|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "base/message_loop/message_pump_win.h" | 
|  |  | 
|  | #include <math.h> | 
|  | #include <stdint.h> | 
|  |  | 
|  | #include <limits> | 
|  |  | 
|  | #include "base/bind.h" | 
|  | #include "base/memory/ptr_util.h" | 
|  | #include "base/strings/stringprintf.h" | 
|  | #include "base/win/current_module.h" | 
|  | #include "base/win/wrapped_window_proc.h" | 
|  |  | 
|  | namespace base { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | enum MessageLoopProblems { | 
|  | MESSAGE_POST_ERROR, | 
|  | COMPLETION_POST_ERROR, | 
|  | SET_TIMER_ERROR, | 
|  | RECEIVED_WM_QUIT_ERROR, | 
|  | MESSAGE_LOOP_PROBLEM_MAX, | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | // Message sent to get an additional time slice for pumping (processing) another | 
|  | // task (a series of such messages creates a continuous task pump). | 
|  | static const int kMsgHaveWork = WM_USER + 1; | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // MessagePumpWin public: | 
|  |  | 
|  | MessagePumpWin::MessagePumpWin() = default; | 
|  |  | 
|  | void MessagePumpWin::Run(Delegate* delegate) { | 
|  | RunState s; | 
|  | s.delegate = delegate; | 
|  | s.should_quit = false; | 
|  | s.run_depth = state_ ? state_->run_depth + 1 : 1; | 
|  |  | 
|  | // TODO(stanisc): crbug.com/596190: Remove this code once the bug is fixed. | 
|  | s.schedule_work_error_count = 0; | 
|  | s.last_schedule_work_error_time = Time(); | 
|  |  | 
|  | RunState* previous_state = state_; | 
|  | state_ = &s; | 
|  |  | 
|  | DoRunLoop(); | 
|  |  | 
|  | state_ = previous_state; | 
|  | } | 
|  |  | 
|  | void MessagePumpWin::Quit() { | 
|  | DCHECK(state_); | 
|  | state_->should_quit = true; | 
|  | } | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // MessagePumpWin protected: | 
|  |  | 
|  | int MessagePumpWin::GetCurrentDelay() const { | 
|  | if (delayed_work_time_.is_null()) | 
|  | return -1; | 
|  |  | 
|  | // Be careful here.  TimeDelta has a precision of microseconds, but we want a | 
|  | // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or | 
|  | // 6?  It should be 6 to avoid executing delayed work too early. | 
|  | double timeout = | 
|  | ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF()); | 
|  |  | 
|  | // Range check the |timeout| while converting to an integer.  If the |timeout| | 
|  | // is negative, then we need to run delayed work soon.  If the |timeout| is | 
|  | // "overflowingly" large, that means a delayed task was posted with a | 
|  | // super-long delay. | 
|  | return timeout < 0 ? 0 : | 
|  | (timeout > std::numeric_limits<int>::max() ? | 
|  | std::numeric_limits<int>::max() : static_cast<int>(timeout)); | 
|  | } | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // MessagePumpForUI public: | 
|  |  | 
|  | MessagePumpForUI::MessagePumpForUI() { | 
|  | bool succeeded = message_window_.Create( | 
|  | BindRepeating(&MessagePumpForUI::MessageCallback, Unretained(this))); | 
|  | DCHECK(succeeded); | 
|  | } | 
|  |  | 
|  | MessagePumpForUI::~MessagePumpForUI() = default; | 
|  |  | 
|  | void MessagePumpForUI::ScheduleWork() { | 
|  | if (InterlockedExchange(&work_state_, HAVE_WORK) != READY) | 
|  | return;  // Someone else continued the pumping. | 
|  |  | 
|  | // Make sure the MessagePump does some work for us. | 
|  | BOOL ret = PostMessage(message_window_.hwnd(), kMsgHaveWork, 0, 0); | 
|  | if (ret) | 
|  | return;  // There was room in the Window Message queue. | 
|  |  | 
|  | // We have failed to insert a have-work message, so there is a chance that we | 
|  | // will starve tasks/timers while sitting in a nested run loop.  Nested | 
|  | // loops only look at Windows Message queues, and don't look at *our* task | 
