | 
|  | if (nd < 9) { /* must recompute y */ | 
|  | y = 0; | 
|  | for(i = 0; i < nd0; ++i) | 
|  | y = 10*y + s0[i] - '0'; | 
|  | for(j = bc.dp1; i < nd; ++i) | 
|  | y = 10*y + s0[j++] - '0'; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | bd0 = s2b(s0, nd0, nd, y, bc.dplen); | 
|  |  | 
|  | for(;;) { | 
|  | bd = Balloc(bd0->k); | 
|  | Bcopy(bd, bd0); | 
|  | bb = d2b(&rv, &bbe, &bbbits);	/* rv = bb * 2^bbe */ | 
|  | bs = i2b(1); | 
|  |  | 
|  | if (e >= 0) { | 
|  | bb2 = bb5 = 0; | 
|  | bd2 = bd5 = e; | 
|  | } | 
|  | else { | 
|  | bb2 = bb5 = -e; | 
|  | bd2 = bd5 = 0; | 
|  | } | 
|  | if (bbe >= 0) | 
|  | bb2 += bbe; | 
|  | else | 
|  | bd2 -= bbe; | 
|  | bs2 = bb2; | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | if (bc.rounding != 1) | 
|  | bs2++; | 
|  | #endif | 
|  | #ifdef Avoid_Underflow | 
|  | Lsb = LSB; | 
|  | Lsb1 = 0; | 
|  | j = bbe - bc.scale; | 
|  | i = j + bbbits - 1;	/* logb(rv) */ | 
|  | j = P + 1 - bbbits; | 
|  | if (i < Emin) {	/* denormal */ | 
|  | i = Emin - i; | 
|  | j -= i; | 
|  | if (i < 32) | 
|  | Lsb <<= i; | 
|  | else if (i < 52) | 
|  | Lsb1 = Lsb << (i-32); | 
|  | else | 
|  | Lsb1 = Exp_mask; | 
|  | } | 
|  | #else /*Avoid_Underflow*/ | 
|  | #ifdef Sudden_Underflow | 
|  | #ifdef IBM | 
|  | j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3); | 
|  | #else | 
|  | j = P + 1 - bbbits; | 
|  | #endif | 
|  | #else /*Sudden_Underflow*/ | 
|  | j = bbe; | 
|  | i = j + bbbits - 1;	/* logb(rv) */ | 
|  | if (i < Emin)	/* denormal */ | 
|  | j += P - Emin; | 
|  | else | 
|  | j = P + 1 - bbbits; | 
|  | #endif /*Sudden_Underflow*/ | 
|  | #endif /*Avoid_Underflow*/ | 
|  | bb2 += j; | 
|  | bd2 += j; | 
|  | #ifdef Avoid_Underflow | 
|  | bd2 += bc.scale; | 
|  | #endif | 
|  | i = bb2 < bd2 ? bb2 : bd2; | 
|  | if (i > bs2) | 
|  | i = bs2; | 
|  | if (i > 0) { | 
|  | bb2 -= i; | 
|  | bd2 -= i; | 
|  | bs2 -= i; | 
|  | } | 
|  | if (bb5 > 0) { | 
|  | bs = pow5mult(bs, bb5); | 
|  | bb1 = mult(bs, bb); | 
|  | Bfree(bb); | 
|  | bb = bb1; | 
|  | } | 
|  | if (bb2 > 0) | 
|  | bb = lshift(bb, bb2); | 
|  | if (bd5 > 0) | 
|  | bd = pow5mult(bd, bd5); | 
|  | if (bd2 > 0) | 
|  | bd = lshift(bd, bd2); | 
|  | if (bs2 > 0) | 
|  | bs = lshift(bs, bs2); | 
|  | delta = diff(bb, bd); | 
|  | bc.dsign = delta->sign; | 
|  | delta->sign = 0; | 
|  | i = cmp(delta, bs); | 
|  | #ifndef NO_STRTOD_BIGCOMP /*{*/ | 
|  | if (bc.nd > nd && i <= 0) { | 
|  | if (bc.dsign) { | 
|  | /* Must use bigcomp(). */ | 
|  | req_bigcomp = 1; | 
|  | break; | 
|  | } | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | if (bc.rounding != 1) { | 
|  | if (i < 0) { | 
|  | req_bigcomp = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | else | 
|  | #endif | 
|  | i = -1;	/* Discarded digits make delta smaller. */ | 
|  | } | 
|  | #endif /*}*/ | 
|  | #ifdef Honor_FLT_ROUNDS /*{*/ | 
|  | if (bc.rounding != 1) { | 
|  | if (i < 0) { | 
|  | /* Error is less than an ulp */ | 
|  | if (!delta->x[0] && delta->wds <= 1) { | 
|  | /* exact */ | 
|  | #ifdef SET_INEXACT | 
|  | bc.inexact = 0; | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | if (bc.rounding) { | 
|  | if (bc.dsign) { | 
|  | adj.d = 1.; | 
|  | goto apply_adj; | 
|  | } | 
|  | } | 
|  | else if (!bc.dsign) { | 
|  | adj.d = -1.; | 
|  | if (!word1(&rv) | 
|  | && !(word0(&rv) & Frac_mask)) { | 
|  | y = word0(&rv) & Exp_mask; | 
|  | #ifdef Avoid_Underflow | 
|  | if (!bc.scale || y > 2*P*Exp_msk1) | 
|  | #else | 
|  | if (y) | 
|  | #endif | 
|  | { | 
|  | delta = lshift(delta,Log2P); | 
|  | if (cmp(delta, bs) <= 0) | 
|  | adj.d = -0.5; | 
|  | } | 
|  | } | 
|  | apply_adj: | 
|  | #ifdef Avoid_Underflow /*{*/ | 
|  | if (bc.scale && (y = word0(&rv) & Exp_mask) | 
|  | <= 2*P*Exp_msk1) | 
|  | word0(&adj) += (2*P+1)*Exp_msk1 - y; | 
|  | #else | 
|  | #ifdef Sudden_Underflow | 
|  | if ((word0(&rv) & Exp_mask) <= | 
|  | P*Exp_msk1) { | 
|  | word0(&rv) += P*Exp_msk1; | 
|  | dval(&rv) += adj.d*ulp(dval(&rv)); | 
|  | word0(&rv) -= P*Exp_msk1; | 
|  | } | 
|  | else | 
|  | #endif /*Sudden_Underflow*/ | 
|  | #endif /*Avoid_Underflow}*/ | 
|  | dval(&rv) += adj.d*ulp(&rv); | 
|  | } | 
|  | break; | 
|  | } | 
|  | adj.d = ratio(delta, bs); | 
|  | if (adj.d < 1.) | 
|  | adj.d = 1.; | 
|  | if (adj.d <= 0x7ffffffe) { | 
|  | /* adj = rounding ? ceil(adj) : floor(adj); */ | 
|  | y = adj.d; | 
|  | if (y != adj.d) { | 
|  | if (!((bc.rounding>>1) ^ bc.dsign)) | 
|  | y++; | 
|  | adj.d = y; | 
|  | } | 
|  | } | 
|  | #ifdef Avoid_Underflow /*{*/ | 
|  | if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) | 
|  | word0(&adj) += (2*P+1)*Exp_msk1 - y; | 
|  | #else | 
