| // Copyright 2017 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #ifndef BASE_NUMERICS_CHECKED_MATH_IMPL_H_ | 
 | #define BASE_NUMERICS_CHECKED_MATH_IMPL_H_ | 
 |  | 
 | #include <stddef.h> | 
 | #include <stdint.h> | 
 |  | 
 | #include <climits> | 
 | #include <cmath> | 
 | #include <cstdlib> | 
 | #include <limits> | 
 | #include <type_traits> | 
 |  | 
 | #include "base/numerics/safe_conversions.h" | 
 | #include "base/numerics/safe_math_shared_impl.h" | 
 |  | 
 | namespace base { | 
 | namespace internal { | 
 |  | 
 | template <typename T> | 
 | constexpr bool CheckedAddImpl(T x, T y, T* result) { | 
 |   static_assert(std::is_integral<T>::value, "Type must be integral"); | 
 |   // Since the value of x+y is undefined if we have a signed type, we compute | 
 |   // it using the unsigned type of the same size. | 
 |   using UnsignedDst = typename std::make_unsigned<T>::type; | 
 |   using SignedDst = typename std::make_signed<T>::type; | 
 |   UnsignedDst ux = static_cast<UnsignedDst>(x); | 
 |   UnsignedDst uy = static_cast<UnsignedDst>(y); | 
 |   UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy); | 
 |   *result = static_cast<T>(uresult); | 
 |   // Addition is valid if the sign of (x + y) is equal to either that of x or | 
 |   // that of y. | 
 |   return (std::is_signed<T>::value) | 
 |              ? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) >= 0 | 
 |              : uresult >= uy;  // Unsigned is either valid or underflow. | 
 | } | 
 |  | 
 | template <typename T, typename U, class Enable = void> | 
 | struct CheckedAddOp {}; | 
 |  | 
 | template <typename T, typename U> | 
 | struct CheckedAddOp<T, | 
 |                     U, | 
 |                     typename std::enable_if<std::is_integral<T>::value && | 
 |                                             std::is_integral<U>::value>::type> { | 
 |   using result_type = typename MaxExponentPromotion<T, U>::type; | 
 |   template <typename V> | 
 |   static constexpr bool Do(T x, U y, V* result) { | 
 |     // TODO(jschuh) Make this "constexpr if" once we're C++17. | 
 |     if (CheckedAddFastOp<T, U>::is_supported) | 
 |       return CheckedAddFastOp<T, U>::Do(x, y, result); | 
 |  | 
 |     // Double the underlying type up to a full machine word. | 
 |     using FastPromotion = typename FastIntegerArithmeticPromotion<T, U>::type; | 
 |     using Promotion = | 
 |         typename std::conditional<(IntegerBitsPlusSign<FastPromotion>::value > | 
 |                                    IntegerBitsPlusSign<intptr_t>::value), | 
 |                                   typename BigEnoughPromotion<T, U>::type, | 
 |                                   FastPromotion>::type; | 
 |     // Fail if either operand is out of range for the promoted type. | 
 |     // TODO(jschuh): This could be made to work for a broader range of values. | 
 |     if (BASE_NUMERICS_UNLIKELY(!IsValueInRangeForNumericType<Promotion>(x) || | 
 |                                !IsValueInRangeForNumericType<Promotion>(y))) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     Promotion presult = {}; | 
 |     bool is_valid = true; | 
 |     if (IsIntegerArithmeticSafe<Promotion, T, U>::value) { | 
 |       presult = static_cast<Promotion>(x) + static_cast<Promotion>(y); | 
 |     } else { | 
 |       is_valid = CheckedAddImpl(static_cast<Promotion>(x), | 
 |                                 static_cast<Promotion>(y), &presult); | 
 |     } | 
 |     *result = static_cast<V>(presult); | 
 |     return is_valid && IsValueInRangeForNumericType<V>(presult); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T> | 
 | constexpr bool CheckedSubImpl(T x, T y, T* result) { | 
 |   static_assert(std::is_integral<T>::value, "Type must be integral"); | 