|  | // queues, etc., so we might not get a time slice in such. :-( | 
|  | // We could abort here, but the fear is that this failure mode is plausibly | 
|  | // common (queue is full, of about 2000 messages), so we'll do a near-graceful | 
|  | // recovery.  Nested loops are pretty transient (we think), so this will | 
|  | // probably be recoverable. | 
|  |  | 
|  | // Clarify that we didn't really insert. | 
|  | InterlockedExchange(&work_state_, READY); | 
|  | state_->schedule_work_error_count++; | 
|  | state_->last_schedule_work_error_time = Time::Now(); | 
|  | } | 
|  |  | 
|  | void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { | 
|  | delayed_work_time_ = delayed_work_time; | 
|  | RescheduleTimer(); | 
|  | } | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // MessagePumpForUI private: | 
|  |  | 
|  | bool MessagePumpForUI::MessageCallback( | 
|  | UINT message, WPARAM wparam, LPARAM lparam, LRESULT* result) { | 
|  | switch (message) { | 
|  | case kMsgHaveWork: | 
|  | HandleWorkMessage(); | 
|  | break; | 
|  | case WM_TIMER: | 
|  | HandleTimerMessage(); | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void MessagePumpForUI::DoRunLoop() { | 
|  | // IF this was just a simple PeekMessage() loop (servicing all possible work | 
|  | // queues), then Windows would try to achieve the following order according | 
|  | // to MSDN documentation about PeekMessage with no filter): | 
|  | //    * Sent messages | 
|  | //    * Posted messages | 
|  | //    * Sent messages (again) | 
|  | //    * WM_PAINT messages | 
|  | //    * WM_TIMER messages | 
|  | // | 
|  | // Summary: none of the above classes is starved, and sent messages has twice | 
|  | // the chance of being processed (i.e., reduced service time). | 
|  |  | 
|  | for (;;) { | 
|  | // If we do any work, we may create more messages etc., and more work may | 
|  | // possibly be waiting in another task group.  When we (for example) | 
|  | // ProcessNextWindowsMessage(), there is a good chance there are still more | 
|  | // messages waiting.  On the other hand, when any of these methods return | 
|  | // having done no work, then it is pretty unlikely that calling them again | 
|  | // quickly will find any work to do.  Finally, if they all say they had no | 
|  | // work, then it is a good time to consider sleeping (waiting) for more | 
|  | // work. | 
|  |  | 
|  | bool more_work_is_plausible = ProcessNextWindowsMessage(); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | more_work_is_plausible |= state_->delegate->DoWork(); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | more_work_is_plausible |= | 
|  | state_->delegate->DoDelayedWork(&delayed_work_time_); | 
|  | // If we did not process any delayed work, then we can assume that our | 
|  | // existing WM_TIMER if any will fire when delayed work should run.  We | 
|  | // don't want to disturb that timer if it is already in flight.  However, | 
|  | // if we did do all remaining delayed work, then lets kill the WM_TIMER. | 
|  | if (more_work_is_plausible && delayed_work_time_.is_null()) | 
|  | KillTimer(message_window_.hwnd(), reinterpret_cast<UINT_PTR>(this)); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | if (more_work_is_plausible) | 
|  | continue; | 
|  |  | 
|  | more_work_is_plausible = state_->delegate->DoIdleWork(); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | if (more_work_is_plausible) | 
|  | continue; | 
|  |  | 
|  | WaitForWork();  // Wait (sleep) until we have work to do again. | 
|  | } | 
|  | } | 
|  |  | 
|  | void MessagePumpForUI::WaitForWork() { | 
|  | // Wait until a message is available, up to the time needed by the timer | 
