| // Copyright 2017 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef BASE_CONTAINERS_CIRCULAR_DEQUE_H_ |
| #define BASE_CONTAINERS_CIRCULAR_DEQUE_H_ |
| |
| #include <algorithm> |
| #include <cstddef> |
| #include <iterator> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "base/containers/vector_buffer.h" |
| #include "base/logging.h" |
| #include "base/macros.h" |
| #include "base/template_util.h" |
| |
| // base::circular_deque is similar to std::deque. Unlike std::deque, the |
| // storage is provided in a flat circular buffer conceptually similar to a |
| // vector. The beginning and end will wrap around as necessary so that |
| // pushes and pops will be constant time as long as a capacity expansion is |
| // not required. |
| // |
| // The API should be identical to std::deque with the following differences: |
| // |
| // - ITERATORS ARE NOT STABLE. Mutating the container will invalidate all |
| // iterators. |
| // |
| // - Insertions may resize the vector and so are not constant time (std::deque |
| // guarantees constant time for insertions at the ends). |
| // |
| // - Container-wide comparisons are not implemented. If you want to compare |
| // two containers, use an algorithm so the expensive iteration is explicit. |
| // |
| // If you want a similar container with only a queue API, use base::queue in |
| // base/containers/queue.h. |
| // |
| // Constructors: |
| // circular_deque(); |
| // circular_deque(size_t count); |
| // circular_deque(size_t count, const T& value); |
| // circular_deque(InputIterator first, InputIterator last); |
| // circular_deque(const circular_deque&); |
| // circular_deque(circular_deque&&); |
| // circular_deque(std::initializer_list<value_type>); |
| // |
| // Assignment functions: |
| // circular_deque& operator=(const circular_deque&); |
| // circular_deque& operator=(circular_deque&&); |
| // circular_deque& operator=(std::initializer_list<T>); |
| // void assign(size_t count, const T& value); |
| // void assign(InputIterator first, InputIterator last); |
| // void assign(std::initializer_list<T> value); |
| // |
| // Random accessors: |
| // T& at(size_t); |
| // const T& at(size_t) const; |
| // T& operator[](size_t); |
| // const T& operator[](size_t) const; |
| // |
| // End accessors: |
| // T& front(); |
| // const T& front() const; |
| // T& back(); |
| // const T& back() const; |
| // |
| // Iterator functions: |
| // iterator begin(); |
| // const_iterator begin() const; |
| // const_iterator cbegin() const; |
| // iterator end(); |
| // const_iterator end() const; |
| // const_iterator cend() const; |
| // reverse_iterator rbegin(); |
| // const_reverse_iterator rbegin() const; |
| // const_reverse_iterator crbegin() const; |
| // reverse_iterator rend(); |
| // const_reverse_iterator rend() const; |
| // const_reverse_iterator crend() const; |
| // |
| // Memory management: |
| // void reserve(size_t); // SEE IMPLEMENTATION FOR SOME GOTCHAS. |
| // size_t capacity() const; |
| // void shrink_to_fit(); |
| // |
| // Size management: |
| // void clear(); |
| // bool empty() const; |
| // size_t size() const; |
| // void resize(size_t); |
| // void resize(size_t count, const T& value); |
| // |
| // Positional insert and erase: |
| // void insert(const_iterator pos, size_type count, const T& value); |
| // void insert(const_iterator pos, |
| // InputIterator first, InputIterator last); |
| // iterator insert(const_iterator pos, const T& value); |
| // iterator insert(const_iterator pos, T&& value); |
| // iterator emplace(const_iterator pos, Args&&... args); |
| // iterator erase(const_iterator pos); |
| // iterator erase(const_iterator first, const_iterator last); |
| // |
| // End insert and erase: |
| // void push_front(const T&); |
| // void push_front(T&&); |
| // void push_back(const T&); |
| // void push_back(T&&); |
| // T& emplace_front(Args&&...); |
| // T& emplace_back(Args&&...); |
| // void pop_front(); |
| // void pop_back(); |
| // |
| // General: |
| // void swap(circular_deque&); |
| |
| namespace base { |
| |
| template <class T> |
| class circular_deque; |
| |
| namespace internal { |
| |
| // Start allocating nonempty buffers with this many entries. This is the |
| // external capacity so the internal buffer will be one larger (= 4) which is |
| // more even for the allocator. See the descriptions of internal vs. external |
| // capacity on the comment above the buffer_ variable below. |
| constexpr size_t kCircularBufferInitialCapacity = 3; |
| |
| template <typename T> |
| class circular_deque_const_iterator { |
| public: |
| using difference_type = std::ptrdiff_t; |
| using value_type = T; |
| using pointer = const T*; |
| using reference = const T&; |