 |   // Since the value of x+y is undefined if we have a signed type, we compute | 
 |   // it using the unsigned type of the same size. | 
 |   using UnsignedDst = typename std::make_unsigned<T>::type; | 
 |   using SignedDst = typename std::make_signed<T>::type; | 
 |   UnsignedDst ux = static_cast<UnsignedDst>(x); | 
 |   UnsignedDst uy = static_cast<UnsignedDst>(y); | 
 |   UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy); | 
 |   *result = static_cast<T>(uresult); | 
 |   // Subtraction is valid if either x and y have same sign, or (x-y) and x have | 
 |   // the same sign. | 
 |   return (std::is_signed<T>::value) | 
 |              ? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) >= 0 | 
 |              : x >= y; | 
 | } | 
 |  | 
 | template <typename T, typename U, class Enable = void> | 
 | struct CheckedSubOp {}; | 
 |  | 
 | template <typename T, typename U> | 
 | struct CheckedSubOp<T, | 
 |                     U, | 
 |                     typename std::enable_if<std::is_integral<T>::value && | 
 |                                             std::is_integral<U>::value>::type> { | 
 |   using result_type = typename MaxExponentPromotion<T, U>::type; | 
 |   template <typename V> | 
 |   static constexpr bool Do(T x, U y, V* result) { | 
 |     // TODO(jschuh) Make this "constexpr if" once we're C++17. | 
 |     if (CheckedSubFastOp<T, U>::is_supported) | 
 |       return CheckedSubFastOp<T, U>::Do(x, y, result); | 
 |  | 
 |     // Double the underlying type up to a full machine word. | 
 |     using FastPromotion = typename FastIntegerArithmeticPromotion<T, U>::type; | 
 |     using Promotion = | 
 |         typename std::conditional<(IntegerBitsPlusSign<FastPromotion>::value > | 
 |                                    IntegerBitsPlusSign<intptr_t>::value), | 
 |                                   typename BigEnoughPromotion<T, U>::type, | 
 |                                   FastPromotion>::type; | 
 |     // Fail if either operand is out of range for the promoted type. | 
 |     // TODO(jschuh): This could be made to work for a broader range of values. | 
 |     if (BASE_NUMERICS_UNLIKELY(!IsValueInRangeForNumericType<Promotion>(x) || | 
 |                                !IsValueInRangeForNumericType<Promotion>(y))) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     Promotion presult = {}; | 
 |     bool is_valid = true; | 
 |     if (IsIntegerArithmeticSafe<Promotion, T, U>::value) { | 
 |       presult = static_cast<Promotion>(x) - static_cast<Promotion>(y); | 
 |     } else { | 
 |       is_valid = CheckedSubImpl(static_cast<Promotion>(x), | 
 |                                 static_cast<Promotion>(y), &presult); | 
 |     } | 
 |     *result = static_cast<V>(presult); | 
 |     return is_valid && IsValueInRangeForNumericType<V>(presult); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T> | 
 | constexpr bool CheckedMulImpl(T x, T y, T* result) { | 
 |   static_assert(std::is_integral<T>::value, "Type must be integral"); | 
 |   // Since the value of x*y is potentially undefined if we have a signed type, | 
 |   // we compute it using the unsigned type of the same size. | 
 |   using UnsignedDst = typename std::make_unsigned<T>::type; | 
 |   using SignedDst = typename std::make_signed<T>::type; | 
 |   const UnsignedDst ux = SafeUnsignedAbs(x); | 
 |   const UnsignedDst uy = SafeUnsignedAbs(y); | 
 |   UnsignedDst uresult = static_cast<UnsignedDst>(ux * uy); | 
 |   const bool is_negative = | 
 |       std::is_signed<T>::value && static_cast<SignedDst>(x ^ y) < 0; | 
 |   *result = is_negative ? 0 - uresult : uresult; | 
 |   // We have a fast out for unsigned identity or zero on the second operand. | 