|  | // manager to fire the next set of timers. | 
|  | int delay; | 
|  | DWORD wait_flags = MWMO_INPUTAVAILABLE; | 
|  |  | 
|  | while ((delay = GetCurrentDelay()) != 0) { | 
|  | if (delay < 0)  // Negative value means no timers waiting. | 
|  | delay = INFINITE; | 
|  |  | 
|  | // Tell the optimizer to retain these values to simplify analyzing hangs. | 
|  | DWORD result = MsgWaitForMultipleObjectsEx(0, nullptr, delay, QS_ALLINPUT, | 
|  | wait_flags); | 
|  |  | 
|  | if (WAIT_OBJECT_0 == result) { | 
|  | // A WM_* message is available. | 
|  | // If a parent child relationship exists between windows across threads | 
|  | // then their thread inputs are implicitly attached. | 
|  | // This causes the MsgWaitForMultipleObjectsEx API to return indicating | 
|  | // that messages are ready for processing (Specifically, mouse messages | 
|  | // intended for the child window may appear if the child window has | 
|  | // capture). | 
|  | // The subsequent PeekMessages call may fail to return any messages thus | 
|  | // causing us to enter a tight loop at times. | 
|  | // The code below is a workaround to give the child window | 
|  | // some time to process its input messages by looping back to | 
|  | // MsgWaitForMultipleObjectsEx above when there are no messages for the | 
|  | // current thread. | 
|  | MSG msg = {0}; | 
|  | bool has_pending_sent_message = | 
|  | (HIWORD(GetQueueStatus(QS_SENDMESSAGE)) & QS_SENDMESSAGE) != 0; | 
|  | if (has_pending_sent_message || | 
|  | PeekMessage(&msg, nullptr, 0, 0, PM_NOREMOVE)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We know there are no more messages for this thread because PeekMessage | 
|  | // has returned false. Reset |wait_flags| so that we wait for a *new* | 
|  | // message. | 
|  | wait_flags = 0; | 
|  | } | 
|  |  | 
|  | DCHECK_NE(WAIT_FAILED, result) << GetLastError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MessagePumpForUI::HandleWorkMessage() { | 
|  | // If we are being called outside of the context of Run, then don't try to do | 
|  | // any work.  This could correspond to a MessageBox call or something of that | 
|  | // sort. | 
|  | if (!state_) { | 
|  | // Since we handled a kMsgHaveWork message, we must still update this flag. | 
|  | InterlockedExchange(&work_state_, READY); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Let whatever would have run had we not been putting messages in the queue | 
|  | // run now.  This is an attempt to make our dummy message not starve other | 
|  | // messages that may be in the Windows message queue. | 
|  | ProcessPumpReplacementMessage(); | 
|  |  | 
|  | // Now give the delegate a chance to do some work.  It'll let us know if it | 
|  | // needs to do more work. | 
|  | if (state_->delegate->DoWork()) | 
|  | ScheduleWork(); | 
|  | state_->delegate->DoDelayedWork(&delayed_work_time_); | 
|  | RescheduleTimer(); | 
|  | } | 
|  |  | 
|  | void MessagePumpForUI::HandleTimerMessage() { | 
|  | KillTimer(message_window_.hwnd(), reinterpret_cast<UINT_PTR>(this)); | 
|  |  | 
|  | // If we are being called outside of the context of Run, then don't do | 
|  | // anything.  This could correspond to a MessageBox call or something of | 
|  | // that sort. | 
|  | if (!state_) | 
|  | return; | 
|  |  | 
|  | state_->delegate->DoDelayedWork(&delayed_work_time_); | 
|  | RescheduleTimer(); | 
|  | } | 
|  |  | 
|  | void MessagePumpForUI::RescheduleTimer() { | 
|  | if (delayed_work_time_.is_null()) | 
|  | return; | 
|  | // | 
|  | // We would *like* to provide high resolution timers.  Windows timers using | 
|  | // SetTimer() have a 10ms granularity.  We have to use WM_TIMER as a wakeup | 
|  | // mechanism because the application can enter modal windows loops where it | 