| using iterator_category = std::random_access_iterator_tag; |
| |
| circular_deque_const_iterator() : parent_deque_(nullptr), index_(0) { |
| #if DCHECK_IS_ON() |
| created_generation_ = 0; |
| #endif // DCHECK_IS_ON() |
| } |
| |
| // Dereferencing. |
| const T& operator*() const { |
| CheckUnstableUsage(); |
| parent_deque_->CheckValidIndex(index_); |
| return parent_deque_->buffer_[index_]; |
| } |
| const T* operator->() const { |
| CheckUnstableUsage(); |
| parent_deque_->CheckValidIndex(index_); |
| return &parent_deque_->buffer_[index_]; |
| } |
| const value_type& operator[](difference_type i) const { return *(*this + i); } |
| |
| // Increment and decrement. |
| circular_deque_const_iterator& operator++() { |
| Increment(); |
| return *this; |
| } |
| circular_deque_const_iterator operator++(int) { |
| circular_deque_const_iterator ret = *this; |
| Increment(); |
| return ret; |
| } |
| circular_deque_const_iterator& operator--() { |
| Decrement(); |
| return *this; |
| } |
| circular_deque_const_iterator operator--(int) { |
| circular_deque_const_iterator ret = *this; |
| Decrement(); |
| return ret; |
| } |
| |
| // Random access mutation. |
| friend circular_deque_const_iterator operator+( |
| const circular_deque_const_iterator& iter, |
| difference_type offset) { |
| circular_deque_const_iterator ret = iter; |
| ret.Add(offset); |
| return ret; |
| } |
| circular_deque_const_iterator& operator+=(difference_type offset) { |
| Add(offset); |
| return *this; |
| } |
| friend circular_deque_const_iterator operator-( |
| const circular_deque_const_iterator& iter, |
| difference_type offset) { |
| circular_deque_const_iterator ret = iter; |
| ret.Add(-offset); |
| return ret; |
| } |
| circular_deque_const_iterator& operator-=(difference_type offset) { |
| Add(-offset); |
| return *this; |
| } |
| |
| friend std::ptrdiff_t operator-(const circular_deque_const_iterator& lhs, |
| const circular_deque_const_iterator& rhs) { |
| lhs.CheckComparable(rhs); |
| return lhs.OffsetFromBegin() - rhs.OffsetFromBegin(); |
| } |
| |
| // Comparisons. |
| friend bool operator==(const circular_deque_const_iterator& lhs, |
| const circular_deque_const_iterator& rhs) { |
| lhs.CheckComparable(rhs); |
| return lhs.index_ == rhs.index_; |
| } |
| friend bool operator!=(const circular_deque_const_iterator& lhs, |
| const circular_deque_const_iterator& rhs) { |
| return !(lhs == rhs); |
| } |
| friend bool operator<(const circular_deque_const_iterator& lhs, |
| const circular_deque_const_iterator& rhs) { |
| lhs.CheckComparable(rhs); |
| return lhs.OffsetFromBegin() < rhs.OffsetFromBegin(); |
| } |
| friend bool operator<=(const circular_deque_const_iterator& lhs, |
| const circular_deque_const_iterator& rhs) { |
| return !(lhs > rhs); |
| } |
| friend bool operator>(const circular_deque_const_iterator& lhs, |
| const circular_deque_const_iterator& rhs) { |
| lhs.CheckComparable(rhs); |
| return lhs.OffsetFromBegin() > rhs.OffsetFromBegin(); |
| } |
| friend bool operator>=(const circular_deque_const_iterator& lhs, |
| const circular_deque_const_iterator& rhs) { |
| return !(lhs < rhs); |
| } |
| |
| protected: |
| friend class circular_deque<T>; |
| |
| circular_deque_const_iterator(const circular_deque<T>* parent, size_t index) |
| : parent_deque_(parent), index_(index) { |
| #if DCHECK_IS_ON() |
| created_generation_ = parent->generation_; |
| #endif // DCHECK_IS_ON() |
| } |
| |
| // Returns the offset from the beginning index of the buffer to the current |
| // item. |
| size_t OffsetFromBegin() const { |
| if (index_ >= parent_deque_->begin_) |
| return index_ - parent_deque_->begin_; // On the same side as begin. |
| return parent_deque_->buffer_.capacity() - parent_deque_->begin_ + index_; |
| } |
| |
| // Most uses will be ++ and -- so use a simplified implementation. |
| void Increment() { |
| CheckUnstableUsage(); |
| parent_deque_->CheckValidIndex(index_); |
| index_++; |
| if (index_ == parent_deque_->buffer_.capacity()) |
| index_ = 0; |
| } |
| void Decrement() { |
| CheckUnstableUsage(); |
| parent_deque_->CheckValidIndexOrEnd(index_); |
| if (index_ == 0) |
| index_ = parent_deque_->buffer_.capacity() - 1; |
| else |
| index_--; |
| } |
| void Add(difference_type delta) { |
| CheckUnstableUsage(); |
| #if DCHECK_IS_ON() |
| if (delta <= 0) |
| parent_deque_->CheckValidIndexOrEnd(index_); |
| else |
| parent_deque_->CheckValidIndex(index_); |
| #endif |
| // It should be valid to add 0 to any iterator, even if the container is |
| // empty and the iterator points to end(). The modulo below will divide |
| // by 0 if the buffer capacity is empty, so it's important to check for |
| // this case explicitly. |
