blob: 75e4faa769570d1630e9342a5cc0e4973462df0c [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/metrics/persistent_memory_allocator.h"
#include <memory>
#include "base/files/file.h"
#include "base/files/file_util.h"
#include "base/files/memory_mapped_file.h"
#include "base/files/scoped_temp_dir.h"
#include "base/memory/shared_memory.h"
#include "base/metrics/histogram.h"
#include "base/rand_util.h"
#include "base/strings/safe_sprintf.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/condition_variable.h"
#include "base/synchronization/lock.h"
#include "base/threading/simple_thread.h"
#include "testing/gmock/include/gmock/gmock.h"
namespace base {
namespace {
const uint32_t TEST_MEMORY_SIZE = 1 << 20; // 1 MiB
const uint32_t TEST_MEMORY_PAGE = 64 << 10; // 64 KiB
const uint32_t TEST_ID = 12345;
const char TEST_NAME[] = "TestAllocator";
void SetFileLength(const base::FilePath& path, size_t length) {
{
File file(path, File::FLAG_OPEN | File::FLAG_READ | File::FLAG_WRITE);
DCHECK(file.IsValid());
ASSERT_TRUE(file.SetLength(static_cast<int64_t>(length)));
}
int64_t actual_length;
DCHECK(GetFileSize(path, &actual_length));
DCHECK_EQ(length, static_cast<size_t>(actual_length));
}
} // namespace
typedef PersistentMemoryAllocator::Reference Reference;
class PersistentMemoryAllocatorTest : public testing::Test {
public:
// This can't be statically initialized because it's value isn't defined
// in the PersistentMemoryAllocator header file. Instead, it's simply set
// in the constructor.
uint32_t kAllocAlignment;
struct TestObject1 {
static constexpr uint32_t kPersistentTypeId = 1;
static constexpr size_t kExpectedInstanceSize = 4 + 1 + 3;
int32_t onething;
char oranother;
};
struct TestObject2 {
static constexpr uint32_t kPersistentTypeId = 2;
static constexpr size_t kExpectedInstanceSize = 8 + 4 + 4 + 8 + 8;
int64_t thiis;
int32_t that;
float andthe;
double other;
char thing[8];
};
PersistentMemoryAllocatorTest() {
kAllocAlignment = GetAllocAlignment();
mem_segment_.reset(new char[TEST_MEMORY_SIZE]);
}
void SetUp() override {
allocator_.reset();
::memset(mem_segment_.get(), 0, TEST_MEMORY_SIZE);
allocator_.reset(new PersistentMemoryAllocator(
mem_segment_.get(), TEST_MEMORY_SIZE, TEST_MEMORY_PAGE,
TEST_ID, TEST_NAME, false));
}
void TearDown() override {
allocator_.reset();
}
unsigned CountIterables() {
PersistentMemoryAllocator::Iterator iter(allocator_.get());
uint32_t type;
unsigned count = 0;
while (iter.GetNext(&type) != 0) {
++count;
}
return count;
}
static uint32_t GetAllocAlignment() {
return PersistentMemoryAllocator::kAllocAlignment;
}
protected:
std::unique_ptr<char[]> mem_segment_;
std::unique_ptr<PersistentMemoryAllocator> allocator_;
};
TEST_F(PersistentMemoryAllocatorTest, AllocateAndIterate) {
allocator_->CreateTrackingHistograms(allocator_->Name());
std::string base_name(TEST_NAME);
EXPECT_EQ(TEST_ID, allocator_->Id());
EXPECT_TRUE(allocator_->used_histogram_);
EXPECT_EQ("UMA.PersistentAllocator." + base_name + ".UsedPct",
allocator_->used_histogram_->histogram_name());
EXPECT_EQ(PersistentMemoryAllocator::MEMORY_INITIALIZED,
allocator_->GetMemoryState());
// Get base memory info for later comparison.
PersistentMemoryAllocator::MemoryInfo meminfo0;
allocator_->GetMemoryInfo(&meminfo0);
EXPECT_EQ(TEST_MEMORY_SIZE, meminfo0.total);
EXPECT_GT(meminfo0.total, meminfo0.free);
// Validate allocation of test object and make sure it can be referenced
// and all metadata looks correct.
TestObject1* obj1 = allocator_->New<TestObject1>();
ASSERT_TRUE(obj1);
Reference block1 = allocator_->GetAsReference(obj1);
ASSERT_NE(0U, block1);
EXPECT_NE(nullptr, allocator_->GetAsObject<TestObject1>(block1));
EXPECT_EQ(nullptr, allocator_->GetAsObject<TestObject2>(block1));
EXPECT_LE(sizeof(TestObject1), allocator_->GetAllocSize(block1));
EXPECT_GT(sizeof(TestObject1) + kAllocAlignment,
allocator_->GetAllocSize(block1));
PersistentMemoryAllocator::MemoryInfo meminfo1;
allocator_->GetMemoryInfo(&meminfo1);
EXPECT_EQ(meminfo0.total, meminfo1.total);
EXPECT_GT(meminfo0.free, meminfo1.free);
// Verify that pointers can be turned back into references and that invalid
// addresses return null.