|  | #ifdef Sudden_Underflow | 
|  | if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) { | 
|  | word0(&rv) += P*Exp_msk1; | 
|  | adj.d *= ulp(dval(&rv)); | 
|  | if (bc.dsign) | 
|  | dval(&rv) += adj.d; | 
|  | else | 
|  | dval(&rv) -= adj.d; | 
|  | word0(&rv) -= P*Exp_msk1; | 
|  | goto cont; | 
|  | } | 
|  | #endif /*Sudden_Underflow*/ | 
|  | #endif /*Avoid_Underflow}*/ | 
|  | adj.d *= ulp(&rv); | 
|  | if (bc.dsign) { | 
|  | if (word0(&rv) == Big0 && word1(&rv) == Big1) | 
|  | goto ovfl; | 
|  | dval(&rv) += adj.d; | 
|  | } | 
|  | else | 
|  | dval(&rv) -= adj.d; | 
|  | goto cont; | 
|  | } | 
|  | #endif /*}Honor_FLT_ROUNDS*/ | 
|  |  | 
|  | if (i < 0) { | 
|  | /* Error is less than half an ulp -- check for | 
|  | * special case of mantissa a power of two. | 
|  | */ | 
|  | if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask | 
|  | #ifdef IEEE_Arith /*{*/ | 
|  | #ifdef Avoid_Underflow | 
|  | || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1 | 
|  | #else | 
|  | || (word0(&rv) & Exp_mask) <= Exp_msk1 | 
|  | #endif | 
|  | #endif /*}*/ | 
|  | ) { | 
|  | #ifdef SET_INEXACT | 
|  | if (!delta->x[0] && delta->wds <= 1) | 
|  | bc.inexact = 0; | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | if (!delta->x[0] && delta->wds <= 1) { | 
|  | /* exact result */ | 
|  | #ifdef SET_INEXACT | 
|  | bc.inexact = 0; | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | delta = lshift(delta,Log2P); | 
|  | if (cmp(delta, bs) > 0) | 
|  | goto drop_down; | 
|  | break; | 
|  | } | 
|  | if (i == 0) { | 
|  | /* exactly half-way between */ | 
|  | if (bc.dsign) { | 
|  | if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 | 
|  | &&  word1(&rv) == ( | 
|  | #ifdef Avoid_Underflow | 
|  | (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) | 
|  | ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : | 
|  | #endif | 
|  | 0xffffffff)) { | 
|  | /*boundary case -- increment exponent*/ | 
|  | if (word0(&rv) == Big0 && word1(&rv) == Big1) | 
|  | goto ovfl; | 
|  | word0(&rv) = (word0(&rv) & Exp_mask) | 
|  | + Exp_msk1 | 
|  | #ifdef IBM | 
|  | | Exp_msk1 >> 4 | 
|  | #endif | 
|  | ; | 
|  | word1(&rv) = 0; | 
|  | #ifdef Avoid_Underflow | 
|  | bc.dsign = 0; | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | } | 
|  | else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { | 
|  | drop_down: | 
|  | /* boundary case -- decrement exponent */ | 
|  | #ifdef Sudden_Underflow /*{{*/ | 
|  | L = word0(&rv) & Exp_mask; | 
|  | #ifdef IBM | 
|  | if (L <  Exp_msk1) | 
|  | #else | 
|  | #ifdef Avoid_Underflow | 
|  | if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1)) | 
|  | #else | 
|  | if (L <= Exp_msk1) | 
|  | #endif /*Avoid_Underflow*/ | 
|  | #endif /*IBM*/ | 
|  | { | 
|  | if (bc.nd >nd) { | 
|  | bc.uflchk = 1; | 
|  | break; | 
|  | } | 
|  | goto undfl; | 
|  | } | 
|  | L -= Exp_msk1; | 
|  | #else /*Sudden_Underflow}{*/ | 
|  | #ifdef Avoid_Underflow | 
|  | if (bc.scale) { | 
|  | L = word0(&rv) & Exp_mask; | 
|  | if (L <= (2*P+1)*Exp_msk1) { | 
|  | if (L > (P+2)*Exp_msk1) | 
|  | /* round even ==> */ | 
|  | /* accept rv */ | 
|  | break; | 
|  | /* rv = smallest denormal */ | 
|  | if (bc.nd >nd) { | 
|  | bc.uflchk = 1; | 
|  | break; | 
|  | } | 
|  | goto undfl; | 
|  | } | 
|  | } | 
|  | #endif /*Avoid_Underflow*/ | 
|  | L = (word0(&rv) & Exp_mask) - Exp_msk1; | 
|  | #endif /*Sudden_Underflow}}*/ | 
|  | word0(&rv) = L | Bndry_mask1; | 
|  | word1(&rv) = 0xffffffff; | 
|  | #ifdef IBM | 
|  | goto cont; | 
|  | #else | 
|  | #ifndef NO_STRTOD_BIGCOMP | 
|  | if (bc.nd > nd) | 
|  | goto cont; | 
|  | #endif | 
|  | break; | 
|  | #endif | 
|  | } | 
|  | #ifndef ROUND_BIASED | 
|  | #ifdef Avoid_Underflow | 
|  | if (Lsb1) { | 
|  | if (!(word0(&rv) & Lsb1)) | 
|  | break; | 
|  | } | 
|  | else if (!(word1(&rv) & Lsb)) | 
|  | break; | 
|  | #else | 
|  | if (!(word1(&rv) & LSB)) | 
|  | break; | 
|  | #endif | 
|  | #endif | 
|  | if (bc.dsign) | 
|  | #ifdef Avoid_Underflow | 
|  | dval(&rv) += sulp(&rv, &bc); | 
|  | #else | 
|  | dval(&rv) += ulp(&rv); | 
|  | #endif | 
|  | #ifndef ROUND_BIASED | 
|  | else { | 
|  | #ifdef Avoid_Underflow | 
|  | dval(&rv) -= sulp(&rv, &bc); | 
|  | #else | 
|  | dval(&rv) -= ulp(&rv); | 
|  | #endif | 
|  | #ifndef Sudden_Underflow | 
|  | if (!dval(&rv)) { | 
|  | if (bc.nd >nd) { | 
|  | bc.uflchk = 1; | 
|  | break; | 
|  | } | 
|  | goto undfl; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | #ifdef Avoid_Underflow | 
|  | bc.dsign = 1 - bc.dsign; | 
|  | #endif | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | if ((aadj = ratio(delta, bs)) <= 2.) { | 