| if (delta == 0) |
| return; |
| |
| difference_type new_offset = OffsetFromBegin() + delta; |
| DCHECK(new_offset >= 0 && |
| new_offset <= static_cast<difference_type>(parent_deque_->size())); |
| index_ = (new_offset + parent_deque_->begin_) % |
| parent_deque_->buffer_.capacity(); |
| } |
| |
| #if DCHECK_IS_ON() |
| void CheckUnstableUsage() const { |
| DCHECK(parent_deque_); |
| // Since circular_deque doesn't guarantee stability, any attempt to |
| // dereference this iterator after a mutation (i.e. the generation doesn't |
| // match the original) in the container is illegal. |
| DCHECK_EQ(created_generation_, parent_deque_->generation_) |
| << "circular_deque iterator dereferenced after mutation."; |
| } |
| void CheckComparable(const circular_deque_const_iterator& other) const { |
| DCHECK_EQ(parent_deque_, other.parent_deque_); |
| // Since circular_deque doesn't guarantee stability, two iterators that |
| // are compared must have been generated without mutating the container. |
| // If this fires, the container was mutated between generating the two |
| // iterators being compared. |
| DCHECK_EQ(created_generation_, other.created_generation_); |
| } |
| #else |
| inline void CheckUnstableUsage() const {} |
| inline void CheckComparable(const circular_deque_const_iterator&) const {} |
| #endif // DCHECK_IS_ON() |
| |
| const circular_deque<T>* parent_deque_; |
| size_t index_; |
| |
| #if DCHECK_IS_ON() |
| // The generation of the parent deque when this iterator was created. The |
| // container will update the generation for every modification so we can |
| // test if the container was modified by comparing them. |
| uint64_t created_generation_; |
| #endif // DCHECK_IS_ON() |
| }; |
| |
| template <typename T> |
| class circular_deque_iterator : public circular_deque_const_iterator<T> { |
| using base = circular_deque_const_iterator<T>; |
| |
| public: |
| friend class circular_deque<T>; |
| |
| using difference_type = std::ptrdiff_t; |
| using value_type = T; |
| using pointer = T*; |
| using reference = T&; |
| using iterator_category = std::random_access_iterator_tag; |
| |
| // Expose the base class' constructor. |
| circular_deque_iterator() : circular_deque_const_iterator<T>() {} |
| |
| // Dereferencing. |
| T& operator*() const { return const_cast<T&>(base::operator*()); } |
| T* operator->() const { return const_cast<T*>(base::operator->()); } |
| T& operator[](difference_type i) { |
| return const_cast<T&>(base::operator[](i)); |
| } |
| |
| // Random access mutation. |
| friend circular_deque_iterator operator+(const circular_deque_iterator& iter, |
| difference_type offset) { |
| circular_deque_iterator ret = iter; |
| ret.Add(offset); |
| return ret; |
| } |
| circular_deque_iterator& operator+=(difference_type offset) { |
| base::Add(offset); |
| return *this; |
| } |
| friend circular_deque_iterator operator-(const circular_deque_iterator& iter, |
| difference_type offset) { |
| circular_deque_iterator ret = iter; |
| ret.Add(-offset); |
| return ret; |
| } |
| circular_deque_iterator& operator-=(difference_type offset) { |
| base::Add(-offset); |
| return *this; |
| } |
| |
| // Increment and decrement. |
| circular_deque_iterator& operator++() { |
| base::Increment(); |
| return *this; |
| } |
| circular_deque_iterator operator++(int) { |
| circular_deque_iterator ret = *this; |
| base::Increment(); |
| return ret; |
| } |
| circular_deque_iterator& operator--() { |
| base::Decrement(); |
| return *this; |
| } |
| circular_deque_iterator operator--(int) { |
| circular_deque_iterator ret = *this; |
| base::Decrement(); |
| return ret; |
| } |
| |
| private: |
| circular_deque_iterator(const circular_deque<T>* parent, size_t index) |
| : circular_deque_const_iterator<T>(parent, index) {} |
| }; |
| |
| } // namespace internal |
| |
| template <typename T> |
| class circular_deque { |
| private: |
| using VectorBuffer = internal::VectorBuffer<T>; |
| |
| public: |
| using value_type = T; |
| using size_type = std::size_t; |
| using difference_type = std::ptrdiff_t; |
| using reference = value_type&; |
| using const_reference = const value_type&; |
| using pointer = value_type*; |
| using const_pointer = const value_type*; |
| |
| using iterator = internal::circular_deque_iterator<T>; |
| using const_iterator = internal::circular_deque_const_iterator<T>; |
| using reverse_iterator = std::reverse_iterator<iterator>; |
| using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| |
| // --------------------------------------------------------------------------- |
| // Constructor |
| |
| constexpr circular_deque() = default; |
| |
| // Constructs with |count| copies of |value| or default constructed version. |