char* memory1 = allocator_->GetAsArray<char>(block1, 1, 1);
ASSERT_TRUE(memory1);
EXPECT_EQ(block1, allocator_->GetAsReference(memory1, 0));
EXPECT_EQ(block1, allocator_->GetAsReference(memory1, 1));
EXPECT_EQ(0U, allocator_->GetAsReference(memory1, 2));
EXPECT_EQ(0U, allocator_->GetAsReference(memory1 + 1, 0));
EXPECT_EQ(0U, allocator_->GetAsReference(memory1 + 16, 0));
EXPECT_EQ(0U, allocator_->GetAsReference(nullptr, 0));
EXPECT_EQ(0U, allocator_->GetAsReference(&base_name, 0));
// Ensure that the test-object can be made iterable.
PersistentMemoryAllocator::Iterator iter1a(allocator_.get());
EXPECT_EQ(0U, iter1a.GetLast());
uint32_t type;
EXPECT_EQ(0U, iter1a.GetNext(&type));
allocator_->MakeIterable(block1);
EXPECT_EQ(block1, iter1a.GetNext(&type));
EXPECT_EQ(1U, type);
EXPECT_EQ(block1, iter1a.GetLast());
EXPECT_EQ(0U, iter1a.GetNext(&type));
EXPECT_EQ(block1, iter1a.GetLast());
// Create second test-object and ensure everything is good and it cannot
// be confused with test-object of another type.
TestObject2* obj2 = allocator_->New<TestObject2>();
ASSERT_TRUE(obj2);
Reference block2 = allocator_->GetAsReference(obj2);
ASSERT_NE(0U, block2);
EXPECT_NE(nullptr, allocator_->GetAsObject<TestObject2>(block2));
EXPECT_EQ(nullptr, allocator_->GetAsObject<TestObject1>(block2));
EXPECT_LE(sizeof(TestObject2), allocator_->GetAllocSize(block2));
EXPECT_GT(sizeof(TestObject2) + kAllocAlignment,
allocator_->GetAllocSize(block2));
PersistentMemoryAllocator::MemoryInfo meminfo2;
allocator_->GetMemoryInfo(&meminfo2);
EXPECT_EQ(meminfo1.total, meminfo2.total);
EXPECT_GT(meminfo1.free, meminfo2.free);
// Ensure that second test-object can also be made iterable.
allocator_->MakeIterable(obj2);
EXPECT_EQ(block2, iter1a.GetNext(&type));
EXPECT_EQ(2U, type);
EXPECT_EQ(block2, iter1a.GetLast());
EXPECT_EQ(0U, iter1a.GetNext(&type));
EXPECT_EQ(block2, iter1a.GetLast());
// Check that the iterator can be reset to the beginning.
iter1a.Reset();
EXPECT_EQ(0U, iter1a.GetLast());
EXPECT_EQ(block1, iter1a.GetNext(&type));
EXPECT_EQ(block1, iter1a.GetLast());
EXPECT_EQ(block2, iter1a.GetNext(&type));
EXPECT_EQ(block2, iter1a.GetLast());
EXPECT_EQ(0U, iter1a.GetNext(&type));
// Check that the iterator can be reset to an arbitrary location.
iter1a.Reset(block1);
EXPECT_EQ(block1, iter1a.GetLast());
EXPECT_EQ(block2, iter1a.GetNext(&type));
EXPECT_EQ(block2, iter1a.GetLast());
EXPECT_EQ(0U, iter1a.GetNext(&type));
// Check that iteration can begin after an arbitrary location.
PersistentMemoryAllocator::Iterator iter1b(allocator_.get(), block1);
EXPECT_EQ(block2, iter1b.GetNext(&type));
EXPECT_EQ(0U, iter1b.GetNext(&type));
// Ensure nothing has gone noticably wrong.
EXPECT_FALSE(allocator_->IsFull());
EXPECT_FALSE(allocator_->IsCorrupt());
// Check the internal histogram record of used memory.
allocator_->UpdateTrackingHistograms();
std::unique_ptr<HistogramSamples> used_samples(
allocator_->used_histogram_->SnapshotSamples());
EXPECT_TRUE(used_samples);
EXPECT_EQ(1, used_samples->TotalCount());
// Check that an object's type can be changed.
EXPECT_EQ(2U, allocator_->GetType(block2));
allocator_->ChangeType(block2, 3, 2, false);
EXPECT_EQ(3U, allocator_->GetType(block2));
allocator_->New<TestObject2>(block2, 3, false);
EXPECT_EQ(2U, allocator_->GetType(block2));
// Create second allocator (read/write) using the same memory segment.
std::unique_ptr<PersistentMemoryAllocator> allocator2(
new PersistentMemoryAllocator(mem_segment_.get(), TEST_MEMORY_SIZE,
TEST_MEMORY_PAGE, 0, "", false));
EXPECT_EQ(TEST_ID, allocator2->Id());
EXPECT_FALSE(allocator2->used_histogram_);
// Ensure that iteration and access through second allocator works.
