| // Copyright 2017 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "base/profiler/native_stack_sampler.h" | 
 |  | 
 | #include <dlfcn.h> | 
 | #include <libkern/OSByteOrder.h> | 
 | #include <libunwind.h> | 
 | #include <mach-o/compact_unwind_encoding.h> | 
 | #include <mach-o/getsect.h> | 
 | #include <mach-o/swap.h> | 
 | #include <mach/kern_return.h> | 
 | #include <mach/mach.h> | 
 | #include <mach/thread_act.h> | 
 | #include <mach/vm_map.h> | 
 | #include <pthread.h> | 
 | #include <sys/resource.h> | 
 | #include <sys/syslimits.h> | 
 |  | 
 | #include <algorithm> | 
 | #include <map> | 
 | #include <memory> | 
 |  | 
 | #include "base/logging.h" | 
 | #include "base/mac/mach_logging.h" | 
 | #include "base/macros.h" | 
 | #include "base/memory/ptr_util.h" | 
 | #include "base/strings/string_number_conversions.h" | 
 |  | 
 | extern "C" { | 
 | void _sigtramp(int, int, struct sigset*); | 
 | } | 
 |  | 
 | namespace base { | 
 |  | 
 | namespace { | 
 |  | 
 | // Maps a module's address range (half-open) in memory to an index in a separate | 
 | // data structure. | 
 | struct ModuleIndex { | 
 |   ModuleIndex(uintptr_t start, uintptr_t end, size_t idx) | 
 |       : base_address(start), end_address(end), index(idx){}; | 
 |   // Base address of the represented module. | 
 |   uintptr_t base_address; | 
 |   // First address off the end of the represented module. | 
 |   uintptr_t end_address; | 
 |   // An index to the represented module in a separate container. | 
 |   size_t index; | 
 | }; | 
 |  | 
 | // Module identifiers --------------------------------------------------------- | 
 |  | 
 | // Returns the unique build ID for a module loaded at |module_addr|. Returns the | 
 | // empty string if the function fails to get the build ID. | 
 | // | 
 | // Build IDs are created by the concatenation of the module's GUID (Windows) / | 
 | // UUID (Mac) and an "age" field that indicates how many times that GUID/UUID | 
 | // has been reused. In Windows binaries, the "age" field is present in the | 
 | // module header, but on the Mac, UUIDs are never reused and so the "age" value | 
 | // appended to the UUID is always 0. | 
 | std::string GetUniqueId(const void* module_addr) { | 
 |   const mach_header_64* mach_header = | 
 |       reinterpret_cast<const mach_header_64*>(module_addr); | 
 |   DCHECK_EQ(MH_MAGIC_64, mach_header->magic); | 
 |  | 
 |   size_t offset = sizeof(mach_header_64); | 
 |   size_t offset_limit = sizeof(mach_header_64) + mach_header->sizeofcmds; | 
 |   for (uint32_t i = 0; (i < mach_header->ncmds) && | 
 |                        (offset + sizeof(load_command) < offset_limit); | 
 |        ++i) { | 
 |     const load_command* current_cmd = reinterpret_cast<const load_command*>( | 
 |         reinterpret_cast<const uint8_t*>(mach_header) + offset); | 
 |  | 
 |     if (offset + current_cmd->cmdsize > offset_limit) { | 
 |       // This command runs off the end of the command list. This is malformed. | 
 |       return std::string(); | 
 |     } | 
 |  | 
 |     if (current_cmd->cmd == LC_UUID) { | 
 |       if (current_cmd->cmdsize < sizeof(uuid_command)) { | 
 |         // This "UUID command" is too small. This is malformed. | 
 |         return std::string(); | 
 |       } | 
 |  | 
 |       const uuid_command* uuid_cmd = | 
 |           reinterpret_cast<const uuid_command*>(current_cmd); | 
 |       static_assert(sizeof(uuid_cmd->uuid) == sizeof(uuid_t), | 
 |                     "UUID field of UUID command should be 16 bytes."); | 
 |       // The ID is comprised of the UUID concatenated with the Mac's "age" value | 
 |       // which is always 0. | 
 |       return HexEncode(&uuid_cmd->uuid, sizeof(uuid_cmd->uuid)) + "0"; | 
 |     } | 
 |     offset += current_cmd->cmdsize; | 