| circular_deque(size_type count) { resize(count); } |
| circular_deque(size_type count, const T& value) { resize(count, value); } |
| |
| // Range constructor. |
| template <class InputIterator> |
| circular_deque(InputIterator first, InputIterator last) { |
| assign(first, last); |
| } |
| |
| // Copy/move. |
| circular_deque(const circular_deque& other) : buffer_(other.size() + 1) { |
| assign(other.begin(), other.end()); |
| } |
| circular_deque(circular_deque&& other) noexcept |
| : buffer_(std::move(other.buffer_)), |
| begin_(other.begin_), |
| end_(other.end_) { |
| other.begin_ = 0; |
| other.end_ = 0; |
| } |
| |
| circular_deque(std::initializer_list<value_type> init) { assign(init); } |
| |
| ~circular_deque() { DestructRange(begin_, end_); } |
| |
| // --------------------------------------------------------------------------- |
| // Assignments. |
| // |
| // All of these may invalidate iterators and references. |
| |
| circular_deque& operator=(const circular_deque& other) { |
| if (&other == this) |
| return *this; |
| |
| reserve(other.size()); |
| assign(other.begin(), other.end()); |
| return *this; |
| } |
| circular_deque& operator=(circular_deque&& other) noexcept { |
| if (&other == this) |
| return *this; |
| |
| // We're about to overwrite the buffer, so don't free it in clear to |
| // avoid doing it twice. |
| ClearRetainCapacity(); |
| buffer_ = std::move(other.buffer_); |
| begin_ = other.begin_; |
| end_ = other.end_; |
| |
| other.begin_ = 0; |
| other.end_ = 0; |
| |
| IncrementGeneration(); |
| return *this; |
| } |
| circular_deque& operator=(std::initializer_list<value_type> ilist) { |
| reserve(ilist.size()); |
| assign(std::begin(ilist), std::end(ilist)); |
| return *this; |
| } |
| |
| void assign(size_type count, const value_type& value) { |
| ClearRetainCapacity(); |
| reserve(count); |
| for (size_t i = 0; i < count; i++) |
| emplace_back(value); |
| IncrementGeneration(); |
| } |
| |
| // This variant should be enabled only when InputIterator is an iterator. |
| template <typename InputIterator> |
| typename std::enable_if<::base::internal::is_iterator<InputIterator>::value, |
| void>::type |
| assign(InputIterator first, InputIterator last) { |
| // Possible future enhancement, dispatch on iterator tag type. For forward |
| // iterators we can use std::difference to preallocate the space required |
| // and only do one copy. |
| ClearRetainCapacity(); |
| for (; first != last; ++first) |
| emplace_back(*first); |
| IncrementGeneration(); |
| } |
| |
| void assign(std::initializer_list<value_type> value) { |
| reserve(std::distance(value.begin(), value.end())); |
| assign(value.begin(), value.end()); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Accessors. |
| // |
| // Since this class assumes no exceptions, at() and operator[] are equivalent. |
| |
| const value_type& at(size_type i) const { |
| DCHECK(i < size()); |
| size_t right_size = buffer_.capacity() - begin_; |
| if (begin_ <= end_ || i < right_size) |
| return buffer_[begin_ + i]; |
| return buffer_[i - right_size]; |
| } |
| value_type& at(size_type i) { |
| return const_cast<value_type&>( |
| const_cast<const circular_deque*>(this)->at(i)); |
| } |
| |
| value_type& operator[](size_type i) { return at(i); } |
| const value_type& operator[](size_type i) const { |
| return const_cast<circular_deque*>(this)->at(i); |
| } |
| |
| value_type& front() { |
| DCHECK(!empty()); |
| return buffer_[begin_]; |
| } |
| const value_type& front() const { |
| DCHECK(!empty()); |
| return buffer_[begin_]; |
| } |
| |
| value_type& back() { |
| DCHECK(!empty()); |
| return *(--end()); |
| } |
| const value_type& back() const { |
| DCHECK(!empty()); |
| return *(--end()); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Iterators. |
| |
| iterator begin() { return iterator(this, begin_); } |
| const_iterator begin() const { return const_iterator(this, begin_); } |
| const_iterator cbegin() const { return const_iterator(this, begin_); } |
| |
| iterator end() { return iterator(this, end_); } |
| const_iterator end() const { return const_iterator(this, end_); } |
| const_iterator cend() const { return const_iterator(this, end_); } |
| |
| reverse_iterator rbegin() { return reverse_iterator(end()); } |
| const_reverse_iterator rbegin() const { |
| return const_reverse_iterator(end()); |
| } |
| const_reverse_iterator crbegin() const { return rbegin(); } |
| |
| reverse_iterator rend() { return reverse_iterator(begin()); } |
| const_reverse_iterator rend() const { |
| return const_reverse_iterator(begin()); |
| } |
| const_reverse_iterator crend() const { return rend(); } |
| |
| // --------------------------------------------------------------------------- |