PersistentMemoryAllocator::Iterator iter2(allocator2.get());
EXPECT_EQ(block1, iter2.GetNext(&type));
EXPECT_EQ(block2, iter2.GetNext(&type));
EXPECT_EQ(0U, iter2.GetNext(&type));
EXPECT_NE(nullptr, allocator2->GetAsObject<TestObject1>(block1));
EXPECT_NE(nullptr, allocator2->GetAsObject<TestObject2>(block2));
// Create a third allocator (read-only) using the same memory segment.
std::unique_ptr<const PersistentMemoryAllocator> allocator3(
new PersistentMemoryAllocator(mem_segment_.get(), TEST_MEMORY_SIZE,
TEST_MEMORY_PAGE, 0, "", true));
EXPECT_EQ(TEST_ID, allocator3->Id());
EXPECT_FALSE(allocator3->used_histogram_);
// Ensure that iteration and access through third allocator works.
PersistentMemoryAllocator::Iterator iter3(allocator3.get());
EXPECT_EQ(block1, iter3.GetNext(&type));
EXPECT_EQ(block2, iter3.GetNext(&type));
EXPECT_EQ(0U, iter3.GetNext(&type));
EXPECT_NE(nullptr, allocator3->GetAsObject<TestObject1>(block1));
EXPECT_NE(nullptr, allocator3->GetAsObject<TestObject2>(block2));
// Ensure that GetNextOfType works.
PersistentMemoryAllocator::Iterator iter1c(allocator_.get());
EXPECT_EQ(block2, iter1c.GetNextOfType<TestObject2>());
EXPECT_EQ(0U, iter1c.GetNextOfType(2));
// Ensure that GetNextOfObject works.
PersistentMemoryAllocator::Iterator iter1d(allocator_.get());
EXPECT_EQ(obj2, iter1d.GetNextOfObject<TestObject2>());
EXPECT_EQ(nullptr, iter1d.GetNextOfObject<TestObject2>());
// Ensure that deleting an object works.
allocator_->Delete(obj2);
PersistentMemoryAllocator::Iterator iter1z(allocator_.get());
EXPECT_EQ(nullptr, iter1z.GetNextOfObject<TestObject2>());
// Ensure that the memory state can be set.
allocator_->SetMemoryState(PersistentMemoryAllocator::MEMORY_DELETED);
EXPECT_EQ(PersistentMemoryAllocator::MEMORY_DELETED,
allocator_->GetMemoryState());
}
TEST_F(PersistentMemoryAllocatorTest, PageTest) {
// This allocation will go into the first memory page.
Reference block1 = allocator_->Allocate(TEST_MEMORY_PAGE / 2, 1);
EXPECT_LT(0U, block1);
EXPECT_GT(TEST_MEMORY_PAGE, block1);
// This allocation won't fit in same page as previous block.
Reference block2 =
allocator_->Allocate(TEST_MEMORY_PAGE - 2 * kAllocAlignment, 2);
EXPECT_EQ(TEST_MEMORY_PAGE, block2);
// This allocation will also require a new page.
Reference block3 = allocator_->Allocate(2 * kAllocAlignment + 99, 3);
EXPECT_EQ(2U * TEST_MEMORY_PAGE, block3);
}
// A simple thread that takes an allocator and repeatedly allocates random-
// sized chunks from it until no more can be done.
class AllocatorThread : public SimpleThread {
public:
AllocatorThread(const std::string& name,
void* base,
uint32_t size,
uint32_t page_size)
: SimpleThread(name, Options()),
count_(0),
iterable_(0),
allocator_(base, size, page_size, 0, std::string(), false) {}
void Run() override {
for (;;) {
uint32_t size = RandInt(1, 99);
uint32_t type = RandInt(100, 999);
Reference block = allocator_.Allocate(size, type);
if (!block)
break;
count_++;
if (RandInt(0, 1)) {
allocator_.MakeIterable(block);
iterable_++;
}
}
}
unsigned iterable() { return iterable_; }
unsigned count() { return count_; }
private:
unsigned count_;
unsigned iterable_;
PersistentMemoryAllocator allocator_;
};
// Test parallel allocation/iteration and ensure consistency across all
// instances.
TEST_F(PersistentMemoryAllocatorTest, ParallelismTest) {
void* memory = mem_segment_.get();
AllocatorThread t1("t1", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t2("t2", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t3("t3", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t4("t4", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t5("t5", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
t1.Start();
t2.Start();
t3.Start();
t4.Start();
t5.Start();
unsigned last_count = 0;
do {
unsigned count = CountIterables();
EXPECT_LE(last_count, count);
} while (!allocator_->IsCorrupt() && !allocator_->IsFull());
t1.Join();
t2.Join();
t3.Join();
t4.Join();
t5.Join();
EXPECT_FALSE(allocator_->IsCorrupt());
EXPECT_TRUE(allocator_->IsFull());
EXPECT_EQ(CountIterables(),
t1.iterable() + t2.iterable() + t3.iterable() + t4.iterable() +
t5.iterable());
}
// A simple thread that counts objects by iterating through an allocator.
class CounterThread : public SimpleThread {
public:
CounterThread(const std::string& name,
PersistentMemoryAllocator::Iterator* iterator,
Lock* lock,
ConditionVariable* condition,
bool* wake_up)
: SimpleThread(name, Options()),
iterator_(iterator),
lock_(lock),
condition_(condition),
count_(0),
wake_up_(wake_up) {}
void Run() override {
// Wait so all threads can start at approximately the same time.