 |   } | 
 |   return std::string(); | 
 | } | 
 |  | 
 | // Returns the size of the _TEXT segment of the module loaded at |module_addr|. | 
 | size_t GetModuleTextSize(const void* module_addr) { | 
 |   const mach_header_64* mach_header = | 
 |       reinterpret_cast<const mach_header_64*>(module_addr); | 
 |   DCHECK_EQ(MH_MAGIC_64, mach_header->magic); | 
 |  | 
 |   unsigned long module_size; | 
 |   getsegmentdata(mach_header, SEG_TEXT, &module_size); | 
 |  | 
 |   return module_size; | 
 | } | 
 |  | 
 | // Gets the index for the Module containing |instruction_pointer| in | 
 | // |modules|, adding it if it's not already present. Returns | 
 | // StackSamplingProfiler::Frame::kUnknownModuleIndex if no Module can be | 
 | // determined for |module|. | 
 | size_t GetModuleIndex(const uintptr_t instruction_pointer, | 
 |                       std::vector<StackSamplingProfiler::Module>* modules, | 
 |                       std::vector<ModuleIndex>* profile_module_index) { | 
 |   // Check if |instruction_pointer| is in the address range of a module we've | 
 |   // already seen. | 
 |   auto module_index = | 
 |       std::find_if(profile_module_index->begin(), profile_module_index->end(), | 
 |                    [instruction_pointer](const ModuleIndex& index) { | 
 |                      return instruction_pointer >= index.base_address && | 
 |                             instruction_pointer < index.end_address; | 
 |                    }); | 
 |   if (module_index != profile_module_index->end()) { | 
 |     return module_index->index; | 
 |   } | 
 |   Dl_info inf; | 
 |   if (!dladdr(reinterpret_cast<const void*>(instruction_pointer), &inf)) | 
 |     return StackSamplingProfiler::Frame::kUnknownModuleIndex; | 
 |  | 
 |   StackSamplingProfiler::Module module( | 
 |       reinterpret_cast<uintptr_t>(inf.dli_fbase), GetUniqueId(inf.dli_fbase), | 
 |       base::FilePath(inf.dli_fname)); | 
 |   modules->push_back(module); | 
 |  | 
 |   uintptr_t base_module_address = reinterpret_cast<uintptr_t>(inf.dli_fbase); | 
 |   size_t index = modules->size() - 1; | 
 |   profile_module_index->emplace_back( | 
 |       base_module_address, | 
 |       base_module_address + GetModuleTextSize(inf.dli_fbase), index); | 
 |   return index; | 
 | } | 
 |  | 
 | // Stack walking -------------------------------------------------------------- | 
 |  | 
 | // Fills |state| with |target_thread|'s context. | 
 | // | 
 | // Note that this is called while a thread is suspended. Make very very sure | 
 | // that no shared resources (e.g. memory allocators) are used for the duration | 
 | // of this function. | 
 | bool GetThreadState(thread_act_t target_thread, x86_thread_state64_t* state) { | 
 |   mach_msg_type_number_t count = | 
 |       static_cast<mach_msg_type_number_t>(x86_THREAD_STATE64_COUNT); | 
 |   return thread_get_state(target_thread, x86_THREAD_STATE64, | 
 |                           reinterpret_cast<thread_state_t>(state), | 
 |                           &count) == KERN_SUCCESS; | 
 | } | 
 |  | 
 | // If the value at |pointer| points to the original stack, rewrites it to point | 
 | // to the corresponding location in the copied stack. | 
 | // | 
 | // Note that this is called while a thread is suspended. Make very very sure | 
 | // that no shared resources (e.g. memory allocators) are used for the duration | 
 | // of this function. | 
 | uintptr_t RewritePointerIfInOriginalStack( | 
 |     const uintptr_t* original_stack_bottom, | 
 |     const uintptr_t* original_stack_top, | 
 |     uintptr_t* stack_copy_bottom, | 
 |     uintptr_t pointer) { | 
 |   uintptr_t original_stack_bottom_int = | 
 |       reinterpret_cast<uintptr_t>(original_stack_bottom); | 