 |   // After that it's an unsigned overflow check on the absolute value, with | 
 |   // a +1 bound for a negative result. | 
 |   return uy <= UnsignedDst(!std::is_signed<T>::value || is_negative) || | 
 |          ux <= (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy; | 
 | } | 
 |  | 
 | template <typename T, typename U, class Enable = void> | 
 | struct CheckedMulOp {}; | 
 |  | 
 | template <typename T, typename U> | 
 | struct CheckedMulOp<T, | 
 |                     U, | 
 |                     typename std::enable_if<std::is_integral<T>::value && | 
 |                                             std::is_integral<U>::value>::type> { | 
 |   using result_type = typename MaxExponentPromotion<T, U>::type; | 
 |   template <typename V> | 
 |   static constexpr bool Do(T x, U y, V* result) { | 
 |     // TODO(jschuh) Make this "constexpr if" once we're C++17. | 
 |     if (CheckedMulFastOp<T, U>::is_supported) | 
 |       return CheckedMulFastOp<T, U>::Do(x, y, result); | 
 |  | 
 |     using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type; | 
 |     // Verify the destination type can hold the result (always true for 0). | 
 |     if (BASE_NUMERICS_UNLIKELY((!IsValueInRangeForNumericType<Promotion>(x) || | 
 |                                 !IsValueInRangeForNumericType<Promotion>(y)) && | 
 |                                x && y)) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     Promotion presult = {}; | 
 |     bool is_valid = true; | 
 |     if (CheckedMulFastOp<Promotion, Promotion>::is_supported) { | 
 |       // The fast op may be available with the promoted type. | 
 |       is_valid = CheckedMulFastOp<Promotion, Promotion>::Do(x, y, &presult); | 
 |     } else if (IsIntegerArithmeticSafe<Promotion, T, U>::value) { | 
 |       presult = static_cast<Promotion>(x) * static_cast<Promotion>(y); | 
 |     } else { | 
 |       is_valid = CheckedMulImpl(static_cast<Promotion>(x), | 
 |                                 static_cast<Promotion>(y), &presult); | 
 |     } | 
 |     *result = static_cast<V>(presult); | 
 |     return is_valid && IsValueInRangeForNumericType<V>(presult); | 
 |   } | 
 | }; | 
 |  | 
 | // Division just requires a check for a zero denominator or an invalid negation | 
 | // on signed min/-1. | 
 | template <typename T, typename U, class Enable = void> | 
 | struct CheckedDivOp {}; | 
 |  | 
 | template <typename T, typename U> | 
 | struct CheckedDivOp<T, | 
 |                     U, | 
 |                     typename std::enable_if<std::is_integral<T>::value && | 
 |                                             std::is_integral<U>::value>::type> { | 
 |   using result_type = typename MaxExponentPromotion<T, U>::type; | 
 |   template <typename V> | 
 |   static constexpr bool Do(T x, U y, V* result) { | 
 |     if (BASE_NUMERICS_UNLIKELY(!y)) | 
 |       return false; | 
 |  | 
 |     // The overflow check can be compiled away if we don't have the exact | 
 |     // combination of types needed to trigger this case. | 
 |     using Promotion = typename BigEnoughPromotion<T, U>::type; | 
 |     if (BASE_NUMERICS_UNLIKELY( | 
 |             (std::is_signed<T>::value && std::is_signed<U>::value && | 
 |              IsTypeInRangeForNumericType<T, Promotion>::value && | 
 |              static_cast<Promotion>(x) == | 
 |                  std::numeric_limits<Promotion>::lowest() && | 
 |              y == static_cast<U>(-1)))) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     // This branch always compiles away if the above branch wasn't removed. | 
 |     if (BASE_NUMERICS_UNLIKELY((!IsValueInRangeForNumericType<Promotion>(x) || | 
 |                                 !IsValueInRangeForNumericType<Promotion>(y)) && | 