|  | if (bc.dsign) | 
|  | aadj = aadj1 = 1.; | 
|  | else if (word1(&rv) || word0(&rv) & Bndry_mask) { | 
|  | #ifndef Sudden_Underflow | 
|  | if (word1(&rv) == Tiny1 && !word0(&rv)) { | 
|  | if (bc.nd >nd) { | 
|  | bc.uflchk = 1; | 
|  | break; | 
|  | } | 
|  | goto undfl; | 
|  | } | 
|  | #endif | 
|  | aadj = 1.; | 
|  | aadj1 = -1.; | 
|  | } | 
|  | else { | 
|  | /* special case -- power of FLT_RADIX to be */ | 
|  | /* rounded down... */ | 
|  |  | 
|  | if (aadj < 2./FLT_RADIX) | 
|  | aadj = 1./FLT_RADIX; | 
|  | else | 
|  | aadj *= 0.5; | 
|  | aadj1 = -aadj; | 
|  | } | 
|  | } | 
|  | else { | 
|  | aadj *= 0.5; | 
|  | aadj1 = bc.dsign ? aadj : -aadj; | 
|  | #ifdef Check_FLT_ROUNDS | 
|  | switch(bc.rounding) { | 
|  | case 2: /* towards +infinity */ | 
|  | aadj1 -= 0.5; | 
|  | break; | 
|  | case 0: /* towards 0 */ | 
|  | case 3: /* towards -infinity */ | 
|  | aadj1 += 0.5; | 
|  | } | 
|  | #else | 
|  | if (Flt_Rounds == 0) | 
|  | aadj1 += 0.5; | 
|  | #endif /*Check_FLT_ROUNDS*/ | 
|  | } | 
|  | y = word0(&rv) & Exp_mask; | 
|  |  | 
|  | /* Check for overflow */ | 
|  |  | 
|  | if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { | 
|  | dval(&rv0) = dval(&rv); | 
|  | word0(&rv) -= P*Exp_msk1; | 
|  | adj.d = aadj1 * ulp(&rv); | 
|  | dval(&rv) += adj.d; | 
|  | if ((word0(&rv) & Exp_mask) >= | 
|  | Exp_msk1*(DBL_MAX_EXP+Bias-P)) { | 
|  | if (word0(&rv0) == Big0 && word1(&rv0) == Big1) | 
|  | goto ovfl; | 
|  | word0(&rv) = Big0; | 
|  | word1(&rv) = Big1; | 
|  | goto cont; | 
|  | } | 
|  | else | 
|  | word0(&rv) += P*Exp_msk1; | 
|  | } | 
|  | else { | 
|  | #ifdef Avoid_Underflow | 
|  | if (bc.scale && y <= 2*P*Exp_msk1) { | 
|  | if (aadj <= 0x7fffffff) { | 
|  | if ((z = (ULong)aadj) <= 0) | 
|  | z = 1; | 
|  | aadj = z; | 
|  | aadj1 = bc.dsign ? aadj : -aadj; | 
|  | } | 
|  | dval(&aadj2) = aadj1; | 
|  | word0(&aadj2) += (2*P+1)*Exp_msk1 - y; | 
|  | aadj1 = dval(&aadj2); | 
|  | adj.d = aadj1 * ulp(&rv); | 
|  | dval(&rv) += adj.d; | 
|  | if (rv.d == 0.) | 
|  | #ifdef NO_STRTOD_BIGCOMP | 
|  | goto undfl; | 
|  | #else | 
|  | { | 
|  | req_bigcomp = 1; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | else { | 
|  | adj.d = aadj1 * ulp(&rv); | 
|  | dval(&rv) += adj.d; | 
|  | } | 
|  | #else | 
|  | #ifdef Sudden_Underflow | 
|  | if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) { | 
|  | dval(&rv0) = dval(&rv); | 
|  | word0(&rv) += P*Exp_msk1; | 
|  | adj.d = aadj1 * ulp(&rv); | 
|  | dval(&rv) += adj.d; | 
|  | #ifdef IBM | 
|  | if ((word0(&rv) & Exp_mask) <  P*Exp_msk1) | 
|  | #else | 
|  | if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) | 
|  | #endif | 
|  | { | 
|  | if (word0(&rv0) == Tiny0 | 
|  | && word1(&rv0) == Tiny1) { | 
|  | if (bc.nd >nd) { | 
|  | bc.uflchk = 1; | 
|  | break; | 
|  | } | 
|  | goto undfl; | 
|  | } | 
|  | word0(&rv) = Tiny0; | 
|  | word1(&rv) = Tiny1; | 
|  | goto cont; | 
|  | } | 
|  | else | 
|  | word0(&rv) -= P*Exp_msk1; | 
|  | } | 
|  | else { | 
|  | adj.d = aadj1 * ulp(&rv); | 
|  | dval(&rv) += adj.d; | 
|  | } | 
|  | #else /*Sudden_Underflow*/ | 
|  | /* Compute adj so that the IEEE rounding rules will | 
|  | * correctly round rv + adj in some half-way cases. | 
|  | * If rv * ulp(rv) is denormalized (i.e., | 
|  | * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid | 
|  | * trouble from bits lost to denormalization; | 
|  | * example: 1.2e-307 . | 
|  | */ | 
|  | if (y <= (P-1)*Exp_msk1 && aadj > 1.) { | 
|  | aadj1 = (double)(int)(aadj + 0.5); | 
|  | if (!bc.dsign) | 
|  | aadj1 = -aadj1; | 
|  | } | 
|  | adj.d = aadj1 * ulp(&rv); | 
|  | dval(&rv) += adj.d; | 
|  | #endif /*Sudden_Underflow*/ | 
|  | #endif /*Avoid_Underflow*/ | 
|  | } | 
|  | z = word0(&rv) & Exp_mask; | 
|  | #ifndef SET_INEXACT | 
|  | if (bc.nd == nd) { | 
|  | #ifdef Avoid_Underflow | 
|  | if (!bc.scale) | 
|  | #endif | 
|  | if (y == z) { | 
|  | /* Can we stop now? */ | 
|  | L = (Long)aadj; | 
|  | aadj -= L; | 
|  | /* The tolerances below are conservative. */ | 
|  | if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) { | 
|  | if (aadj < .4999999 || aadj > .5000001) | 
|  | break; | 
|  | } | 
|  | else if (aadj < .4999999/FLT_RADIX) | 
|  | break; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | cont: | 
|  | Bfree(bb); | 
|  | Bfree(bd); | 
|  | Bfree(bs); | 
|  | Bfree(delta); | 
|  | } | 
|  | Bfree(bb); | 
|  | Bfree(bd); | 
|  | Bfree(bs); | 
|  | Bfree(bd0); | 
|  | Bfree(delta); | 
|  | #ifndef NO_STRTOD_BIGCOMP | 
|  | if (req_bigcomp) { | 
|  | bd0 = 0; | 
|  | bc.e0 += nz1; | 
|  | bigcomp(&rv, s0, &bc); | 
|  | y = word0(&rv) & Exp_mask; | 
|  | if (y == Exp_mask) | 