|  | // is not running our MessageLoop; the only way to have our timers fire in | 
|  | // these cases is to post messages there. | 
|  | // | 
|  | // To provide sub-10ms timers, we process timers directly from our run loop. | 
|  | // For the common case, timers will be processed there as the run loop does | 
|  | // its normal work.  However, we *also* set the system timer so that WM_TIMER | 
|  | // events fire.  This mops up the case of timers not being able to work in | 
|  | // modal message loops.  It is possible for the SetTimer to pop and have no | 
|  | // pending timers, because they could have already been processed by the | 
|  | // run loop itself. | 
|  | // | 
|  | // We use a single SetTimer corresponding to the timer that will expire | 
|  | // soonest.  As new timers are created and destroyed, we update SetTimer. | 
|  | // Getting a spurious SetTimer event firing is benign, as we'll just be | 
|  | // processing an empty timer queue. | 
|  | // | 
|  | int delay_msec = GetCurrentDelay(); | 
|  | DCHECK_GE(delay_msec, 0); | 
|  | if (delay_msec == 0) { | 
|  | ScheduleWork(); | 
|  | } else { | 
|  | if (delay_msec < USER_TIMER_MINIMUM) | 
|  | delay_msec = USER_TIMER_MINIMUM; | 
|  |  | 
|  | // Create a WM_TIMER event that will wake us up to check for any pending | 
|  | // timers (in case we are running within a nested, external sub-pump). | 
|  | UINT_PTR ret = SetTimer(message_window_.hwnd(), 0, delay_msec, nullptr); | 
|  | if (ret) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool MessagePumpForUI::ProcessNextWindowsMessage() { | 
|  | // If there are sent messages in the queue then PeekMessage internally | 
|  | // dispatches the message and returns false. We return true in this | 
|  | // case to ensure that the message loop peeks again instead of calling | 
|  | // MsgWaitForMultipleObjectsEx again. | 
|  | bool sent_messages_in_queue = false; | 
|  | DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE); | 
|  | if (HIWORD(queue_status) & QS_SENDMESSAGE) | 
|  | sent_messages_in_queue = true; | 
|  |  | 
|  | MSG msg; | 
|  | if (PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) != FALSE) | 
|  | return ProcessMessageHelper(msg); | 
|  |  | 
|  | return sent_messages_in_queue; | 
|  | } | 
|  |  | 
|  | bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) { | 
|  | if (WM_QUIT == msg.message) { | 
|  | // WM_QUIT is the standard way to exit a GetMessage() loop. Our MessageLoop | 
|  | // has its own quit mechanism, so WM_QUIT is unexpected and should be | 
|  | // ignored. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // While running our main message pump, we discard kMsgHaveWork messages. | 
|  | if (msg.message == kMsgHaveWork && msg.hwnd == message_window_.hwnd()) | 
|  | return ProcessPumpReplacementMessage(); | 
|  |  | 
|  | TranslateMessage(&msg); | 
|  | DispatchMessage(&msg); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MessagePumpForUI::ProcessPumpReplacementMessage() { | 
|  | // When we encounter a kMsgHaveWork message, this method is called to peek and | 
|  | // process a replacement message. The goal is to make the kMsgHaveWork as non- | 
|  | // intrusive as possible, even though a continuous stream of such messages are | 
|  | // posted. This method carefully peeks a message while there is no chance for | 
|  | // a kMsgHaveWork to be pending, then resets the |have_work_| flag (allowing a | 
|  | // replacement kMsgHaveWork to possibly be posted), and finally dispatches | 
|  | // that peeked replacement. Note that the re-post of kMsgHaveWork may be | 
|  | // asynchronous to this thread!! | 
|  |  | 
|  | MSG msg; | 
|  | const bool have_message = | 