| // Memory management. |
| |
| // IMPORTANT NOTE ON reserve(...): This class implements auto-shrinking of |
| // the buffer when elements are deleted and there is "too much" wasted space. |
| // So if you call reserve() with a large size in anticipation of pushing many |
| // elements, but pop an element before the queue is full, the capacity you |
| // reserved may be lost. |
| // |
| // As a result, it's only worthwhile to call reserve() when you're adding |
| // many things at once with no intermediate operations. |
| void reserve(size_type new_capacity) { |
| if (new_capacity > capacity()) |
| SetCapacityTo(new_capacity); |
| } |
| |
| size_type capacity() const { |
| // One item is wasted to indicate end(). |
| return buffer_.capacity() == 0 ? 0 : buffer_.capacity() - 1; |
| } |
| |
| void shrink_to_fit() { |
| if (empty()) { |
| // Optimize empty case to really delete everything if there was |
| // something. |
| if (buffer_.capacity()) |
| buffer_ = VectorBuffer(); |
| } else { |
| SetCapacityTo(size()); |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Size management. |
| |
| // This will additionally reset the capacity() to 0. |
| void clear() { |
| // This can't resize(0) because that requires a default constructor to |
| // compile, which not all contained classes may implement. |
| ClearRetainCapacity(); |
| buffer_ = VectorBuffer(); |
| } |
| |
| bool empty() const { return begin_ == end_; } |
| |
| size_type size() const { |
| if (begin_ <= end_) |
| return end_ - begin_; |
| return buffer_.capacity() - begin_ + end_; |
| } |
| |
| // When reducing size, the elements are deleted from the end. When expanding |
| // size, elements are added to the end with |value| or the default |
| // constructed version. Even when using resize(count) to shrink, a default |
| // constructor is required for the code to compile, even though it will not |
| // be called. |
| // |
| // There are two versions rather than using a default value to avoid |
| // creating a temporary when shrinking (when it's not needed). Plus if |
| // the default constructor is desired when expanding usually just calling it |
| // for each element is faster than making a default-constructed temporary and |
| // copying it. |
| void resize(size_type count) { |
| // SEE BELOW VERSION if you change this. The code is mostly the same. |
| if (count > size()) { |
| // This could be slightly more efficient but expanding a queue with |
| // identical elements is unusual and the extra computations of emplacing |
| // one-by-one will typically be small relative to calling the constructor |
| // for every item. |
| ExpandCapacityIfNecessary(count - size()); |
| while (size() < count) |
| emplace_back(); |
| } else if (count < size()) { |
| size_t new_end = (begin_ + count) % buffer_.capacity(); |
| DestructRange(new_end, end_); |
| end_ = new_end; |
| |
| ShrinkCapacityIfNecessary(); |
| } |
| IncrementGeneration(); |
| } |
| void resize(size_type count, const value_type& value) { |
| // SEE ABOVE VERSION if you change this. The code is mostly the same. |
| if (count > size()) { |
| ExpandCapacityIfNecessary(count - size()); |
| while (size() < count) |
| emplace_back(value); |
| } else if (count < size()) { |
| size_t new_end = (begin_ + count) % buffer_.capacity(); |
| DestructRange(new_end, end_); |
| end_ = new_end; |
| |
| ShrinkCapacityIfNecessary(); |
| } |
| IncrementGeneration(); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Insert and erase. |
| // |
| // Insertion and deletion in the middle is O(n) and invalidates all existing |
| // iterators. |
| // |
| // The implementation of insert isn't optimized as much as it could be. If |
| // the insertion requires that the buffer be grown, it will first be grown |
| // and everything moved, and then the items will be inserted, potentially |
| // moving some items twice. This simplifies the implementation substantially |
| // and means less generated templatized code. Since this is an uncommon |
| // operation for deques, and already relatively slow, it doesn't seem worth |
| // the benefit to optimize this. |
| |
| void insert(const_iterator pos, size_type count, const T& value) { |
| ValidateIterator(pos); |
| |
| // Optimize insert at the beginning. |
| if (pos == begin()) { |
| ExpandCapacityIfNecessary(count); |
| for (size_t i = 0; i < count; i++) |
| push_front(value); |
| return; |
| } |
| |
| iterator insert_cur(this, pos.index_); |
| iterator insert_end; |
| MakeRoomFor(count, &insert_cur, &insert_end); |
| while (insert_cur < insert_end) { |
| new (&buffer_[insert_cur.index_]) T(value); |
| ++insert_cur; |
| } |
| |
| IncrementGeneration(); |
| } |
| |