|  | goto ovfl; | 
|  | if (y == 0 && rv.d == 0.) | 
|  | goto undfl; | 
|  | } | 
|  | #endif | 
|  | #ifdef SET_INEXACT | 
|  | if (bc.inexact) { | 
|  | if (!oldinexact) { | 
|  | word0(&rv0) = Exp_1 + (70 << Exp_shift); | 
|  | word1(&rv0) = 0; | 
|  | dval(&rv0) += 1.; | 
|  | } | 
|  | } | 
|  | else if (!oldinexact) | 
|  | clear_inexact(); | 
|  | #endif | 
|  | #ifdef Avoid_Underflow | 
|  | if (bc.scale) { | 
|  | word0(&rv0) = Exp_1 - 2*P*Exp_msk1; | 
|  | word1(&rv0) = 0; | 
|  | dval(&rv) *= dval(&rv0); | 
|  | #ifndef NO_ERRNO | 
|  | /* try to avoid the bug of testing an 8087 register value */ | 
|  | #ifdef IEEE_Arith | 
|  | if (!(word0(&rv) & Exp_mask)) | 
|  | #else | 
|  | if (word0(&rv) == 0 && word1(&rv) == 0) | 
|  | #endif | 
|  | errno = ERANGE; | 
|  | #endif | 
|  | } | 
|  | #endif /* Avoid_Underflow */ | 
|  | #ifdef SET_INEXACT | 
|  | if (bc.inexact && !(word0(&rv) & Exp_mask)) { | 
|  | /* set underflow bit */ | 
|  | dval(&rv0) = 1e-300; | 
|  | dval(&rv0) *= dval(&rv0); | 
|  | } | 
|  | #endif | 
|  | ret: | 
|  | if (se) | 
|  | *se = (char *)s; | 
|  | return sign ? -dval(&rv) : dval(&rv); | 
|  | } | 
|  |  | 
|  | #ifndef MULTIPLE_THREADS | 
|  | static char *dtoa_result; | 
|  | #endif | 
|  |  | 
|  | static char * | 
|  | #ifdef KR_headers | 
|  | rv_alloc(i) int i; | 
|  | #else | 
|  | rv_alloc(int i) | 
|  | #endif | 
|  | { | 
|  | int j, k, *r; | 
|  |  | 
|  | j = sizeof(ULong); | 
|  | for(k = 0; | 
|  | sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (size_t)i; | 
|  | j <<= 1) | 
|  | k++; | 
|  | r = (int*)Balloc(k); | 
|  | *r = k; | 
|  | return | 
|  | #ifndef MULTIPLE_THREADS | 
|  | dtoa_result = | 
|  | #endif | 
|  | (char *)(r+1); | 
|  | } | 
|  |  | 
|  | static char * | 
|  | #ifdef KR_headers | 
|  | nrv_alloc(s, rve, n) char *s, **rve; int n; | 
|  | #else | 
|  | nrv_alloc(const char *s, char **rve, int n) | 
|  | #endif | 
|  | { | 
|  | char *rv, *t; | 
|  |  | 
|  | t = rv = rv_alloc(n); | 
|  | for(*t = *s++; *t; *t = *s++) t++; | 
|  | if (rve) | 
|  | *rve = t; | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | /* freedtoa(s) must be used to free values s returned by dtoa | 
|  | * when MULTIPLE_THREADS is #defined.  It should be used in all cases, | 
|  | * but for consistency with earlier versions of dtoa, it is optional | 
|  | * when MULTIPLE_THREADS is not defined. | 
|  | */ | 
|  |  | 
|  | void | 
|  | #ifdef KR_headers | 
|  | freedtoa(s) char *s; | 
|  | #else | 
|  | freedtoa(char *s) | 
|  | #endif | 
|  | { | 
|  | Bigint *b = (Bigint *)((int *)s - 1); | 
|  | b->maxwds = 1 << (b->k = *(int*)b); | 
|  | Bfree(b); | 
|  | #ifndef MULTIPLE_THREADS | 
|  | if (s == dtoa_result) | 
|  | dtoa_result = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. | 
|  | * | 
|  | * Inspired by "How to Print Floating-Point Numbers Accurately" by | 
|  | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. | 
|  | * | 
|  | * Modifications: | 
|  | *	1. Rather than iterating, we use a simple numeric overestimate | 
|  | *	   to determine k = floor(log10(d)).  We scale relevant | 
|  | *	   quantities using O(log2(k)) rather than O(k) multiplications. | 
|  | *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't | 
|  | *	   try to generate digits strictly left to right.  Instead, we | 
|  | *	   compute with fewer bits and propagate the carry if necessary | 
|  | *	   when rounding the final digit up.  This is often faster. | 
|  | *	3. Under the assumption that input will be rounded nearest, | 
|  | *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. | 
|  | *	   That is, we allow equality in stopping tests when the | 
|  | *	   round-nearest rule will give the same floating-point value | 
|  | *	   as would satisfaction of the stopping test with strict | 
|  | *	   inequality. | 
|  | *	4. We remove common factors of powers of 2 from relevant | 
|  | *	   quantities. | 
|  | *	5. When converting floating-point integers less than 1e16, | 
|  | *	   we use floating-point arithmetic rather than resorting | 
|  | *	   to multiple-precision integers. | 
|  | *	6. When asked to produce fewer than 15 digits, we first try | 
|  | *	   to get by with floating-point arithmetic; we resort to | 
|  | *	   multiple-precision integer arithmetic only if we cannot | 
|  | *	   guarantee that the floating-point calculation has given | 
|  | *	   the correctly rounded result.  For k requested digits and | 
|  | *	   "uniformly" distributed input, the probability is | 
|  | *	   something like 10^(k-15) that we must resort to the Long | 
|  | *	   calculation. | 
|  | */ | 
|  |  | 
|  | char * | 
|  | dtoa | 
|  | #ifdef KR_headers | 