// Best performance comes from releasing a single worker which then
// releases the next, etc., etc.
{
AutoLock autolock(*lock_);
// Before calling Wait(), make sure that the wake up condition
// has not already passed. Also, since spurious signal events
// are possible, check the condition in a while loop to make
// sure that the wake up condition is met when this thread
// returns from the Wait().
// See usage comments in src/base/synchronization/condition_variable.h.
while (!*wake_up_) {
condition_->Wait();
condition_->Signal();
}
}
uint32_t type;
while (iterator_->GetNext(&type) != 0) {
++count_;
}
}
unsigned count() { return count_; }
private:
PersistentMemoryAllocator::Iterator* iterator_;
Lock* lock_;
ConditionVariable* condition_;
unsigned count_;
bool* wake_up_;
DISALLOW_COPY_AND_ASSIGN(CounterThread);
};
// Ensure that parallel iteration returns the same number of objects as
// single-threaded iteration.
TEST_F(PersistentMemoryAllocatorTest, IteratorParallelismTest) {
// Fill the memory segment with random allocations.
unsigned iterable_count = 0;
for (;;) {
uint32_t size = RandInt(1, 99);
uint32_t type = RandInt(100, 999);
Reference block = allocator_->Allocate(size, type);
if (!block)
break;
allocator_->MakeIterable(block);
++iterable_count;
}
EXPECT_FALSE(allocator_->IsCorrupt());
EXPECT_TRUE(allocator_->IsFull());
EXPECT_EQ(iterable_count, CountIterables());
PersistentMemoryAllocator::Iterator iter(allocator_.get());
Lock lock;
ConditionVariable condition(&lock);
bool wake_up = false;
CounterThread t1("t1", &iter, &lock, &condition, &wake_up);
CounterThread t2("t2", &iter, &lock, &condition, &wake_up);
CounterThread t3("t3", &iter, &lock, &condition, &wake_up);
CounterThread t4("t4", &iter, &lock, &condition, &wake_up);
CounterThread t5("t5", &iter, &lock, &condition, &wake_up);
t1.Start();
t2.Start();
t3.Start();
t4.Start();
t5.Start();
// Take the lock and set the wake up condition to true. This helps to
// avoid a race condition where the Signal() event is called before
// all the threads have reached the Wait() and thus never get woken up.
{
AutoLock autolock(lock);
wake_up = true;
}
// This will release all the waiting threads.
condition.Signal();
t1.Join();
t2.Join();
t3.Join();
t4.Join();
t5.Join();
EXPECT_EQ(iterable_count,
t1.count() + t2.count() + t3.count() + t4.count() + t5.count());
#if 0
// These ensure that the threads don't run sequentially. It shouldn't be
// enabled in general because it could lead to a flaky test if it happens
// simply by chance but it is useful during development to ensure that the
// test is working correctly.
EXPECT_NE(iterable_count, t1.count());
EXPECT_NE(iterable_count, t2.count());
EXPECT_NE(iterable_count, t3.count());
EXPECT_NE(iterable_count, t4.count());
EXPECT_NE(iterable_count, t5.count());
#endif
}
TEST_F(PersistentMemoryAllocatorTest, DelayedAllocationTest) {
std::atomic<Reference> ref1, ref2;
ref1.store(0, std::memory_order_relaxed);
ref2.store(0, std::memory_order_relaxed);
DelayedPersistentAllocation da1(allocator_.get(), &ref1, 1001, 100, true);
DelayedPersistentAllocation da2a(allocator_.get(), &ref2, 2002, 200, 0, true);
DelayedPersistentAllocation da2b(allocator_.get(), &ref2, 2002, 200, 5, true);
// Nothing should yet have been allocated.
uint32_t type;
PersistentMemoryAllocator::Iterator iter(allocator_.get());
EXPECT_EQ(0U, iter.GetNext(&type));
// Do first delayed allocation and check that a new persistent object exists.
EXPECT_EQ(0U, da1.reference());
void* mem1 = da1.Get();
ASSERT_TRUE(mem1);
EXPECT_NE(0U, da1.reference());
EXPECT_EQ(allocator_->GetAsReference(mem1, 1001),
ref1.load(std::memory_order_relaxed));
EXPECT_NE(0U, iter.GetNext(&type));
EXPECT_EQ(1001U, type);
EXPECT_EQ(0U, iter.GetNext(&type));
// Do second delayed allocation and check.
void* mem2a = da2a.Get();
ASSERT_TRUE(mem2a);
EXPECT_EQ(allocator_->GetAsReference(mem2a, 2002),
ref2.load(std::memory_order_relaxed));
EXPECT_NE(0U, iter.GetNext(&type));
EXPECT_EQ(2002U, type);
EXPECT_EQ(0U, iter.GetNext(&type));
// Third allocation should just return offset into second allocation.
void* mem2b = da2b.Get();
ASSERT_TRUE(mem2b);
EXPECT_EQ(0U, iter.GetNext(&type));
EXPECT_EQ(reinterpret_cast<uintptr_t>(mem2a) + 5,
reinterpret_cast<uintptr_t>(mem2b));
}
// This test doesn't verify anything other than it doesn't crash. Its goal
// is to find coding errors that aren't otherwise tested for, much like a
// "fuzzer" would.