 |   uintptr_t original_stack_top_int = | 
 |       reinterpret_cast<uintptr_t>(original_stack_top); | 
 |   uintptr_t stack_copy_bottom_int = | 
 |       reinterpret_cast<uintptr_t>(stack_copy_bottom); | 
 |  | 
 |   if ((pointer < original_stack_bottom_int) || | 
 |       (pointer >= original_stack_top_int)) { | 
 |     return pointer; | 
 |   } | 
 |  | 
 |   return stack_copy_bottom_int + (pointer - original_stack_bottom_int); | 
 | } | 
 |  | 
 | // Copies the stack to a buffer while rewriting possible pointers to locations | 
 | // within the stack to point to the corresponding locations in the copy. This is | 
 | // necessary to handle stack frames with dynamic stack allocation, where a | 
 | // pointer to the beginning of the dynamic allocation area is stored on the | 
 | // stack and/or in a non-volatile register. | 
 | // | 
 | // Eager rewriting of anything that looks like a pointer to the stack, as done | 
 | // in this function, does not adversely affect the stack unwinding. The only | 
 | // other values on the stack the unwinding depends on are return addresses, | 
 | // which should not point within the stack memory. The rewriting is guaranteed | 
 | // to catch all pointers because the stacks are guaranteed by the ABI to be | 
 | // sizeof(void*) aligned. | 
 | // | 
 | // Note that this is called while a thread is suspended. Make very very sure | 
 | // that no shared resources (e.g. memory allocators) are used for the duration | 
 | // of this function. | 
 | void CopyStackAndRewritePointers(uintptr_t* stack_copy_bottom, | 
 |                                  const uintptr_t* original_stack_bottom, | 
 |                                  const uintptr_t* original_stack_top, | 
 |                                  x86_thread_state64_t* thread_state) | 
 |     NO_SANITIZE("address") { | 
 |   size_t count = original_stack_top - original_stack_bottom; | 
 |   for (size_t pos = 0; pos < count; ++pos) { | 
 |     stack_copy_bottom[pos] = RewritePointerIfInOriginalStack( | 
 |         original_stack_bottom, original_stack_top, stack_copy_bottom, | 
 |         original_stack_bottom[pos]); | 
 |   } | 
 |  | 
 |   uint64_t* rewrite_registers[] = {&thread_state->__rbx, &thread_state->__rbp, | 
 |                                    &thread_state->__rsp, &thread_state->__r12, | 
 |                                    &thread_state->__r13, &thread_state->__r14, | 
 |                                    &thread_state->__r15}; | 
 |   for (auto* reg : rewrite_registers) { | 
 |     *reg = RewritePointerIfInOriginalStack( | 
 |         original_stack_bottom, original_stack_top, stack_copy_bottom, *reg); | 
 |   } | 
 | } | 
 |  | 
 | // Extracts the "frame offset" for a given frame from the compact unwind info. | 
 | // A frame offset indicates the location of saved non-volatile registers in | 
 | // relation to the frame pointer. See |mach-o/compact_unwind_encoding.h| for | 
 | // details. | 
 | uint32_t GetFrameOffset(int compact_unwind_info) { | 
 |   // The frame offset lives in bytes 16-23. This shifts it down by the number of | 
 |   // leading zeroes in the mask, then masks with (1 << number of one bits in the | 
 |   // mask) - 1, turning 0x00FF0000 into 0x000000FF. Adapted from |EXTRACT_BITS| | 
 |   // in libunwind's CompactUnwinder.hpp. | 
 |   return ( | 
 |       (compact_unwind_info >> __builtin_ctz(UNWIND_X86_64_RBP_FRAME_OFFSET)) & | 
 |       (((1 << __builtin_popcount(UNWIND_X86_64_RBP_FRAME_OFFSET))) - 1)); | 
 | } | 
 |  | 
 | // True if the unwind from |leaf_frame_rip| may trigger a crash bug in | 
 | // unw_init_local. If so, the stack walk should be aborted at the leaf frame. | 
 | bool MayTriggerUnwInitLocalCrash(uint64_t leaf_frame_rip) { | 
 |   // The issue here is a bug in unw_init_local that, in some unwinds, results in | 