|  | (dd, mode, ndigits, decpt, sign, rve) | 
|  | double dd; int mode, ndigits, *decpt, *sign; char **rve; | 
|  | #else | 
|  | (double dd, int mode, int ndigits, int *decpt, int *sign, char **rve) | 
|  | #endif | 
|  | { | 
|  | /*	Arguments ndigits, decpt, sign are similar to those | 
|  | of ecvt and fcvt; trailing zeros are suppressed from | 
|  | the returned string.  If not null, *rve is set to point | 
|  | to the end of the return value.  If d is +-Infinity or NaN, | 
|  | then *decpt is set to 9999. | 
|  |  | 
|  | mode: | 
|  | 0 ==> shortest string that yields d when read in | 
|  | and rounded to nearest. | 
|  | 1 ==> like 0, but with Steele & White stopping rule; | 
|  | e.g. with IEEE P754 arithmetic , mode 0 gives | 
|  | 1e23 whereas mode 1 gives 9.999999999999999e22. | 
|  | 2 ==> max(1,ndigits) significant digits.  This gives a | 
|  | return value similar to that of ecvt, except | 
|  | that trailing zeros are suppressed. | 
|  | 3 ==> through ndigits past the decimal point.  This | 
|  | gives a return value similar to that from fcvt, | 
|  | except that trailing zeros are suppressed, and | 
|  | ndigits can be negative. | 
|  | 4,5 ==> similar to 2 and 3, respectively, but (in | 
|  | round-nearest mode) with the tests of mode 0 to | 
|  | possibly return a shorter string that rounds to d. | 
|  | With IEEE arithmetic and compilation with | 
|  | -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same | 
|  | as modes 2 and 3 when FLT_ROUNDS != 1. | 
|  | 6-9 ==> Debugging modes similar to mode - 4:  don't try | 
|  | fast floating-point estimate (if applicable). | 
|  |  | 
|  | Values of mode other than 0-9 are treated as mode 0. | 
|  |  | 
|  | Sufficient space is allocated to the return value | 
|  | to hold the suppressed trailing zeros. | 
|  | */ | 
|  |  | 
|  | int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, | 
|  | j, j1 = 0, k, k0, k_check, leftright, m2, m5, s2, s5, | 
|  | spec_case, try_quick; | 
|  | Long L; | 
|  | #ifndef Sudden_Underflow | 
|  | int denorm; | 
|  | ULong x; | 
|  | #endif | 
|  | Bigint *b, *b1, *delta, *mlo = NULL, *mhi, *S; | 
|  | U d2, eps, u; | 
|  | double ds; | 
|  | char *s, *s0; | 
|  | #ifndef No_leftright | 
|  | #ifdef IEEE_Arith | 
|  | U eps1; | 
|  | #endif | 
|  | #endif | 
|  | #ifdef SET_INEXACT | 
|  | int inexact, oldinexact; | 
|  | #endif | 
|  | #ifdef Honor_FLT_ROUNDS /*{*/ | 
|  | int Rounding; | 
|  | #ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */ | 
|  | Rounding = Flt_Rounds; | 
|  | #else /*}{*/ | 
|  | Rounding = 1; | 
|  | switch(fegetround()) { | 
|  | case FE_TOWARDZERO:	Rounding = 0; break; | 
|  | case FE_UPWARD:	Rounding = 2; break; | 
|  | case FE_DOWNWARD:	Rounding = 3; | 
|  | } | 
|  | #endif /*}}*/ | 
|  | #endif /*}*/ | 
|  |  | 
|  | #ifndef MULTIPLE_THREADS | 
|  | if (dtoa_result) { | 
|  | freedtoa(dtoa_result); | 
|  | dtoa_result = 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | u.d = dd; | 
|  | if (word0(&u) & Sign_bit) { | 
|  | /* set sign for everything, including 0's and NaNs */ | 
|  | *sign = 1; | 
|  | word0(&u) &= ~Sign_bit;	/* clear sign bit */ | 
|  | } | 
|  | else | 
|  | *sign = 0; | 
|  |  | 
|  | #if defined(IEEE_Arith) + defined(VAX) | 
|  | #ifdef IEEE_Arith | 
|  | if ((word0(&u) & Exp_mask) == Exp_mask) | 
|  | #else | 
|  | if (word0(&u)  == 0x8000) | 
|  | #endif | 
|  | { | 
|  | /* Infinity or NaN */ | 
|  | *decpt = 9999; | 
|  | #ifdef IEEE_Arith | 
|  | if (!word1(&u) && !(word0(&u) & 0xfffff)) | 
|  | return nrv_alloc("Infinity", rve, 8); | 
|  | #endif | 
|  | return nrv_alloc("NaN", rve, 3); | 
|  | } | 
|  | #endif | 
|  | #ifdef IBM | 
|  | dval(&u) += 0; /* normalize */ | 
|  | #endif | 
|  | if (!dval(&u)) { | 
|  | *decpt = 1; | 
|  | return nrv_alloc("0", rve, 1); | 
|  | } | 
|  |  | 
|  | #ifdef SET_INEXACT | 
|  | try_quick = oldinexact = get_inexact(); | 
|  | inexact = 1; | 
|  | #endif | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | if (Rounding >= 2) { | 
|  | if (*sign) | 
|  | Rounding = Rounding == 2 ? 0 : 2; | 
|  | else | 
|  | if (Rounding != 2) | 
|  | Rounding = 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | b = d2b(&u, &be, &bbits); | 
|  | i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); | 
|  | #ifndef Sudden_Underflow | 
|  | if (i) { | 
|  | #endif | 
|  | dval(&d2) = dval(&u); | 
|  | word0(&d2) &= Frac_mask1; | 
|  | word0(&d2) |= Exp_11; | 
|  | #ifdef IBM | 
|  | if (j = 11 - hi0bits(word0(&d2) & Frac_mask)) | 
|  | dval(&d2) /= 1 << j; | 
|  | #endif | 
|  |  | 
|  | /* log(x)	~=~ log(1.5) + (x-1.5)/1.5 | 
|  | * log10(x)	 =  log(x) / log(10) | 