// This test is suppsoed to fail on TSAN bot (crbug.com/579867).
#if defined(THREAD_SANITIZER)
#define MAYBE_CorruptionTest DISABLED_CorruptionTest
#else
#define MAYBE_CorruptionTest CorruptionTest
#endif
TEST_F(PersistentMemoryAllocatorTest, MAYBE_CorruptionTest) {
char* memory = mem_segment_.get();
AllocatorThread t1("t1", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t2("t2", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t3("t3", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t4("t4", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
AllocatorThread t5("t5", memory, TEST_MEMORY_SIZE, TEST_MEMORY_PAGE);
t1.Start();
t2.Start();
t3.Start();
t4.Start();
t5.Start();
do {
size_t offset = RandInt(0, TEST_MEMORY_SIZE - 1);
char value = RandInt(0, 255);
memory[offset] = value;
} while (!allocator_->IsCorrupt() && !allocator_->IsFull());
t1.Join();
t2.Join();
t3.Join();
t4.Join();
t5.Join();
CountIterables();
}
// Attempt to cause crashes or loops by expressly creating dangerous conditions.
TEST_F(PersistentMemoryAllocatorTest, MaliciousTest) {
Reference block1 = allocator_->Allocate(sizeof(TestObject1), 1);
Reference block2 = allocator_->Allocate(sizeof(TestObject1), 2);
Reference block3 = allocator_->Allocate(sizeof(TestObject1), 3);
Reference block4 = allocator_->Allocate(sizeof(TestObject1), 3);
Reference block5 = allocator_->Allocate(sizeof(TestObject1), 3);
allocator_->MakeIterable(block1);
allocator_->MakeIterable(block2);
allocator_->MakeIterable(block3);
allocator_->MakeIterable(block4);
allocator_->MakeIterable(block5);
EXPECT_EQ(5U, CountIterables());
EXPECT_FALSE(allocator_->IsCorrupt());
// Create loop in iterable list and ensure it doesn't hang. The return value
// from CountIterables() in these cases is unpredictable. If there is a
// failure, the call will hang and the test killed for taking too long.
uint32_t* header4 = (uint32_t*)(mem_segment_.get() + block4);
EXPECT_EQ(block5, header4[3]);
header4[3] = block4;
CountIterables(); // loop: 1-2-3-4-4
EXPECT_TRUE(allocator_->IsCorrupt());
// Test where loop goes back to previous block.
header4[3] = block3;
CountIterables(); // loop: 1-2-3-4-3
// Test where loop goes back to the beginning.
header4[3] = block1;
CountIterables(); // loop: 1-2-3-4-1
}
//----- LocalPersistentMemoryAllocator -----------------------------------------
TEST(LocalPersistentMemoryAllocatorTest, CreationTest) {
LocalPersistentMemoryAllocator allocator(TEST_MEMORY_SIZE, 42, "");
EXPECT_EQ(42U, allocator.Id());
EXPECT_NE(0U, allocator.Allocate(24, 1));
EXPECT_FALSE(allocator.IsFull());
EXPECT_FALSE(allocator.IsCorrupt());
}
//----- SharedPersistentMemoryAllocator ----------------------------------------
TEST(SharedPersistentMemoryAllocatorTest, CreationTest) {
SharedMemoryHandle shared_handle_1;
SharedMemoryHandle shared_handle_2;
PersistentMemoryAllocator::MemoryInfo meminfo1;
Reference r123, r456, r789;
{
std::unique_ptr<SharedMemory> shmem1(new SharedMemory());
ASSERT_TRUE(shmem1->CreateAndMapAnonymous(TEST_MEMORY_SIZE));
SharedPersistentMemoryAllocator local(std::move(shmem1), TEST_ID, "",
false);
EXPECT_FALSE(local.IsReadonly());
r123 = local.Allocate(123, 123);
r456 = local.Allocate(456, 456);
r789 = local.Allocate(789, 789);
local.MakeIterable(r123);
local.ChangeType(r456, 654, 456, false);
local.MakeIterable(r789);
local.GetMemoryInfo(&meminfo1);
EXPECT_FALSE(local.IsFull());
EXPECT_FALSE(local.IsCorrupt());
shared_handle_1 = local.shared_memory()->handle().Duplicate();
ASSERT_TRUE(shared_handle_1.IsValid());
shared_handle_2 = local.shared_memory()->handle().Duplicate();
ASSERT_TRUE(shared_handle_2.IsValid());
}
// Read-only test.