 |   // attempts to access memory at the address immediately following the address | 
 |   // range of the library. When the library is the last of the mapped libraries | 
 |   // that address is in a different memory region. Starting with 10.13.4 beta | 
 |   // releases it appears that this region is sometimes either unmapped or mapped | 
 |   // without read access, resulting in crashes on the attempted access. It's not | 
 |   // clear what circumstances result in this situation; attempts to reproduce on | 
 |   // a 10.13.4 beta did not trigger the issue. | 
 |   // | 
 |   // The workaround is to check if the memory address that would be accessed is | 
 |   // readable, and if not, abort the stack walk before calling unw_init_local. | 
 |   // As of 2018/03/19 about 0.1% of non-idle stacks on the UI and GPU main | 
 |   // threads have a leaf frame in the last library. Since the issue appears to | 
 |   // only occur some of the time it's expected that the quantity of lost samples | 
 |   // will be lower than 0.1%, possibly significantly lower. | 
 |   // | 
 |   // TODO(lgrey): Add references above to LLVM/Radar bugs on unw_init_local once | 
 |   // filed. | 
 |   Dl_info info; | 
 |   if (dladdr(reinterpret_cast<const void*>(leaf_frame_rip), &info) == 0) | 
 |     return false; | 
 |   uint64_t unused; | 
 |   vm_size_t size = sizeof(unused); | 
 |   return vm_read_overwrite(current_task(), | 
 |                            reinterpret_cast<vm_address_t>(info.dli_fbase) + | 
 |                                GetModuleTextSize(info.dli_fbase), | 
 |                            sizeof(unused), | 
 |                            reinterpret_cast<vm_address_t>(&unused), &size) != 0; | 
 | } | 
 |  | 
 | // Check if the cursor contains a valid-looking frame pointer for frame pointer | 
 | // unwinds. If the stack frame has a frame pointer, stepping the cursor will | 
 | // involve indexing memory access off of that pointer. In that case, | 
 | // sanity-check the frame pointer register to ensure it's within bounds. | 
 | // | 
 | // Additionally, the stack frame might be in a prologue or epilogue, which can | 
 | // cause a crash when the unwinder attempts to access non-volatile registers | 
 | // that have not yet been pushed, or have already been popped from the | 
 | // stack. libwunwind will try to restore those registers using an offset from | 
 | // the frame pointer. However, since we copy the stack from RSP up, any | 
 | // locations below the stack pointer are before the beginning of the stack | 
 | // buffer. Account for this by checking that the expected location is above the | 
 | // stack pointer, and rejecting the sample if it isn't. | 
 | bool HasValidRbp(unw_cursor_t* unwind_cursor, uintptr_t stack_top) { | 
 |   unw_proc_info_t proc_info; | 
 |   unw_get_proc_info(unwind_cursor, &proc_info); | 
 |   if ((proc_info.format & UNWIND_X86_64_MODE_MASK) == | 
 |       UNWIND_X86_64_MODE_RBP_FRAME) { | 
 |     unw_word_t rsp, rbp; | 
 |     unw_get_reg(unwind_cursor, UNW_X86_64_RSP, &rsp); | 
 |     unw_get_reg(unwind_cursor, UNW_X86_64_RBP, &rbp); | 
 |     uint32_t offset = GetFrameOffset(proc_info.format) * sizeof(unw_word_t); | 
 |     if (rbp < offset || (rbp - offset) < rsp || rbp > stack_top) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | // Walks the stack represented by |unwind_context|, calling back to the provided | 
 | // lambda for each frame. Returns false if an error occurred, otherwise returns | 
 | // true. | 
 | template <typename StackFrameCallback, typename ContinueUnwindPredicate> | 
 | bool WalkStackFromContext( | 
 |     unw_context_t* unwind_context, | 
 |     size_t* frame_count, | 
 |     std::vector<StackSamplingProfiler::Module>* current_modules, | 