|  | *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) | 
|  | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) | 
|  | * | 
|  | * This suggests computing an approximation k to log10(d) by | 
|  | * | 
|  | * k = (i - Bias)*0.301029995663981 | 
|  | *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); | 
|  | * | 
|  | * We want k to be too large rather than too small. | 
|  | * The error in the first-order Taylor series approximation | 
|  | * is in our favor, so we just round up the constant enough | 
|  | * to compensate for any error in the multiplication of | 
|  | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, | 
|  | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, | 
|  | * adding 1e-13 to the constant term more than suffices. | 
|  | * Hence we adjust the constant term to 0.1760912590558. | 
|  | * (We could get a more accurate k by invoking log10, | 
|  | *  but this is probably not worthwhile.) | 
|  | */ | 
|  |  | 
|  | i -= Bias; | 
|  | #ifdef IBM | 
|  | i <<= 2; | 
|  | i += j; | 
|  | #endif | 
|  | #ifndef Sudden_Underflow | 
|  | denorm = 0; | 
|  | } | 
|  | else { | 
|  | /* d is denormalized */ | 
|  |  | 
|  | i = bbits + be + (Bias + (P-1) - 1); | 
|  | x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) | 
|  | : word1(&u) << (32 - i); | 
|  | dval(&d2) = x; | 
|  | word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ | 
|  | i -= (Bias + (P-1) - 1) + 1; | 
|  | denorm = 1; | 
|  | } | 
|  | #endif | 
|  | ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; | 
|  | k = (int)ds; | 
|  | if (ds < 0. && ds != k) | 
|  | k--;	/* want k = floor(ds) */ | 
|  | k_check = 1; | 
|  | if (k >= 0 && k <= Ten_pmax) { | 
|  | if (dval(&u) < tens[k]) | 
|  | k--; | 
|  | k_check = 0; | 
|  | } | 
|  | j = bbits - i - 1; | 
|  | if (j >= 0) { | 
|  | b2 = 0; | 
|  | s2 = j; | 
|  | } | 
|  | else { | 
|  | b2 = -j; | 
|  | s2 = 0; | 
|  | } | 
|  | if (k >= 0) { | 
|  | b5 = 0; | 
|  | s5 = k; | 
|  | s2 += k; | 
|  | } | 
|  | else { | 
|  | b2 -= k; | 
|  | b5 = -k; | 
|  | s5 = 0; | 
|  | } | 
|  | if (mode < 0 || mode > 9) | 
|  | mode = 0; | 
|  |  | 
|  | #ifndef SET_INEXACT | 
|  | #ifdef Check_FLT_ROUNDS | 
|  | try_quick = Rounding == 1; | 
|  | #else | 
|  | try_quick = 1; | 
|  | #endif | 
|  | #endif /*SET_INEXACT*/ | 
|  |  | 
|  | if (mode > 5) { | 
|  | mode -= 4; | 
|  | try_quick = 0; | 
|  | } | 
|  | leftright = 1; | 
|  | ilim = ilim1 = -1;	/* Values for cases 0 and 1; done here to */ | 
|  | /* silence erroneous "gcc -Wall" warning. */ | 
|  | switch(mode) { | 
|  | case 0: | 
|  | case 1: | 
|  | i = 18; | 
|  | ndigits = 0; | 
|  | break; | 
|  | case 2: | 
|  | leftright = 0; | 
|  | FALLTHROUGH; | 
|  | case 4: | 
|  | if (ndigits <= 0) | 
|  | ndigits = 1; | 
|  | ilim = ilim1 = i = ndigits; | 
|  | break; | 
|  | case 3: | 
|  | leftright = 0; | 
|  | FALLTHROUGH; | 
|  | case 5: | 
|  | i = ndigits + k + 1; | 
|  | ilim = i; | 
|  | ilim1 = i - 1; | 
|  | if (i <= 0) | 
|  | i = 1; | 
|  | } | 
|  | s = s0 = rv_alloc(i); | 
|  |  | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | if (mode > 1 && Rounding != 1) | 
|  | leftright = 0; | 
|  | #endif | 
|  |  | 
|  | if (ilim >= 0 && ilim <= Quick_max && try_quick) { | 
|  |  | 
|  | /* Try to get by with floating-point arithmetic. */ | 
|  |  | 
|  | i = 0; | 
|  | dval(&d2) = dval(&u); | 
|  | k0 = k; | 
|  | ilim0 = ilim; | 
|  | ieps = 2; /* conservative */ | 
|  | if (k > 0) { | 
|  | ds = tens[k&0xf]; | 
|  | j = k >> 4; | 
|  | if (j & Bletch) { | 
|  | /* prevent overflows */ | 
|  | j &= Bletch - 1; | 
|  | dval(&u) /= bigtens[n_bigtens-1]; | 
|  | ieps++; | 
|  | } | 
|  | for(; j; j >>= 1, i++) | 
|  | if (j & 1) { | 
|  | ieps++; | 
|  | ds *= bigtens[i]; | 
|  | } | 
|  | dval(&u) /= ds; | 
|  | } | 
|  | else { | 
|  | j1 = -k; | 
|  | if (j1) { | 
|  | dval(&u) *= tens[j1 & 0xf]; | 
|  | for(j = j1 >> 4; j; j >>= 1, i++) | 
|  | if (j & 1) { | 
|  | ieps++; | 
|  | dval(&u) *= bigtens[i]; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (k_check && dval(&u) < 1. && ilim > 0) { | 
|  | if (ilim1 <= 0) | 
|  | goto fast_failed; | 
|  | ilim = ilim1; | 
|  | k--; | 
|  | dval(&u) *= 10.; | 
|  | ieps++; | 
|  | } | 
|  | dval(&eps) = ieps*dval(&u) + 7.; | 
|  | word0(&eps) -= (P-1)*Exp_msk1; | 
|  | if (ilim == 0) { | 
|  | S = mhi = 0; | 
|  | dval(&u) -= 5.; | 
|  | if (dval(&u) > dval(&eps)) | 
|  | goto one_digit; | 
|  | if (dval(&u) < -dval(&eps)) | 
|  | goto no_digits; | 
|  | goto fast_failed; | 
|  | } | 
|  | #ifndef No_leftright | 
|  | if (leftright) { | 
|  | /* Use Steele & White method of only | 
|  | * generating digits needed. | 
|  | */ | 