std::unique_ptr<SharedMemory> shmem2(new SharedMemory(shared_handle_1,
/*readonly=*/true));
ASSERT_TRUE(shmem2->Map(TEST_MEMORY_SIZE));
SharedPersistentMemoryAllocator shalloc2(std::move(shmem2), 0, "", true);
EXPECT_TRUE(shalloc2.IsReadonly());
EXPECT_EQ(TEST_ID, shalloc2.Id());
EXPECT_FALSE(shalloc2.IsFull());
EXPECT_FALSE(shalloc2.IsCorrupt());
PersistentMemoryAllocator::Iterator iter2(&shalloc2);
uint32_t type;
EXPECT_EQ(r123, iter2.GetNext(&type));
EXPECT_EQ(r789, iter2.GetNext(&type));
EXPECT_EQ(0U, iter2.GetNext(&type));
EXPECT_EQ(123U, shalloc2.GetType(r123));
EXPECT_EQ(654U, shalloc2.GetType(r456));
EXPECT_EQ(789U, shalloc2.GetType(r789));
PersistentMemoryAllocator::MemoryInfo meminfo2;
shalloc2.GetMemoryInfo(&meminfo2);
EXPECT_EQ(meminfo1.total, meminfo2.total);
EXPECT_EQ(meminfo1.free, meminfo2.free);
// Read/write test.
std::unique_ptr<SharedMemory> shmem3(new SharedMemory(shared_handle_2,
/*readonly=*/false));
ASSERT_TRUE(shmem3->Map(TEST_MEMORY_SIZE));
SharedPersistentMemoryAllocator shalloc3(std::move(shmem3), 0, "", false);
EXPECT_FALSE(shalloc3.IsReadonly());
EXPECT_EQ(TEST_ID, shalloc3.Id());
EXPECT_FALSE(shalloc3.IsFull());
EXPECT_FALSE(shalloc3.IsCorrupt());
PersistentMemoryAllocator::Iterator iter3(&shalloc3);
EXPECT_EQ(r123, iter3.GetNext(&type));
EXPECT_EQ(r789, iter3.GetNext(&type));
EXPECT_EQ(0U, iter3.GetNext(&type));
EXPECT_EQ(123U, shalloc3.GetType(r123));
EXPECT_EQ(654U, shalloc3.GetType(r456));
EXPECT_EQ(789U, shalloc3.GetType(r789));
PersistentMemoryAllocator::MemoryInfo meminfo3;
shalloc3.GetMemoryInfo(&meminfo3);
EXPECT_EQ(meminfo1.total, meminfo3.total);
EXPECT_EQ(meminfo1.free, meminfo3.free);
// Interconnectivity test.
Reference obj = shalloc3.Allocate(42, 42);
ASSERT_TRUE(obj);
shalloc3.MakeIterable(obj);
EXPECT_EQ(obj, iter2.GetNext(&type));
EXPECT_EQ(42U, type);
// Clear-on-change test.
Reference data_ref = shalloc3.Allocate(sizeof(int) * 4, 911);
int* data = shalloc3.GetAsArray<int>(data_ref, 911, 4);
ASSERT_TRUE(data);
data[0] = 0;
data[1] = 1;
data[2] = 2;
data[3] = 3;
ASSERT_TRUE(shalloc3.ChangeType(data_ref, 119, 911, false));
EXPECT_EQ(0, data[0]);
EXPECT_EQ(1, data[1]);
EXPECT_EQ(2, data[2]);
EXPECT_EQ(3, data[3]);
ASSERT_TRUE(shalloc3.ChangeType(data_ref, 191, 119, true));
EXPECT_EQ(0, data[0]);
EXPECT_EQ(0, data[1]);
EXPECT_EQ(0, data[2]);
EXPECT_EQ(0, data[3]);
}
#if !defined(OS_NACL)
//----- FilePersistentMemoryAllocator ------------------------------------------
TEST(FilePersistentMemoryAllocatorTest, CreationTest) {
ScopedTempDir temp_dir;
ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
FilePath file_path = temp_dir.GetPath().AppendASCII("persistent_memory");
PersistentMemoryAllocator::MemoryInfo meminfo1;
Reference r123, r456, r789;
{
LocalPersistentMemoryAllocator local(TEST_MEMORY_SIZE, TEST_ID, "");
EXPECT_FALSE(local.IsReadonly());
r123 = local.Allocate(123, 123);
r456 = local.Allocate(456, 456);
r789 = local.Allocate(789, 789);
local.MakeIterable(r123);
local.ChangeType(r456, 654, 456, false);
local.MakeIterable(r789);
local.GetMemoryInfo(&meminfo1);
EXPECT_FALSE(local.IsFull());
EXPECT_FALSE(local.IsCorrupt());
File writer(file_path, File::FLAG_CREATE | File::FLAG_WRITE);
ASSERT_TRUE(writer.IsValid());
writer.Write(0, (const char*)local.data(), local.used());
}
std::unique_ptr<MemoryMappedFile> mmfile(new MemoryMappedFile());
mmfile->Initialize(file_path);
EXPECT_TRUE(mmfile->IsValid());
const size_t mmlength = mmfile->length();
EXPECT_GE(meminfo1.total, mmlength);
FilePersistentMemoryAllocator file(std::move(mmfile), 0, 0, "", false);
EXPECT_FALSE(file.IsReadonly());
EXPECT_EQ(TEST_ID, file.Id());
EXPECT_FALSE(file.IsFull());
EXPECT_FALSE(file.IsCorrupt());
PersistentMemoryAllocator::Iterator iter(&file);
uint32_t type;
EXPECT_EQ(r123, iter.GetNext(&type));
EXPECT_EQ(r789, iter.GetNext(&type));
EXPECT_EQ(0U, iter.GetNext(&type));
EXPECT_EQ(123U, file.GetType(r123));
EXPECT_EQ(654U, file.GetType(r456));
EXPECT_EQ(789U, file.GetType(r789));
PersistentMemoryAllocator::MemoryInfo meminfo2;
file.GetMemoryInfo(&meminfo2);
EXPECT_GE(meminfo1.total, meminfo2.total);
EXPECT_GE(meminfo1.free, meminfo2.free);
EXPECT_EQ(mmlength, meminfo2.total);
EXPECT_EQ(0U, meminfo2.free);
// There's no way of knowing if Flush actually does anything but at least
// verify that it runs without CHECK violations.