| // This enable_if keeps this call from getting confused with the (pos, count, |
| // value) version when value is an integer. |
| template <class InputIterator> |
| typename std::enable_if<::base::internal::is_iterator<InputIterator>::value, |
| void>::type |
| insert(const_iterator pos, InputIterator first, InputIterator last) { |
| ValidateIterator(pos); |
| |
| size_t inserted_items = std::distance(first, last); |
| if (inserted_items == 0) |
| return; // Can divide by 0 when doing modulo below, so return early. |
| |
| // Make a hole to copy the items into. |
| iterator insert_cur; |
| iterator insert_end; |
| if (pos == begin()) { |
| // Optimize insert at the beginning, nothing needs to be shifted and the |
| // hole is the |inserted_items| block immediately before |begin_|. |
| ExpandCapacityIfNecessary(inserted_items); |
| insert_end = begin(); |
| begin_ = |
| (begin_ + buffer_.capacity() - inserted_items) % buffer_.capacity(); |
| insert_cur = begin(); |
| } else { |
| insert_cur = iterator(this, pos.index_); |
| MakeRoomFor(inserted_items, &insert_cur, &insert_end); |
| } |
| |
| // Copy the items. |
| while (insert_cur < insert_end) { |
| new (&buffer_[insert_cur.index_]) T(*first); |
| ++insert_cur; |
| ++first; |
| } |
| |
| IncrementGeneration(); |
| } |
| |
| // These all return an iterator to the inserted item. Existing iterators will |
| // be invalidated. |
| iterator insert(const_iterator pos, const T& value) { |
| return emplace(pos, value); |
| } |
| iterator insert(const_iterator pos, T&& value) { |
| return emplace(pos, std::move(value)); |
| } |
| template <class... Args> |
| iterator emplace(const_iterator pos, Args&&... args) { |
| ValidateIterator(pos); |
| |
| // Optimize insert at beginning which doesn't require shifting. |
| if (pos == cbegin()) { |
| emplace_front(std::forward<Args>(args)...); |
| return begin(); |
| } |
| |
| // Do this before we make the new iterators we return. |
| IncrementGeneration(); |
| |
| iterator insert_begin(this, pos.index_); |
| iterator insert_end; |
| MakeRoomFor(1, &insert_begin, &insert_end); |
| new (&buffer_[insert_begin.index_]) T(std::forward<Args>(args)...); |
| |
| return insert_begin; |
| } |
| |
| // Calling erase() won't automatically resize the buffer smaller like resize |
| // or the pop functions. Erase is slow and relatively uncommon, and for |
| // normal deque usage a pop will normally be done on a regular basis that |
| // will prevent excessive buffer usage over long periods of time. It's not |
| // worth having the extra code for every template instantiation of erase() |
| // to resize capacity downward to a new buffer. |
| iterator erase(const_iterator pos) { return erase(pos, pos + 1); } |
| iterator erase(const_iterator first, const_iterator last) { |
| ValidateIterator(first); |
| ValidateIterator(last); |
| |
| IncrementGeneration(); |
| |
| // First, call the destructor on the deleted items. |
| if (first.index_ == last.index_) { |
| // Nothing deleted. Need to return early to avoid falling through to |
| // moving items on top of themselves. |
| return iterator(this, first.index_); |
| } else if (first.index_ < last.index_) { |
| // Contiguous range. |
| buffer_.DestructRange(&buffer_[first.index_], &buffer_[last.index_]); |
| } else { |
| // Deleted range wraps around. |
| buffer_.DestructRange(&buffer_[first.index_], |
| &buffer_[buffer_.capacity()]); |
| buffer_.DestructRange(&buffer_[0], &buffer_[last.index_]); |
| } |
| |
| if (first.index_ == begin_) { |
| // This deletion is from the beginning. Nothing needs to be copied, only |
| // begin_ needs to be updated. |
| begin_ = last.index_; |
| return iterator(this, last.index_); |
| } |
| |
| // In an erase operation, the shifted items all move logically to the left, |
| // so move them from left-to-right. |
| iterator move_src(this, last.index_); |
| iterator move_src_end = end(); |
| iterator move_dest(this, first.index_); |
| for (; move_src < move_src_end; move_src++, move_dest++) { |
| buffer_.MoveRange(&buffer_[move_src.index_], |
| &buffer_[move_src.index_ + 1], |
| &buffer_[move_dest.index_]); |
| } |
| |
| end_ = move_dest.index_; |
| |
| // Since we did not reallocate and only changed things after the erase |
| // element(s), the input iterator's index points to the thing following the |
| // deletion. |
| return iterator(this, first.index_); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Begin/end operations. |
| |
| void push_front(const T& value) { emplace_front(value); } |
| void push_front(T&& value) { emplace_front(std::move(value)); } |
| |
| void push_back(const T& value) { emplace_back(value); } |
| void push_back(T&& value) { emplace_back(std::move(value)); } |
| |