|  | dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); | 
|  | #ifdef IEEE_Arith | 
|  | if (k0 < 0 && j1 >= 307) { | 
|  | eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */ | 
|  | word0(&eps1) -= Exp_msk1 * (Bias+P-1); | 
|  | dval(&eps1) *= tens[j1 & 0xf]; | 
|  | for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++) | 
|  | if (j & 1) | 
|  | dval(&eps1) *= bigtens[i]; | 
|  | if (eps.d < eps1.d) | 
|  | eps.d = eps1.d; | 
|  | } | 
|  | #endif | 
|  | for(i = 0;;) { | 
|  | L = dval(&u); | 
|  | dval(&u) -= L; | 
|  | *s++ = '0' + (int)L; | 
|  | if (1. - dval(&u) < dval(&eps)) | 
|  | goto bump_up; | 
|  | if (dval(&u) < dval(&eps)) | 
|  | goto ret1; | 
|  | if (++i >= ilim) | 
|  | break; | 
|  | dval(&eps) *= 10.; | 
|  | dval(&u) *= 10.; | 
|  | } | 
|  | } | 
|  | else { | 
|  | #endif | 
|  | /* Generate ilim digits, then fix them up. */ | 
|  | dval(&eps) *= tens[ilim-1]; | 
|  | for(i = 1;; i++, dval(&u) *= 10.) { | 
|  | L = (Long)(dval(&u)); | 
|  | if (!(dval(&u) -= L)) | 
|  | ilim = i; | 
|  | *s++ = '0' + (char)L; | 
|  | if (i == ilim) { | 
|  | if (dval(&u) > 0.5 + dval(&eps)) | 
|  | goto bump_up; | 
|  | else if (dval(&u) < 0.5 - dval(&eps)) { | 
|  | while(*--s == '0') {} | 
|  | s++; | 
|  | goto ret1; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | #ifndef No_leftright | 
|  | } | 
|  | #endif | 
|  | fast_failed: | 
|  | s = s0; | 
|  | dval(&u) = dval(&d2); | 
|  | k = k0; | 
|  | ilim = ilim0; | 
|  | } | 
|  |  | 
|  | /* Do we have a "small" integer? */ | 
|  |  | 
|  | if (be >= 0 && k <= Int_max) { | 
|  | /* Yes. */ | 
|  | ds = tens[k]; | 
|  | if (ndigits < 0 && ilim <= 0) { | 
|  | S = mhi = 0; | 
|  | if (ilim < 0 || dval(&u) <= 5*ds) | 
|  | goto no_digits; | 
|  | goto one_digit; | 
|  | } | 
|  | for(i = 1;; i++, dval(&u) *= 10.) { | 
|  | L = (Long)(dval(&u) / ds); | 
|  | dval(&u) -= L*ds; | 
|  | #ifdef Check_FLT_ROUNDS | 
|  | /* If FLT_ROUNDS == 2, L will usually be high by 1 */ | 
|  | if (dval(&u) < 0) { | 
|  | L--; | 
|  | dval(&u) += ds; | 
|  | } | 
|  | #endif | 
|  | *s++ = '0' + (char)L; | 
|  | if (!dval(&u)) { | 
|  | #ifdef SET_INEXACT | 
|  | inexact = 0; | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | if (i == ilim) { | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | if (mode > 1) | 
|  | switch(Rounding) { | 
|  | case 0: goto ret1; | 
|  | case 2: goto bump_up; | 
|  | } | 
|  | #endif | 
|  | dval(&u) += dval(&u); | 
|  | #ifdef ROUND_BIASED | 
|  | if (dval(&u) >= ds) | 
|  | #else | 
|  | if (dval(&u) > ds || (dval(&u) == ds && L & 1)) | 
|  | #endif | 
|  | { | 
|  | bump_up: | 
|  | while(*--s == '9') | 
|  | if (s == s0) { | 
|  | k++; | 
|  | *s = '0'; | 
|  | break; | 
|  | } | 
|  | ++*s++; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | goto ret1; | 
|  | } | 
|  |  | 
|  | m2 = b2; | 
|  | m5 = b5; | 
|  | mhi = mlo = 0; | 
|  | if (leftright) { | 
|  | i = | 
|  | #ifndef Sudden_Underflow | 
|  | denorm ? be + (Bias + (P-1) - 1 + 1) : | 
|  | #endif | 
|  | #ifdef IBM | 
|  | 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3); | 
|  | #else | 
|  | 1 + P - bbits; | 
|  | #endif | 
|  | b2 += i; | 
|  | s2 += i; | 
|  | mhi = i2b(1); | 
|  | } | 
|  | if (m2 > 0 && s2 > 0) { | 
|  | i = m2 < s2 ? m2 : s2; | 
|  | b2 -= i; | 
|  | m2 -= i; | 
|  | s2 -= i; | 
|  | } | 
|  | if (b5 > 0) { | 
|  | if (leftright) { | 
|  | if (m5 > 0) { | 
|  | mhi = pow5mult(mhi, m5); | 
|  | b1 = mult(mhi, b); | 
|  | Bfree(b); | 
|  | b = b1; | 
|  | } | 
|  | j = b5 - m5; | 
|  | if (j) | 
|  | b = pow5mult(b, j); | 
|  | } | 
|  | else | 
|  | b = pow5mult(b, b5); | 
|  | } | 
|  | S = i2b(1); | 
|  | if (s5 > 0) | 
|  | S = pow5mult(S, s5); | 
|  |  | 
|  | /* Check for special case that d is a normalized power of 2. */ | 
|  |  | 
|  | spec_case = 0; | 
|  | if ((mode < 2 || leftright) | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | && Rounding == 1 | 
|  | #endif | 
|  | ) { | 
|  | if (!word1(&u) && !(word0(&u) & Bndry_mask) | 
|  | #ifndef Sudden_Underflow | 
|  | && word0(&u) & (Exp_mask & ~Exp_msk1) | 
|  | #endif | 
|  | ) { | 
|  | /* The special case */ | 
|  | b2 += Log2P; | 
|  | s2 += Log2P; | 
|  | spec_case = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Arrange for convenient computation of quotients: | 
|  | * shift left if necessary so divisor has 4 leading 0 bits. | 
|  | * | 
|  | * Perhaps we should just compute leading 28 bits of S once | 
|  | * and for all and pass them and a shift to quorem, so it | 
|  | * can do shifts and ors to compute the numerator for q. | 
|  | */ | 
|  | i = dshift(S, s2); | 
|  | b2 += i; | 
|  | m2 += i; | 
|  | s2 += i; | 
|  | if (b2 > 0) | 
|  | b = lshift(b, b2); | 