 |                                x)) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     Promotion presult = Promotion(x) / Promotion(y); | 
 |     *result = static_cast<V>(presult); | 
 |     return IsValueInRangeForNumericType<V>(presult); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T, typename U, class Enable = void> | 
 | struct CheckedModOp {}; | 
 |  | 
 | template <typename T, typename U> | 
 | struct CheckedModOp<T, | 
 |                     U, | 
 |                     typename std::enable_if<std::is_integral<T>::value && | 
 |                                             std::is_integral<U>::value>::type> { | 
 |   using result_type = typename MaxExponentPromotion<T, U>::type; | 
 |   template <typename V> | 
 |   static constexpr bool Do(T x, U y, V* result) { | 
 |     using Promotion = typename BigEnoughPromotion<T, U>::type; | 
 |     if (BASE_NUMERICS_LIKELY(y)) { | 
 |       Promotion presult = static_cast<Promotion>(x) % static_cast<Promotion>(y); | 
 |       *result = static_cast<Promotion>(presult); | 
 |       return IsValueInRangeForNumericType<V>(presult); | 
 |     } | 
 |     return false; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T, typename U, class Enable = void> | 
 | struct CheckedLshOp {}; | 
 |  | 
 | // Left shift. Shifts less than 0 or greater than or equal to the number | 
 | // of bits in the promoted type are undefined. Shifts of negative values | 
 | // are undefined. Otherwise it is defined when the result fits. | 
 | template <typename T, typename U> | 
 | struct CheckedLshOp<T, | 
 |                     U, | 
 |                     typename std::enable_if<std::is_integral<T>::value && | 
 |                                             std::is_integral<U>::value>::type> { | 
 |   using result_type = T; | 
 |   template <typename V> | 
 |   static constexpr bool Do(T x, U shift, V* result) { | 
 |     // Disallow negative numbers and verify the shift is in bounds. | 
 |     if (BASE_NUMERICS_LIKELY(!IsValueNegative(x) && | 
 |                              as_unsigned(shift) < | 
 |                                  as_unsigned(std::numeric_limits<T>::digits))) { | 
 |       // Shift as unsigned to avoid undefined behavior. | 
 |       *result = static_cast<V>(as_unsigned(x) << shift); | 
 |       // If the shift can be reversed, we know it was valid. | 
 |       return *result >> shift == x; | 
 |     } | 
 |  | 
 |     // Handle the legal corner-case of a full-width signed shift of zero. | 
 |     return std::is_signed<T>::value && !x && | 
 |            as_unsigned(shift) == as_unsigned(std::numeric_limits<T>::digits); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T, typename U, class Enable = void> | 
 | struct CheckedRshOp {}; | 
 |  | 
 | // Right shift. Shifts less than 0 or greater than or equal to the number | 
 | // of bits in the promoted type are undefined. Otherwise, it is always defined, | 
 | // but a right shift of a negative value is implementation-dependent. | 
 | template <typename T, typename U> | 
 | struct CheckedRshOp<T, | 
 |                     U, | 
 |                     typename std::enable_if<std::is_integral<T>::value && | 
 |                                             std::is_integral<U>::value>::type> { | 
 |   using result_type = T; | 
 |   template <typename V> | 
 |   static bool Do(T x, U shift, V* result) { | 
 |     // Use the type conversion push negative values out of range. | 
 |     if (BASE_NUMERICS_LIKELY(as_unsigned(shift) < | 
 |                              IntegerBitsPlusSign<T>::value)) { | 
 |       T tmp = x >> shift; | 
 |       *result = static_cast<V>(tmp); | 
 |       return IsValueInRangeForNumericType<V>(tmp); | 
 |     } | 