| template <class... Args> |
| reference emplace_front(Args&&... args) { |
| ExpandCapacityIfNecessary(1); |
| if (begin_ == 0) |
| begin_ = buffer_.capacity() - 1; |
| else |
| begin_--; |
| IncrementGeneration(); |
| new (&buffer_[begin_]) T(std::forward<Args>(args)...); |
| return front(); |
| } |
| |
| template <class... Args> |
| reference emplace_back(Args&&... args) { |
| ExpandCapacityIfNecessary(1); |
| new (&buffer_[end_]) T(std::forward<Args>(args)...); |
| if (end_ == buffer_.capacity() - 1) |
| end_ = 0; |
| else |
| end_++; |
| IncrementGeneration(); |
| return back(); |
| } |
| |
| void pop_front() { |
| DCHECK(size()); |
| buffer_.DestructRange(&buffer_[begin_], &buffer_[begin_ + 1]); |
| begin_++; |
| if (begin_ == buffer_.capacity()) |
| begin_ = 0; |
| |
| ShrinkCapacityIfNecessary(); |
| |
| // Technically popping will not invalidate any iterators since the |
| // underlying buffer will be stable. But in the future we may want to add a |
| // feature that resizes the buffer smaller if there is too much wasted |
| // space. This ensures we can make such a change safely. |
| IncrementGeneration(); |
| } |
| void pop_back() { |
| DCHECK(size()); |
| if (end_ == 0) |
| end_ = buffer_.capacity() - 1; |
| else |
| end_--; |
| buffer_.DestructRange(&buffer_[end_], &buffer_[end_ + 1]); |
| |
| ShrinkCapacityIfNecessary(); |
| |
| // See pop_front comment about why this is here. |
| IncrementGeneration(); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // General operations. |
| |
| void swap(circular_deque& other) { |
| std::swap(buffer_, other.buffer_); |
| std::swap(begin_, other.begin_); |
| std::swap(end_, other.end_); |
| IncrementGeneration(); |
| } |
| |
| friend void swap(circular_deque& lhs, circular_deque& rhs) { lhs.swap(rhs); } |
| |
| private: |
| friend internal::circular_deque_iterator<T>; |
| friend internal::circular_deque_const_iterator<T>; |
| |
| // Moves the items in the given circular buffer to the current one. The |
| // source is moved from so will become invalid. The destination buffer must |
| // have already been allocated with enough size. |
| static void MoveBuffer(VectorBuffer& from_buf, |
| size_t from_begin, |
| size_t from_end, |
| VectorBuffer* to_buf, |
| size_t* to_begin, |
| size_t* to_end) { |
| size_t from_capacity = from_buf.capacity(); |
| |
| *to_begin = 0; |
| if (from_begin < from_end) { |
| // Contiguous. |
| from_buf.MoveRange(&from_buf[from_begin], &from_buf[from_end], |
| to_buf->begin()); |
| *to_end = from_end - from_begin; |
| } else if (from_begin > from_end) { |
| // Discontiguous, copy the right side to the beginning of the new buffer. |
| from_buf.MoveRange(&from_buf[from_begin], &from_buf[from_capacity], |
| to_buf->begin()); |
| size_t right_size = from_capacity - from_begin; |
| // Append the left side. |
| from_buf.MoveRange(&from_buf[0], &from_buf[from_end], |
| &(*to_buf)[right_size]); |
| *to_end = right_size + from_end; |
| } else { |
| // No items. |
| *to_end = 0; |
| } |
| } |
| |
| // Expands the buffer size. This assumes the size is larger than the |
| // number of elements in the vector (it won't call delete on anything). |
| void SetCapacityTo(size_t new_capacity) { |
| // Use the capacity + 1 as the internal buffer size to differentiate |
| // empty and full (see definition of buffer_ below). |
| VectorBuffer new_buffer(new_capacity + 1); |
| MoveBuffer(buffer_, begin_, end_, &new_buffer, &begin_, &end_); |
| buffer_ = std::move(new_buffer); |
| } |
| void ExpandCapacityIfNecessary(size_t additional_elts) { |
| size_t min_new_capacity = size() + additional_elts; |
| if (capacity() >= min_new_capacity) |
| return; // Already enough room. |
| |
| min_new_capacity = |
| std::max(min_new_capacity, internal::kCircularBufferInitialCapacity); |
| |
| // std::vector always grows by at least 50%. WTF::Deque grows by at least |
| // 25%. We expect queue workloads to generally stay at a similar size and |
| // grow less than a vector might, so use 25%. |
| size_t new_capacity = |
| std::max(min_new_capacity, capacity() + capacity() / 4); |
| SetCapacityTo(new_capacity); |
| } |
| |
| void ShrinkCapacityIfNecessary() { |
| // Don't auto-shrink below this size. |
| if (capacity() <= internal::kCircularBufferInitialCapacity) |
| return; |
| |
| // Shrink when 100% of the size() is wasted. |
| size_t sz = size(); |
| size_t empty_spaces = capacity() - sz; |
| if (empty_spaces < sz) |
| return; |
| |
| // Leave 1/4 the size as free capacity, not going below the initial |
| // capacity. |
| size_t new_capacity = |
| std::max(internal::kCircularBufferInitialCapacity, sz + sz / 4); |
| if (new_capacity < capacity()) { |
| // Count extra item to convert to internal capacity. |