|  | if (s2 > 0) | 
|  | S = lshift(S, s2); | 
|  | if (k_check) { | 
|  | if (cmp(b,S) < 0) { | 
|  | k--; | 
|  | b = multadd(b, 10, 0);	/* we botched the k estimate */ | 
|  | if (leftright) | 
|  | mhi = multadd(mhi, 10, 0); | 
|  | ilim = ilim1; | 
|  | } | 
|  | } | 
|  | if (ilim <= 0 && (mode == 3 || mode == 5)) { | 
|  | if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { | 
|  | /* no digits, fcvt style */ | 
|  | no_digits: | 
|  | k = -1 - ndigits; | 
|  | goto ret; | 
|  | } | 
|  | one_digit: | 
|  | *s++ = '1'; | 
|  | k++; | 
|  | goto ret; | 
|  | } | 
|  | if (leftright) { | 
|  | if (m2 > 0) | 
|  | mhi = lshift(mhi, m2); | 
|  |  | 
|  | /* Compute mlo -- check for special case | 
|  | * that d is a normalized power of 2. | 
|  | */ | 
|  |  | 
|  | mlo = mhi; | 
|  | if (spec_case) { | 
|  | mhi = Balloc(mhi->k); | 
|  | Bcopy(mhi, mlo); | 
|  | mhi = lshift(mhi, Log2P); | 
|  | } | 
|  |  | 
|  | for(i = 1;;i++) { | 
|  | dig = quorem(b,S) + '0'; | 
|  | /* Do we yet have the shortest decimal string | 
|  | * that will round to d? | 
|  | */ | 
|  | j = cmp(b, mlo); | 
|  | delta = diff(S, mhi); | 
|  | j1 = delta->sign ? 1 : cmp(b, delta); | 
|  | Bfree(delta); | 
|  | #ifndef ROUND_BIASED | 
|  | if (j1 == 0 && mode != 1 && !(word1(&u) & 1) | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | && Rounding >= 1 | 
|  | #endif | 
|  | ) { | 
|  | if (dig == '9') | 
|  | goto round_9_up; | 
|  | if (j > 0) | 
|  | dig++; | 
|  | #ifdef SET_INEXACT | 
|  | else if (!b->x[0] && b->wds <= 1) | 
|  | inexact = 0; | 
|  | #endif | 
|  | *s++ = (char)dig; | 
|  | goto ret; | 
|  | } | 
|  | #endif | 
|  | if (j < 0 || (j == 0 && mode != 1 | 
|  | #ifndef ROUND_BIASED | 
|  | && !(word1(&u) & 1) | 
|  | #endif | 
|  | )) { | 
|  | if (!b->x[0] && b->wds <= 1) { | 
|  | #ifdef SET_INEXACT | 
|  | inexact = 0; | 
|  | #endif | 
|  | goto accept_dig; | 
|  | } | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | if (mode > 1) | 
|  | switch(Rounding) { | 
|  | case 0: goto accept_dig; | 
|  | case 2: goto keep_dig; | 
|  | } | 
|  | #endif /*Honor_FLT_ROUNDS*/ | 
|  | if (j1 > 0) { | 
|  | b = lshift(b, 1); | 
|  | j1 = cmp(b, S); | 
|  | #ifdef ROUND_BIASED | 
|  | if (j1 >= 0 /*)*/ | 
|  | #else | 
|  | if ((j1 > 0 || (j1 == 0 && dig & 1)) | 
|  | #endif | 
|  | && dig++ == '9') | 
|  | goto round_9_up; | 
|  | } | 
|  | accept_dig: | 
|  | *s++ = (char)dig; | 
|  | goto ret; | 
|  | } | 
|  | if (j1 > 0) { | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | if (!Rounding) | 
|  | goto accept_dig; | 
|  | #endif | 
|  | if (dig == '9') { /* possible if i == 1 */ | 
|  | round_9_up: | 
|  | *s++ = '9'; | 
|  | goto roundoff; | 
|  | } | 
|  | *s++ = (char)dig + 1; | 
|  | goto ret; | 
|  | } | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | keep_dig: | 
|  | #endif | 
|  | *s++ = (char)dig; | 
|  | if (i == ilim) | 
|  | break; | 
|  | b = multadd(b, 10, 0); | 
|  | if (mlo == mhi) | 
|  | mlo = mhi = multadd(mhi, 10, 0); | 
|  | else { | 
|  | mlo = multadd(mlo, 10, 0); | 
|  | mhi = multadd(mhi, 10, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | for(i = 1;; i++) { | 
|  | dig = quorem(b,S) + '0'; | 
|  | *s++ = (char)dig; | 
|  | if (!b->x[0] && b->wds <= 1) { | 
|  | #ifdef SET_INEXACT | 
|  | inexact = 0; | 
|  | #endif | 
|  | goto ret; | 
|  | } | 
|  | if (i >= ilim) | 
|  | break; | 
|  | b = multadd(b, 10, 0); | 
|  | } | 
|  |  | 
|  | /* Round off last digit */ | 
|  |  | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | switch(Rounding) { | 
|  | case 0: goto trimzeros; | 
|  | case 2: goto roundoff; | 
|  | } | 
|  | #endif | 
|  | b = lshift(b, 1); | 
|  | j = cmp(b, S); | 
|  | #ifdef ROUND_BIASED | 
|  | if (j >= 0) | 
|  | #else | 
|  | if (j > 0 || (j == 0 && dig & 1)) | 
|  | #endif | 
|  | { | 
|  | roundoff: | 
|  | while(*--s == '9') | 
|  | if (s == s0) { | 
|  | k++; | 
|  | *s++ = '1'; | 
|  | goto ret; | 
|  | } | 
|  | ++*s++; | 
|  | } | 
|  | else { | 
|  | #ifdef Honor_FLT_ROUNDS | 
|  | trimzeros: | 
|  | #endif | 
|  | while(*--s == '0') {} | 
|  | s++; | 
|  | } | 
|  | ret: | 
|  | Bfree(S); | 
|  | if (mhi) { | 
|  | if (mlo && mlo != mhi) | 
|  | Bfree(mlo); | 
|  | Bfree(mhi); | 
|  | } | 
|  | ret1: | 
|  | #ifdef SET_INEXACT | 
|  | if (inexact) { | 
|  | if (!oldinexact) { | 
|  | word0(&u) = Exp_1 + (70 << Exp_shift); | 
|  | word1(&u) = 0; | 
|  | dval(&u) += 1.; | 
|  | } | 
|  | } | 
|  | else if (!oldinexact) | 
|  | clear_inexact(); | 
|  | #endif | 
|  | Bfree(b); | 
|  | *s = 0; | 
|  | *decpt = k + 1; | 
|  | if (rve) | 
|  | *rve = s; | 
|  | return s0; | 
|  | } | 
|  |  | 
|  | }  // namespace dmg_fp |