 |     std::vector<ModuleIndex>* profile_module_index, | 
 |     const StackFrameCallback& callback, | 
 |     const ContinueUnwindPredicate& continue_unwind) { | 
 |   unw_cursor_t unwind_cursor; | 
 |   unw_init_local(&unwind_cursor, unwind_context); | 
 |  | 
 |   int step_result; | 
 |   unw_word_t rip; | 
 |   do { | 
 |     ++(*frame_count); | 
 |     unw_get_reg(&unwind_cursor, UNW_REG_IP, &rip); | 
 |  | 
 |     // Ensure IP is in a module. | 
 |     // | 
 |     // Frameless unwinding (non-DWARF) works by fetching the function's | 
 |     // stack size from the unwind encoding or stack, and adding it to the | 
 |     // stack pointer to determine the function's return address. | 
 |     // | 
 |     // If we're in a function prologue or epilogue, the actual stack size | 
 |     // may be smaller than it will be during the normal course of execution. | 
 |     // When libunwind adds the expected stack size, it will look for the | 
 |     // return address in the wrong place. This check should ensure that we | 
 |     // bail before trying to deref a bad IP obtained this way in the previous | 
 |     // frame. | 
 |     size_t module_index = | 
 |         GetModuleIndex(rip, current_modules, profile_module_index); | 
 |     if (module_index == StackSamplingProfiler::Frame::kUnknownModuleIndex) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     callback(static_cast<uintptr_t>(rip), module_index); | 
 |  | 
 |     if (!continue_unwind(&unwind_cursor)) | 
 |       return false; | 
 |  | 
 |     step_result = unw_step(&unwind_cursor); | 
 |   } while (step_result > 0); | 
 |  | 
 |   if (step_result != 0) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | const char* LibSystemKernelName() { | 
 |   static char path[PATH_MAX]; | 
 |   static char* name = nullptr; | 
 |   if (name) | 
 |     return name; | 
 |  | 
 |   Dl_info info; | 
 |   dladdr(reinterpret_cast<void*>(_exit), &info); | 
 |   strlcpy(path, info.dli_fname, PATH_MAX); | 
 |   name = path; | 
 |  | 
 | #if !defined(ADDRESS_SANITIZER) | 
 |   DCHECK_EQ(std::string(name), | 
 |             std::string("/usr/lib/system/libsystem_kernel.dylib")); | 
 | #endif | 
 |   return name; | 
 | } | 
 |  | 
 | void GetSigtrampRange(uintptr_t* start, uintptr_t* end) { | 
 |   uintptr_t address = reinterpret_cast<uintptr_t>(&_sigtramp); | 
 |   DCHECK(address != 0); | 
 |  | 
 |   *start = address; | 
 |  | 
 |   unw_context_t context; | 
 |   unw_cursor_t cursor; | 
 |   unw_proc_info_t info; | 
 |  | 
 |   unw_getcontext(&context); | 
 |   // Set the context's RIP to the beginning of sigtramp, | 
 |   // +1 byte to work around a bug in 10.11 (crbug.com/764468). | 
 |   context.data[16] = address + 1; | 
 |   unw_init_local(&cursor, &context); | 
 |   unw_get_proc_info(&cursor, &info); | 
 |  | 
 |   DCHECK_EQ(info.start_ip, address); | 
 |   *end = info.end_ip; | 
 | } | 
 |  | 
 | // Walks the stack represented by |thread_state|, calling back to the provided | 
 | // lambda for each frame. | 
 | template <typename StackFrameCallback, typename ContinueUnwindPredicate> | 
 | void WalkStack(const x86_thread_state64_t& thread_state, | 
 |                std::vector<StackSamplingProfiler::Module>* current_modules, | 
 |                std::vector<ModuleIndex>* profile_module_index, | 
 |                const StackFrameCallback& callback, | 
 |                const ContinueUnwindPredicate& continue_unwind) { | 
 |   size_t frame_count = 0; | 
 |   // This uses libunwind to walk the stack. libunwind is designed to be used for | 
 |   // a thread to walk its own stack. This creates two problems. | 
 |  | 
 |   // Problem 1: There is no official way to create a unw_context other than to | 