| SetCapacityTo(new_capacity); |
| } |
| } |
| |
| // Backend for clear() but does not resize the internal buffer. |
| void ClearRetainCapacity() { |
| // This can't resize(0) because that requires a default constructor to |
| // compile, which not all contained classes may implement. |
| DestructRange(begin_, end_); |
| begin_ = 0; |
| end_ = 0; |
| IncrementGeneration(); |
| } |
| |
| // Calls destructors for the given begin->end indices. The indices may wrap |
| // around. The buffer is not resized, and the begin_ and end_ members are |
| // not changed. |
| void DestructRange(size_t begin, size_t end) { |
| if (end == begin) { |
| return; |
| } else if (end > begin) { |
| buffer_.DestructRange(&buffer_[begin], &buffer_[end]); |
| } else { |
| buffer_.DestructRange(&buffer_[begin], &buffer_[buffer_.capacity()]); |
| buffer_.DestructRange(&buffer_[0], &buffer_[end]); |
| } |
| } |
| |
| // Makes room for |count| items starting at |*insert_begin|. Since iterators |
| // are not stable across buffer resizes, |*insert_begin| will be updated to |
| // point to the beginning of the newly opened position in the new array (it's |
| // in/out), and the end of the newly opened position (it's out-only). |
| void MakeRoomFor(size_t count, iterator* insert_begin, iterator* insert_end) { |
| if (count == 0) { |
| *insert_end = *insert_begin; |
| return; |
| } |
| |
| // The offset from the beginning will be stable across reallocations. |
| size_t begin_offset = insert_begin->OffsetFromBegin(); |
| ExpandCapacityIfNecessary(count); |
| |
| insert_begin->index_ = (begin_ + begin_offset) % buffer_.capacity(); |
| *insert_end = |
| iterator(this, (insert_begin->index_ + count) % buffer_.capacity()); |
| |
| // Update the new end and prepare the iterators for copying. |
| iterator src = end(); |
| end_ = (end_ + count) % buffer_.capacity(); |
| iterator dest = end(); |
| |
| // Move the elements. This will always involve shifting logically to the |
| // right, so move in a right-to-left order. |
| while (true) { |
| if (src == *insert_begin) |
| break; |
| --src; |
| --dest; |
| buffer_.MoveRange(&buffer_[src.index_], &buffer_[src.index_ + 1], |
| &buffer_[dest.index_]); |
| } |
| } |
| |
| #if DCHECK_IS_ON() |
| // Asserts the given index is dereferenceable. The index is an index into the |
| // buffer, not an index used by operator[] or at() which will be offsets from |
| // begin. |
| void CheckValidIndex(size_t i) const { |
| if (begin_ <= end_) |
| DCHECK(i >= begin_ && i < end_); |
| else |
| DCHECK((i >= begin_ && i < buffer_.capacity()) || i < end_); |
| } |
| |
| // Asserts the given index is either dereferenceable or points to end(). |
| void CheckValidIndexOrEnd(size_t i) const { |
| if (i != end_) |
| CheckValidIndex(i); |
| } |
| |
| void ValidateIterator(const const_iterator& i) const { |
| DCHECK(i.parent_deque_ == this); |
| i.CheckUnstableUsage(); |
| } |
| |
| // See generation_ below. |
| void IncrementGeneration() { generation_++; } |
| #else |
| // No-op versions of these functions for release builds. |
| void CheckValidIndex(size_t) const {} |
| void CheckValidIndexOrEnd(size_t) const {} |
| void ValidateIterator(const const_iterator& i) const {} |
| void IncrementGeneration() {} |
| #endif |
| |
| // Danger, the buffer_.capacity() is the "internal capacity" which is |
| // capacity() + 1 since there is an extra item to indicate the end. Otherwise |
| // being completely empty and completely full are indistinguishable (begin == |
| // end). We could add a separate flag to avoid it, but that adds significant |
| // extra complexity since every computation will have to check for it. Always |
| // keeping one extra unused element in the buffer makes iterator computations |
| // much simpler. |
| // |
| // Container internal code will want to use buffer_.capacity() for offset |
| // computations rather than capacity(). |
| VectorBuffer buffer_; |
| size_type begin_ = 0; |
| size_type end_ = 0; |
| |
| #if DCHECK_IS_ON() |
| // Incremented every time a modification is made that could affect iterator |
| // invalidations. |
| uint64_t generation_ = 0; |
| #endif |
| }; |
| |
| // Implementations of base::Erase[If] (see base/stl_util.h). |
| template <class T, class Value> |
| void Erase(circular_deque<T>& container, const Value& value) { |
| container.erase(std::remove(container.begin(), container.end(), value), |
| container.end()); |
| } |
| |
| template <class T, class Predicate> |
| void EraseIf(circular_deque<T>& container, Predicate pred) { |
| container.erase(std::remove_if(container.begin(), container.end(), pred), |
| container.end()); |
| } |
| |
| } // namespace base |
| |
| #endif // BASE_CONTAINERS_CIRCULAR_DEQUE_H_ |