file.Flush(false);
file.Flush(true);
}
TEST(FilePersistentMemoryAllocatorTest, ExtendTest) {
ScopedTempDir temp_dir;
ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
FilePath file_path = temp_dir.GetPath().AppendASCII("extend_test");
MemoryMappedFile::Region region = {0, 16 << 10}; // 16KiB maximum size.
// Start with a small but valid file of persistent data.
ASSERT_FALSE(PathExists(file_path));
{
LocalPersistentMemoryAllocator local(TEST_MEMORY_SIZE, TEST_ID, "");
local.Allocate(1, 1);
local.Allocate(11, 11);
File writer(file_path, File::FLAG_CREATE | File::FLAG_WRITE);
ASSERT_TRUE(writer.IsValid());
writer.Write(0, (const char*)local.data(), local.used());
}
ASSERT_TRUE(PathExists(file_path));
int64_t before_size;
ASSERT_TRUE(GetFileSize(file_path, &before_size));
// Map it as an extendable read/write file and append to it.
{
std::unique_ptr<MemoryMappedFile> mmfile(new MemoryMappedFile());
mmfile->Initialize(
File(file_path, File::FLAG_OPEN | File::FLAG_READ | File::FLAG_WRITE),
region, MemoryMappedFile::READ_WRITE_EXTEND);
FilePersistentMemoryAllocator allocator(std::move(mmfile), region.size, 0,
"", false);
EXPECT_EQ(static_cast<size_t>(before_size), allocator.used());
allocator.Allocate(111, 111);
EXPECT_LT(static_cast<size_t>(before_size), allocator.used());
}
// Validate that append worked.
int64_t after_size;
ASSERT_TRUE(GetFileSize(file_path, &after_size));
EXPECT_LT(before_size, after_size);
// Verify that it's still an acceptable file.
{
std::unique_ptr<MemoryMappedFile> mmfile(new MemoryMappedFile());
mmfile->Initialize(
File(file_path, File::FLAG_OPEN | File::FLAG_READ | File::FLAG_WRITE),
region, MemoryMappedFile::READ_WRITE_EXTEND);
EXPECT_TRUE(FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile, true));
EXPECT_TRUE(
FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile, false));
}
}
TEST(FilePersistentMemoryAllocatorTest, AcceptableTest) {
const uint32_t kAllocAlignment =
PersistentMemoryAllocatorTest::GetAllocAlignment();
ScopedTempDir temp_dir;
ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
LocalPersistentMemoryAllocator local(TEST_MEMORY_SIZE, TEST_ID, "");
local.MakeIterable(local.Allocate(1, 1));
local.MakeIterable(local.Allocate(11, 11));
const size_t minsize = local.used();
std::unique_ptr<char[]> garbage(new char[minsize]);
RandBytes(garbage.get(), minsize);
std::unique_ptr<MemoryMappedFile> mmfile;
char filename[100];
for (size_t filesize = minsize; filesize > 0; --filesize) {
strings::SafeSPrintf(filename, "memory_%d_A", filesize);
FilePath file_path = temp_dir.GetPath().AppendASCII(filename);
ASSERT_FALSE(PathExists(file_path));
{
File writer(file_path, File::FLAG_CREATE | File::FLAG_WRITE);
ASSERT_TRUE(writer.IsValid());
writer.Write(0, (const char*)local.data(), filesize);
}
ASSERT_TRUE(PathExists(file_path));
// Request read/write access for some sizes that are a multple of the
// allocator's alignment size. The allocator is strict about file size
// being a multiple of its internal alignment when doing read/write access.
const bool read_only = (filesize % (2 * kAllocAlignment)) != 0;
const uint32_t file_flags =
File::FLAG_OPEN | File::FLAG_READ | (read_only ? 0 : File::FLAG_WRITE);
const MemoryMappedFile::Access map_access =
read_only ? MemoryMappedFile::READ_ONLY : MemoryMappedFile::READ_WRITE;
mmfile.reset(new MemoryMappedFile());
mmfile->Initialize(File(file_path, file_flags), map_access);
EXPECT_EQ(filesize, mmfile->length());
if (FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile, read_only)) {
// Make sure construction doesn't crash. It will, however, cause
// error messages warning about about a corrupted memory segment.