 |   // create it from the current state of the current thread's stack. To get | 
 |   // around this, forge a context. A unw_context is just a copy of the 16 main | 
 |   // registers followed by the instruction pointer, nothing more. | 
 |   // Coincidentally, the first 17 items of the x86_thread_state64_t type are | 
 |   // exactly those registers in exactly the same order, so just bulk copy them | 
 |   // over. | 
 |   unw_context_t unwind_context; | 
 |   memcpy(&unwind_context, &thread_state, sizeof(uintptr_t) * 17); | 
 |   bool result = | 
 |       WalkStackFromContext(&unwind_context, &frame_count, current_modules, | 
 |                            profile_module_index, callback, continue_unwind); | 
 |  | 
 |   if (!result) | 
 |     return; | 
 |  | 
 |   if (frame_count == 1) { | 
 |     // Problem 2: Because libunwind is designed to be triggered by user code on | 
 |     // their own thread, if it hits a library that has no unwind info for the | 
 |     // function that is being executed, it just stops. This isn't a problem in | 
 |     // the normal case, but in this case, it's quite possible that the stack | 
 |     // being walked is stopped in a function that bridges to the kernel and thus | 
 |     // is missing the unwind info. | 
 |  | 
 |     // For now, just unwind the single case where the thread is stopped in a | 
 |     // function in libsystem_kernel. | 
 |     uint64_t& rsp = unwind_context.data[7]; | 
 |     uint64_t& rip = unwind_context.data[16]; | 
 |     Dl_info info; | 
 |     if (dladdr(reinterpret_cast<void*>(rip), &info) != 0 && | 
 |       strcmp(info.dli_fname, LibSystemKernelName()) == 0) { | 
 |       rip = *reinterpret_cast<uint64_t*>(rsp); | 
 |       rsp += 8; | 
 |       WalkStackFromContext(&unwind_context, &frame_count, current_modules, | 
 |                            profile_module_index, callback, continue_unwind); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // ScopedSuspendThread -------------------------------------------------------- | 
 |  | 
 | // Suspends a thread for the lifetime of the object. | 
 | class ScopedSuspendThread { | 
 |  public: | 
 |   explicit ScopedSuspendThread(mach_port_t thread_port) | 
 |       : thread_port_(thread_suspend(thread_port) == KERN_SUCCESS | 
 |                          ? thread_port | 
 |                          : MACH_PORT_NULL) {} | 
 |  | 
 |   ~ScopedSuspendThread() { | 
 |     if (!was_successful()) | 
 |       return; | 
 |  | 
 |     kern_return_t kr = thread_resume(thread_port_); | 
 |     MACH_CHECK(kr == KERN_SUCCESS, kr) << "thread_resume"; | 
 |   } | 
 |  | 
 |   bool was_successful() const { return thread_port_ != MACH_PORT_NULL; } | 
 |  | 
 |  private: | 
 |   mach_port_t thread_port_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(ScopedSuspendThread); | 
 | }; | 
 |  | 
 | // NativeStackSamplerMac ------------------------------------------------------ | 
 |  | 
 | class NativeStackSamplerMac : public NativeStackSampler { | 
 |  public: | 
 |   NativeStackSamplerMac(mach_port_t thread_port, | 
 |                         AnnotateCallback annotator, | 
 |                         NativeStackSamplerTestDelegate* test_delegate); | 
 |   ~NativeStackSamplerMac() override; | 
 |  | 
 |   // StackSamplingProfiler::NativeStackSampler: | 
 |   void ProfileRecordingStarting( | 
 |       std::vector<StackSamplingProfiler::Module>* modules) override; | 
 |   void RecordStackSample(StackBuffer* stack_buffer, | 
 |                          StackSamplingProfiler::Sample* sample) override; | 
 |   void ProfileRecordingStopped(StackBuffer* stack_buffer) override; | 
 |  | 
 |  private: | 
 |   // Suspends the thread with |thread_port_|, copies its stack and resumes the | 
 |   // thread, then records the stack frames and associated modules into |sample|. | 