|  | PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) != FALSE; | 
|  |  | 
|  | // Expect no message or a message different than kMsgHaveWork. | 
|  | DCHECK(!have_message || kMsgHaveWork != msg.message || | 
|  | msg.hwnd != message_window_.hwnd()); | 
|  |  | 
|  | // Since we discarded a kMsgHaveWork message, we must update the flag. | 
|  | int old_work_state_ = InterlockedExchange(&work_state_, READY); | 
|  | DCHECK_EQ(HAVE_WORK, old_work_state_); | 
|  |  | 
|  | // We don't need a special time slice if we didn't have_message to process. | 
|  | if (!have_message) | 
|  | return false; | 
|  |  | 
|  | // Guarantee we'll get another time slice in the case where we go into native | 
|  | // windows code.   This ScheduleWork() may hurt performance a tiny bit when | 
|  | // tasks appear very infrequently, but when the event queue is busy, the | 
|  | // kMsgHaveWork events get (percentage wise) rarer and rarer. | 
|  | ScheduleWork(); | 
|  | return ProcessMessageHelper(msg); | 
|  | } | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // MessagePumpForIO public: | 
|  |  | 
|  | MessagePumpForIO::IOContext::IOContext() { | 
|  | memset(&overlapped, 0, sizeof(overlapped)); | 
|  | } | 
|  |  | 
|  | MessagePumpForIO::MessagePumpForIO() { | 
|  | port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, nullptr, | 
|  | reinterpret_cast<ULONG_PTR>(nullptr), 1)); | 
|  | DCHECK(port_.IsValid()); | 
|  | } | 
|  |  | 
|  | MessagePumpForIO::~MessagePumpForIO() = default; | 
|  |  | 
|  | void MessagePumpForIO::ScheduleWork() { | 
|  | if (InterlockedExchange(&work_state_, HAVE_WORK) != READY) | 
|  | return;  // Someone else continued the pumping. | 
|  |  | 
|  | // Make sure the MessagePump does some work for us. | 
|  | BOOL ret = PostQueuedCompletionStatus(port_.Get(), 0, | 
|  | reinterpret_cast<ULONG_PTR>(this), | 
|  | reinterpret_cast<OVERLAPPED*>(this)); | 
|  | if (ret) | 
|  | return;  // Post worked perfectly. | 
|  |  | 
|  | // See comment in MessagePumpForUI::ScheduleWork() for this error recovery. | 
|  | InterlockedExchange(&work_state_, READY);  // Clarify that we didn't succeed. | 
|  | state_->schedule_work_error_count++; | 
|  | state_->last_schedule_work_error_time = Time::Now(); | 
|  | } | 
|  |  | 
|  | void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { | 
|  | // We know that we can't be blocked right now since this method can only be | 
|  | // called on the same thread as Run, so we only need to update our record of | 
|  | // how long to sleep when we do sleep. | 
|  | delayed_work_time_ = delayed_work_time; | 
|  | } | 
|  |  | 
|  | void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle, | 
|  | IOHandler* handler) { | 
|  | HANDLE port = CreateIoCompletionPort(file_handle, port_.Get(), | 
|  | reinterpret_cast<ULONG_PTR>(handler), 1); | 
|  | DPCHECK(port); | 
|  | } | 
|  |  | 
|  | bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle, | 
|  | IOHandler* handler) { | 
|  | JOBOBJECT_ASSOCIATE_COMPLETION_PORT info; | 
|  | info.CompletionKey = handler; | 
|  | info.CompletionPort = port_.Get(); | 
|  | return SetInformationJobObject(job_handle, | 
|  | JobObjectAssociateCompletionPortInformation, | 
|  | &info, | 
|  | sizeof(info)) != FALSE; | 
|  | } | 
|  |  | 
|  | //----------------------------------------------------------------------------- | 
|  | // MessagePumpForIO private: | 
|  |  | 
|  | void MessagePumpForIO::DoRunLoop() { | 
|  | for (;;) { | 
|  | // If we do any work, we may create more messages etc., and more work may | 
|  | // possibly be waiting in another task group.  When we (for example) | 
|  | // WaitForIOCompletion(), there is a good chance there are still more | 
|  | // messages waiting.  On the other hand, when any of these methods return | 