 |     return false; | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T, typename U, class Enable = void> | 
 | struct CheckedAndOp {}; | 
 |  | 
 | // For simplicity we support only unsigned integer results. | 
 | template <typename T, typename U> | 
 | struct CheckedAndOp<T, | 
 |                     U, | 
 |                     typename std::enable_if<std::is_integral<T>::value && | 
 |                                             std::is_integral<U>::value>::type> { | 
 |   using result_type = typename std::make_unsigned< | 
 |       typename MaxExponentPromotion<T, U>::type>::type; | 
 |   template <typename V> | 
 |   static constexpr bool Do(T x, U y, V* result) { | 
 |     result_type tmp = static_cast<result_type>(x) & static_cast<result_type>(y); | 
 |     *result = static_cast<V>(tmp); | 
 |     return IsValueInRangeForNumericType<V>(tmp); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T, typename U, class Enable = void> | 
 | struct CheckedOrOp {}; | 
 |  | 
 | // For simplicity we support only unsigned integers. | 
 | template <typename T, typename U> | 
 | struct CheckedOrOp<T, | 
 |                    U, | 
 |                    typename std::enable_if<std::is_integral<T>::value && | 
 |                                            std::is_integral<U>::value>::type> { | 
 |   using result_type = typename std::make_unsigned< | 
 |       typename MaxExponentPromotion<T, U>::type>::type; | 
 |   template <typename V> | 
 |   static constexpr bool Do(T x, U y, V* result) { | 
 |     result_type tmp = static_cast<result_type>(x) | static_cast<result_type>(y); | 
 |     *result = static_cast<V>(tmp); | 
 |     return IsValueInRangeForNumericType<V>(tmp); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T, typename U, class Enable = void> | 
 | struct CheckedXorOp {}; | 
 |  | 
 | // For simplicity we support only unsigned integers. | 
 | template <typename T, typename U> | 
 | struct CheckedXorOp<T, | 
 |                     U, | 
 |                     typename std::enable_if<std::is_integral<T>::value && | 
 |                                             std::is_integral<U>::value>::type> { | 
 |   using result_type = typename std::make_unsigned< | 
 |       typename MaxExponentPromotion<T, U>::type>::type; | 
 |   template <typename V> | 
 |   static constexpr bool Do(T x, U y, V* result) { | 
 |     result_type tmp = static_cast<result_type>(x) ^ static_cast<result_type>(y); | 
 |     *result = static_cast<V>(tmp); | 
 |     return IsValueInRangeForNumericType<V>(tmp); | 
 |   } | 
 | }; | 
 |  | 
 | // Max doesn't really need to be implemented this way because it can't fail, | 
 | // but it makes the code much cleaner to use the MathOp wrappers. | 
 | template <typename T, typename U, class Enable = void> | 
 | struct CheckedMaxOp {}; | 
 |  | 
 | template <typename T, typename U> | 
 | struct CheckedMaxOp< | 
 |     T, | 
 |     U, | 
 |     typename std::enable_if<std::is_arithmetic<T>::value && | 
 |                             std::is_arithmetic<U>::value>::type> { | 
 |   using result_type = typename MaxExponentPromotion<T, U>::type; | 
 |   template <typename V> | 
 |   static constexpr bool Do(T x, U y, V* result) { | 
 |     result_type tmp = IsGreater<T, U>::Test(x, y) ? static_cast<result_type>(x) | 
 |                                                   : static_cast<result_type>(y); | 
 |     *result = static_cast<V>(tmp); | 
 |     return IsValueInRangeForNumericType<V>(tmp); | 
 |   } | 
 | }; | 
 |  | 
 | // Min doesn't really need to be implemented this way because it can't fail, | 
 | // but it makes the code much cleaner to use the MathOp wrappers. | 
 | template <typename T, typename U, class Enable = void> | 