 |   void SuspendThreadAndRecordStack(StackBuffer* stack_buffer, | 
 |                                    StackSamplingProfiler::Sample* sample); | 
 |  | 
 |   // Weak reference: Mach port for thread being profiled. | 
 |   mach_port_t thread_port_; | 
 |  | 
 |   const AnnotateCallback annotator_; | 
 |  | 
 |   NativeStackSamplerTestDelegate* const test_delegate_; | 
 |  | 
 |   // The stack base address corresponding to |thread_handle_|. | 
 |   const void* const thread_stack_base_address_; | 
 |  | 
 |   // Weak. Points to the modules associated with the profile being recorded | 
 |   // between ProfileRecordingStarting() and ProfileRecordingStopped(). | 
 |   std::vector<StackSamplingProfiler::Module>* current_modules_ = nullptr; | 
 |  | 
 |   // Maps a module's address range to the corresponding Module's index within | 
 |   // current_modules_. | 
 |   std::vector<ModuleIndex> profile_module_index_; | 
 |  | 
 |   // The address range of |_sigtramp|, the signal trampoline function. | 
 |   uintptr_t sigtramp_start_; | 
 |   uintptr_t sigtramp_end_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(NativeStackSamplerMac); | 
 | }; | 
 |  | 
 | NativeStackSamplerMac::NativeStackSamplerMac( | 
 |     mach_port_t thread_port, | 
 |     AnnotateCallback annotator, | 
 |     NativeStackSamplerTestDelegate* test_delegate) | 
 |     : thread_port_(thread_port), | 
 |       annotator_(annotator), | 
 |       test_delegate_(test_delegate), | 
 |       thread_stack_base_address_( | 
 |           pthread_get_stackaddr_np(pthread_from_mach_thread_np(thread_port))) { | 
 |   DCHECK(annotator_); | 
 |  | 
 |   GetSigtrampRange(&sigtramp_start_, &sigtramp_end_); | 
 |   // This class suspends threads, and those threads might be suspended in dyld. | 
 |   // Therefore, for all the system functions that might be linked in dynamically | 
 |   // that are used while threads are suspended, make calls to them to make sure | 
 |   // that they are linked up. | 
 |   x86_thread_state64_t thread_state; | 
 |   GetThreadState(thread_port_, &thread_state); | 
 | } | 
 |  | 
 | NativeStackSamplerMac::~NativeStackSamplerMac() {} | 
 |  | 
 | void NativeStackSamplerMac::ProfileRecordingStarting( | 
 |     std::vector<StackSamplingProfiler::Module>* modules) { | 
 |   current_modules_ = modules; | 
 |   profile_module_index_.clear(); | 
 | } | 
 |  | 
 | void NativeStackSamplerMac::RecordStackSample( | 
 |     StackBuffer* stack_buffer, | 
 |     StackSamplingProfiler::Sample* sample) { | 
 |   DCHECK(current_modules_); | 
 |  | 
 |   SuspendThreadAndRecordStack(stack_buffer, sample); | 
 | } | 
 |  | 
 | void NativeStackSamplerMac::ProfileRecordingStopped(StackBuffer* stack_buffer) { | 
 |   current_modules_ = nullptr; | 
 | } | 
 |  | 
 | void NativeStackSamplerMac::SuspendThreadAndRecordStack( | 
 |     StackBuffer* stack_buffer, | 
 |     StackSamplingProfiler::Sample* sample) { | 
 |   x86_thread_state64_t thread_state; | 
 |  | 
 |   // Copy the stack. | 
 |  | 
 |   uintptr_t new_stack_top = 0; | 
 |   { | 
 |     // IMPORTANT NOTE: Do not do ANYTHING in this in this scope that might | 
 |     // allocate memory, including indirectly via use of DCHECK/CHECK or other | 
 |     // logging statements. Otherwise this code can deadlock on heap locks in the | 
 |     // default heap acquired by the target thread before it was suspended. | 
 |     ScopedSuspendThread suspend_thread(thread_port_); | 
 |     if (!suspend_thread.was_successful()) | 
 |       return; | 
 |  | 
 |     if (!GetThreadState(thread_port_, &thread_state)) | 
 |       return; | 
 |     uintptr_t stack_top = | 
 |         reinterpret_cast<uintptr_t>(thread_stack_base_address_); | 
 |     uintptr_t stack_bottom = thread_state.__rsp; | 