FilePersistentMemoryAllocator allocator(std::move(mmfile), 0, 0, "",
read_only);
// Also make sure that iteration doesn't crash.
PersistentMemoryAllocator::Iterator iter(&allocator);
uint32_t type_id;
Reference ref;
while ((ref = iter.GetNext(&type_id)) != 0) {
const char* data = allocator.GetAsArray<char>(
ref, 0, PersistentMemoryAllocator::kSizeAny);
uint32_t type = allocator.GetType(ref);
size_t size = allocator.GetAllocSize(ref);
// Ensure compiler can't optimize-out above variables.
(void)data;
(void)type;
(void)size;
}
// Ensure that short files are detected as corrupt and full files are not.
EXPECT_EQ(filesize != minsize, allocator.IsCorrupt());
} else {
// For filesize >= minsize, the file must be acceptable. This
// else clause (file-not-acceptable) should be reached only if
// filesize < minsize.
EXPECT_LT(filesize, minsize);
}
strings::SafeSPrintf(filename, "memory_%d_B", filesize);
file_path = temp_dir.GetPath().AppendASCII(filename);
ASSERT_FALSE(PathExists(file_path));
{
File writer(file_path, File::FLAG_CREATE | File::FLAG_WRITE);
ASSERT_TRUE(writer.IsValid());
writer.Write(0, (const char*)garbage.get(), filesize);
}
ASSERT_TRUE(PathExists(file_path));
mmfile.reset(new MemoryMappedFile());
mmfile->Initialize(File(file_path, file_flags), map_access);
EXPECT_EQ(filesize, mmfile->length());
if (FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile, read_only)) {
// Make sure construction doesn't crash. It will, however, cause
// error messages warning about about a corrupted memory segment.
FilePersistentMemoryAllocator allocator(std::move(mmfile), 0, 0, "",
read_only);
EXPECT_TRUE(allocator.IsCorrupt()); // Garbage data so it should be.
} else {
// For filesize >= minsize, the file must be acceptable. This
// else clause (file-not-acceptable) should be reached only if
// filesize < minsize.
EXPECT_GT(minsize, filesize);
}
}
}
TEST_F(PersistentMemoryAllocatorTest, TruncateTest) {
ScopedTempDir temp_dir;
ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
FilePath file_path = temp_dir.GetPath().AppendASCII("truncate_test");
// Start with a small but valid file of persistent data. Keep the "used"
// amount for both allocations.
Reference a1_ref;
Reference a2_ref;
size_t a1_used;
size_t a2_used;
ASSERT_FALSE(PathExists(file_path));
{
LocalPersistentMemoryAllocator allocator(TEST_MEMORY_SIZE, TEST_ID, "");
a1_ref = allocator.Allocate(100 << 10, 1);
allocator.MakeIterable(a1_ref);
a1_used = allocator.used();
a2_ref = allocator.Allocate(200 << 10, 11);
allocator.MakeIterable(a2_ref);
a2_used = allocator.used();
File writer(file_path, File::FLAG_CREATE | File::FLAG_WRITE);
ASSERT_TRUE(writer.IsValid());
writer.Write(0, static_cast<const char*>(allocator.data()),
allocator.size());
}
ASSERT_TRUE(PathExists(file_path));
EXPECT_LE(a1_used, a2_ref);
// Truncate the file to include everything and make sure it can be read, both
// with read-write and read-only access.
for (size_t file_length : {a2_used, a1_used, a1_used / 2}) {
SCOPED_TRACE(StringPrintf("file_length=%zu", file_length));
SetFileLength(file_path, file_length);
for (bool read_only : {false, true}) {
SCOPED_TRACE(StringPrintf("read_only=%s", read_only ? "true" : "false"));
std::unique_ptr<MemoryMappedFile> mmfile(new MemoryMappedFile());
mmfile->Initialize(
File(file_path, File::FLAG_OPEN |
(read_only ? File::FLAG_READ
: File::FLAG_READ | File::FLAG_WRITE)),
read_only ? MemoryMappedFile::READ_ONLY
: MemoryMappedFile::READ_WRITE);
ASSERT_TRUE(
FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile, read_only));
FilePersistentMemoryAllocator allocator(std::move(mmfile), 0, 0, "",
read_only);
PersistentMemoryAllocator::Iterator iter(&allocator);
uint32_t type_id;
EXPECT_EQ(file_length >= a1_used ? a1_ref : 0U, iter.GetNext(&type_id));
EXPECT_EQ(file_length >= a2_used ? a2_ref : 0U, iter.GetNext(&type_id));
EXPECT_EQ(0U, iter.GetNext(&type_id));
// Ensure that short files are detected as corrupt and full files are not.
EXPECT_EQ(file_length < a2_used, allocator.IsCorrupt());
}
// Ensure that file length was not adjusted.
int64_t actual_length;
ASSERT_TRUE(GetFileSize(file_path, &actual_length));
EXPECT_EQ(file_length, static_cast<size_t>(actual_length));
}
}
#endif // !defined(OS_NACL)
} // namespace base