 | struct CheckedMinOp {}; | 
 |  | 
 | template <typename T, typename U> | 
 | struct CheckedMinOp< | 
 |     T, | 
 |     U, | 
 |     typename std::enable_if<std::is_arithmetic<T>::value && | 
 |                             std::is_arithmetic<U>::value>::type> { | 
 |   using result_type = typename LowestValuePromotion<T, U>::type; | 
 |   template <typename V> | 
 |   static constexpr bool Do(T x, U y, V* result) { | 
 |     result_type tmp = IsLess<T, U>::Test(x, y) ? static_cast<result_type>(x) | 
 |                                                : static_cast<result_type>(y); | 
 |     *result = static_cast<V>(tmp); | 
 |     return IsValueInRangeForNumericType<V>(tmp); | 
 |   } | 
 | }; | 
 |  | 
 | // This is just boilerplate that wraps the standard floating point arithmetic. | 
 | // A macro isn't the nicest solution, but it beats rewriting these repeatedly. | 
 | #define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP)                              \ | 
 |   template <typename T, typename U>                                      \ | 
 |   struct Checked##NAME##Op<                                              \ | 
 |       T, U,                                                              \ | 
 |       typename std::enable_if<std::is_floating_point<T>::value ||        \ | 
 |                               std::is_floating_point<U>::value>::type> { \ | 
 |     using result_type = typename MaxExponentPromotion<T, U>::type;       \ | 
 |     template <typename V>                                                \ | 
 |     static constexpr bool Do(T x, U y, V* result) {                      \ | 
 |       using Promotion = typename MaxExponentPromotion<T, U>::type;       \ | 
 |       Promotion presult = x OP y;                                        \ | 
 |       *result = static_cast<V>(presult);                                 \ | 
 |       return IsValueInRangeForNumericType<V>(presult);                   \ | 
 |     }                                                                    \ | 
 |   }; | 
 |  | 
 | BASE_FLOAT_ARITHMETIC_OPS(Add, +) | 
 | BASE_FLOAT_ARITHMETIC_OPS(Sub, -) | 
 | BASE_FLOAT_ARITHMETIC_OPS(Mul, *) | 
 | BASE_FLOAT_ARITHMETIC_OPS(Div, /) | 
 |  | 
 | #undef BASE_FLOAT_ARITHMETIC_OPS | 
 |  | 
 | // Floats carry around their validity state with them, but integers do not. So, | 
 | // we wrap the underlying value in a specialization in order to hide that detail | 
 | // and expose an interface via accessors. | 
 | enum NumericRepresentation { | 
 |   NUMERIC_INTEGER, | 
 |   NUMERIC_FLOATING, | 
 |   NUMERIC_UNKNOWN | 
 | }; | 
 |  | 
 | template <typename NumericType> | 
 | struct GetNumericRepresentation { | 
 |   static const NumericRepresentation value = | 
 |       std::is_integral<NumericType>::value | 
 |           ? NUMERIC_INTEGER | 
 |           : (std::is_floating_point<NumericType>::value ? NUMERIC_FLOATING | 
 |                                                         : NUMERIC_UNKNOWN); | 
 | }; | 
 |  | 
 | template <typename T, | 
 |           NumericRepresentation type = GetNumericRepresentation<T>::value> | 
 | class CheckedNumericState {}; | 
 |  | 
 | // Integrals require quite a bit of additional housekeeping to manage state. | 
 | template <typename T> | 
 | class CheckedNumericState<T, NUMERIC_INTEGER> { | 
 |  private: | 
 |   // is_valid_ precedes value_ because member intializers in the constructors | 
 |   // are evaluated in field order, and is_valid_ must be read when initializing | 
 |   // value_. | 
 |   bool is_valid_; | 
 |   T value_; | 
 |  | 
 |   // Ensures that a type conversion does not trigger undefined behavior. | 
 |   template <typename Src> | 
 |   static constexpr T WellDefinedConversionOrZero(const Src value, | 