 |     if (stack_bottom >= stack_top) | 
 |       return; | 
 |     uintptr_t stack_size = stack_top - stack_bottom; | 
 |  | 
 |     if (stack_size > stack_buffer->size()) | 
 |       return; | 
 |  | 
 |     (*annotator_)(sample); | 
 |  | 
 |     CopyStackAndRewritePointers( | 
 |         reinterpret_cast<uintptr_t*>(stack_buffer->buffer()), | 
 |         reinterpret_cast<uintptr_t*>(stack_bottom), | 
 |         reinterpret_cast<uintptr_t*>(stack_top), &thread_state); | 
 |  | 
 |     new_stack_top = | 
 |         reinterpret_cast<uintptr_t>(stack_buffer->buffer()) + stack_size; | 
 |   }  // ScopedSuspendThread | 
 |  | 
 |   if (test_delegate_) | 
 |     test_delegate_->OnPreStackWalk(); | 
 |  | 
 |   // Walk the stack and record it. | 
 |  | 
 |   // Reserve enough memory for most stacks, to avoid repeated allocations. | 
 |   // Approximately 99.9% of recorded stacks are 128 frames or fewer. | 
 |   sample->frames.reserve(128); | 
 |  | 
 |   auto* current_modules = current_modules_; | 
 |   auto* profile_module_index = &profile_module_index_; | 
 |  | 
 |   // Avoid an out-of-bounds read bug in libunwind that can crash us in some | 
 |   // circumstances. If we're subject to that case, just record the first frame | 
 |   // and bail. See MayTriggerUnwInitLocalCrash for details. | 
 |   uintptr_t rip = thread_state.__rip; | 
 |   if (MayTriggerUnwInitLocalCrash(rip)) { | 
 |     sample->frames.emplace_back( | 
 |         rip, GetModuleIndex(rip, current_modules, profile_module_index)); | 
 |     return; | 
 |   } | 
 |  | 
 |   const auto continue_predicate = [this, | 
 |                                    new_stack_top](unw_cursor_t* unwind_cursor) { | 
 |     // Don't continue if we're in sigtramp. Unwinding this from another thread | 
 |     // is very fragile. It's a complex DWARF unwind that needs to restore the | 
 |     // entire thread context which was saved by the kernel when the interrupt | 
 |     // occurred. | 
 |     unw_word_t rip; | 
 |     unw_get_reg(unwind_cursor, UNW_REG_IP, &rip); | 
 |     if (rip >= sigtramp_start_ && rip < sigtramp_end_) | 
 |       return false; | 
 |  | 
 |     // Don't continue if rbp appears to be invalid (due to a previous bad | 
 |     // unwind). | 
 |     return HasValidRbp(unwind_cursor, new_stack_top); | 
 |   }; | 
 |  | 
 |   WalkStack(thread_state, current_modules, profile_module_index, | 
 |             [sample, current_modules, profile_module_index]( | 
 |                 uintptr_t frame_ip, size_t module_index) { | 
 |               sample->frames.emplace_back(frame_ip, module_index); | 
 |             }, | 
 |             continue_predicate); | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | std::unique_ptr<NativeStackSampler> NativeStackSampler::Create( | 
 |     PlatformThreadId thread_id, | 
 |     AnnotateCallback annotator, | 
 |     NativeStackSamplerTestDelegate* test_delegate) { | 
 |   return std::make_unique<NativeStackSamplerMac>(thread_id, annotator, | 
 |                                                  test_delegate); | 
 | } | 
 |  | 
 | size_t NativeStackSampler::GetStackBufferSize() { | 
 |   // In platform_thread_mac's GetDefaultThreadStackSize(), RLIMIT_STACK is used | 
 |   // for all stacks, not just the main thread's, so it is good for use here. | 
 |   struct rlimit stack_rlimit; | 
 |   if (getrlimit(RLIMIT_STACK, &stack_rlimit) == 0 && | 
 |       stack_rlimit.rlim_cur != RLIM_INFINITY) { | 
 |     return stack_rlimit.rlim_cur; | 
 |   } | 
 |  | 
 |   // If getrlimit somehow fails, return the default macOS main thread stack size | 
 |   // of 8 MB (DFLSSIZ in <i386/vmparam.h>) with extra wiggle room. | 
 |   return 12 * 1024 * 1024; | 
 | } | 
 |  | 
 | }  // namespace base |