|  | // having done no work, then it is pretty unlikely that calling them | 
|  | // again quickly will find any work to do.  Finally, if they all say they | 
|  | // had no work, then it is a good time to consider sleeping (waiting) for | 
|  | // more work. | 
|  |  | 
|  | bool more_work_is_plausible = state_->delegate->DoWork(); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | more_work_is_plausible |= WaitForIOCompletion(0, nullptr); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | more_work_is_plausible |= | 
|  | state_->delegate->DoDelayedWork(&delayed_work_time_); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | if (more_work_is_plausible) | 
|  | continue; | 
|  |  | 
|  | more_work_is_plausible = state_->delegate->DoIdleWork(); | 
|  | if (state_->should_quit) | 
|  | break; | 
|  |  | 
|  | if (more_work_is_plausible) | 
|  | continue; | 
|  |  | 
|  | WaitForWork();  // Wait (sleep) until we have work to do again. | 
|  | } | 
|  | } | 
|  |  | 
|  | // Wait until IO completes, up to the time needed by the timer manager to fire | 
|  | // the next set of timers. | 
|  | void MessagePumpForIO::WaitForWork() { | 
|  | // We do not support nested IO message loops. This is to avoid messy | 
|  | // recursion problems. | 
|  | DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!"; | 
|  |  | 
|  | int timeout = GetCurrentDelay(); | 
|  | if (timeout < 0)  // Negative value means no timers waiting. | 
|  | timeout = INFINITE; | 
|  |  | 
|  | WaitForIOCompletion(timeout, nullptr); | 
|  | } | 
|  |  | 
|  | bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) { | 
|  | IOItem item; | 
|  | if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) { | 
|  | // We have to ask the system for another IO completion. | 
|  | if (!GetIOItem(timeout, &item)) | 
|  | return false; | 
|  |  | 
|  | if (ProcessInternalIOItem(item)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (filter && item.handler != filter) { | 
|  | // Save this item for later | 
|  | completed_io_.push_back(item); | 
|  | } else { | 
|  | item.handler->OnIOCompleted(item.context, item.bytes_transfered, | 
|  | item.error); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Asks the OS for another IO completion result. | 
|  | bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) { | 
|  | memset(item, 0, sizeof(*item)); | 
|  | ULONG_PTR key = reinterpret_cast<ULONG_PTR>(nullptr); | 
|  | OVERLAPPED* overlapped = nullptr; | 
|  | if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key, | 
|  | &overlapped, timeout)) { | 
|  | if (!overlapped) | 
|  | return false;  // Nothing in the queue. | 
|  | item->error = GetLastError(); | 
|  | item->bytes_transfered = 0; | 
|  | } | 
|  |  | 
|  | item->handler = reinterpret_cast<IOHandler*>(key); | 
|  | item->context = reinterpret_cast<IOContext*>(overlapped); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) { | 
|  | if (reinterpret_cast<void*>(this) == reinterpret_cast<void*>(item.context) && | 
|  | reinterpret_cast<void*>(this) == reinterpret_cast<void*>(item.handler)) { | 
|  | // This is our internal completion. | 
|  | DCHECK(!item.bytes_transfered); | 
|  | InterlockedExchange(&work_state_, READY); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns a completion item that was previously received. | 
|  | bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) { | 
|  | DCHECK(!completed_io_.empty()); | 
|  | for (std::list<IOItem>::iterator it = completed_io_.begin(); | 
|  | it != completed_io_.end(); ++it) { | 
|  | if (!filter || it->handler == filter) { | 
|  | *item = *it; | 
|  | completed_io_.erase(it); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | }  // namespace base |