 |                                                  const bool is_valid) { | 
 |     using SrcType = typename internal::UnderlyingType<Src>::type; | 
 |     return (std::is_integral<SrcType>::value || is_valid) | 
 |                ? static_cast<T>(value) | 
 |                : static_cast<T>(0); | 
 |   } | 
 |  | 
 |  public: | 
 |   template <typename Src, NumericRepresentation type> | 
 |   friend class CheckedNumericState; | 
 |  | 
 |   constexpr CheckedNumericState() : is_valid_(true), value_(0) {} | 
 |  | 
 |   template <typename Src> | 
 |   constexpr CheckedNumericState(Src value, bool is_valid) | 
 |       : is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)), | 
 |         value_(WellDefinedConversionOrZero(value, is_valid_)) { | 
 |     static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric."); | 
 |   } | 
 |  | 
 |   // Copy constructor. | 
 |   template <typename Src> | 
 |   constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs) | 
 |       : is_valid_(rhs.IsValid()), | 
 |         value_(WellDefinedConversionOrZero(rhs.value(), is_valid_)) {} | 
 |  | 
 |   template <typename Src> | 
 |   constexpr explicit CheckedNumericState(Src value) | 
 |       : is_valid_(IsValueInRangeForNumericType<T>(value)), | 
 |         value_(WellDefinedConversionOrZero(value, is_valid_)) {} | 
 |  | 
 |   constexpr bool is_valid() const { return is_valid_; } | 
 |   constexpr T value() const { return value_; } | 
 | }; | 
 |  | 
 | // Floating points maintain their own validity, but need translation wrappers. | 
 | template <typename T> | 
 | class CheckedNumericState<T, NUMERIC_FLOATING> { | 
 |  private: | 
 |   T value_; | 
 |  | 
 |   // Ensures that a type conversion does not trigger undefined behavior. | 
 |   template <typename Src> | 
 |   static constexpr T WellDefinedConversionOrNaN(const Src value, | 
 |                                                 const bool is_valid) { | 
 |     using SrcType = typename internal::UnderlyingType<Src>::type; | 
 |     return (StaticDstRangeRelationToSrcRange<T, SrcType>::value == | 
 |                 NUMERIC_RANGE_CONTAINED || | 
 |             is_valid) | 
 |                ? static_cast<T>(value) | 
 |                : std::numeric_limits<T>::quiet_NaN(); | 
 |   } | 
 |  | 
 |  public: | 
 |   template <typename Src, NumericRepresentation type> | 
 |   friend class CheckedNumericState; | 
 |  | 
 |   constexpr CheckedNumericState() : value_(0.0) {} | 
 |  | 
 |   template <typename Src> | 
 |   constexpr CheckedNumericState(Src value, bool is_valid) | 
 |       : value_(WellDefinedConversionOrNaN(value, is_valid)) {} | 
 |  | 
 |   template <typename Src> | 
 |   constexpr explicit CheckedNumericState(Src value) | 
 |       : value_(WellDefinedConversionOrNaN( | 
 |             value, | 
 |             IsValueInRangeForNumericType<T>(value))) {} | 
 |  | 
 |   // Copy constructor. | 
 |   template <typename Src> | 
 |   constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs) | 
 |       : value_(WellDefinedConversionOrNaN( | 
 |             rhs.value(), | 
 |             rhs.is_valid() && IsValueInRangeForNumericType<T>(rhs.value()))) {} | 
 |  | 
 |   constexpr bool is_valid() const { | 
 |     // Written this way because std::isfinite is not reliably constexpr. | 
 |     return MustTreatAsConstexpr(value_) | 
 |                ? value_ <= std::numeric_limits<T>::max() && | 
 |                      value_ >= std::numeric_limits<T>::lowest() | 
 |                : std::isfinite(value_); | 
 |   } | 
 |   constexpr T value() const { return value_; } | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace base | 
 |  | 
 | #endif  // BASE_NUMERICS_CHECKED_MATH_IMPL_H_ |