| // Copyright (c) 2011 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | // The original file was copied from sqlite, and was in the public domain. | 
 |  | 
 | /* | 
 |  * This code implements the MD5 message-digest algorithm. | 
 |  * The algorithm is due to Ron Rivest.  This code was | 
 |  * written by Colin Plumb in 1993, no copyright is claimed. | 
 |  * This code is in the public domain; do with it what you wish. | 
 |  * | 
 |  * Equivalent code is available from RSA Data Security, Inc. | 
 |  * This code has been tested against that, and is equivalent, | 
 |  * except that you don't need to include two pages of legalese | 
 |  * with every copy. | 
 |  * | 
 |  * To compute the message digest of a chunk of bytes, declare an | 
 |  * MD5Context structure, pass it to MD5Init, call MD5Update as | 
 |  * needed on buffers full of bytes, and then call MD5Final, which | 
 |  * will fill a supplied 16-byte array with the digest. | 
 |  */ | 
 |  | 
 | #include "base/md5.h" | 
 |  | 
 | #include <stddef.h> | 
 |  | 
 | namespace { | 
 |  | 
 | struct Context { | 
 |   uint32_t buf[4]; | 
 |   uint32_t bits[2]; | 
 |   uint8_t in[64]; | 
 | }; | 
 |  | 
 | /* | 
 |  * Note: this code is harmless on little-endian machines. | 
 |  */ | 
 | void byteReverse(uint8_t* buf, unsigned longs) { | 
 |   do { | 
 |     uint32_t temp = | 
 |         static_cast<uint32_t>(static_cast<unsigned>(buf[3]) << 8 | buf[2]) | 
 |             << 16 | | 
 |         (static_cast<unsigned>(buf[1]) << 8 | buf[0]); | 
 |     *reinterpret_cast<uint32_t*>(buf) = temp; | 
 |     buf += 4; | 
 |   } while (--longs); | 
 | } | 
 |  | 
 | /* The four core functions - F1 is optimized somewhat */ | 
 |  | 
 | /* #define F1(x, y, z) (x & y | ~x & z) */ | 
 | #define F1(x, y, z) (z ^ (x & (y ^ z))) | 
 | #define F2(x, y, z) F1(z, x, y) | 
 | #define F3(x, y, z) (x ^ y ^ z) | 
 | #define F4(x, y, z) (y ^ (x | ~z)) | 
 |  | 
 | /* This is the central step in the MD5 algorithm. */ | 
 | #define MD5STEP(f, w, x, y, z, data, s) \ | 
 |   (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x) | 
 |  | 
 | /* | 
 |  * The core of the MD5 algorithm, this alters an existing MD5 hash to | 
 |  * reflect the addition of 16 longwords of new data.  MD5Update blocks | 
 |  * the data and converts bytes into longwords for this routine. | 
 |  */ | 
 | void MD5Transform(uint32_t buf[4], const uint32_t in[16]) { | 
 |   uint32_t a, b, c, d; | 
 |  | 
 |   a = buf[0]; | 
 |   b = buf[1]; | 
 |   c = buf[2]; | 
 |   d = buf[3]; | 
 |  | 
 |   MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); | 
 |   MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); | 
 |   MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); | 
 |   MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); | 
 |   MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); | 
 |   MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); | 
 |   MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); | 
 |   MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); | 
 |   MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); | 
 |   MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); | 
 |   MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); | 
 |   MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); | 
 |   MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); | 
 |   MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); | 
 |   MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); | 
 |   MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); | 
 |  | 
 |   MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); | 
 |   MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); | 
 |   MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); | 
 |   MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); | 
 |   MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); | 
 |   MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); | 
 |   MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); | 
 |   MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); | 
 |   MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); | 
 |   MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); | 
 |   MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); | 
 |   MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); | 
 |   MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); | 
 |   MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); | 
 |   MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); | 
 |   MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); | 
 |  | 
 |   MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); | 
 |   MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); | 
 |   MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); | 
 |   MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); | 
 |   MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); | 
 |   MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); | 
 |   MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); | 
 |   MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); | 
 |   MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); | 
 |   MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); | 
 |   MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); | 
 |   MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); | 
 |   MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); | 
 |   MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); | 
 |   MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); | 
 |   MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); | 
 |  | 
 |   MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); | 
 |   MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); | 
 |   MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); | 
 |   MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); | 
 |   MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); | 
 |   MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); | 
 |   MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); | 
 |   MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); | 
 |   MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); | 
 |   MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); | 
 |   MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); | 
 |   MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); | 
 |   MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); | 
 |   MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); | 
 |   MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); | 
 |   MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); | 
 |  | 
 |   buf[0] += a; | 
 |   buf[1] += b; | 
 |   buf[2] += c; | 
 |   buf[3] += d; | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | namespace base { | 
 |  | 
 | /* | 
 |  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious | 
 |  * initialization constants. | 
 |  */ | 
 | void MD5Init(MD5Context* context) { | 
 |   struct Context* ctx = reinterpret_cast<struct Context*>(context); | 
 |   ctx->buf[0] = 0x67452301; | 
 |   ctx->buf[1] = 0xefcdab89; | 
 |   ctx->buf[2] = 0x98badcfe; | 
 |   ctx->buf[3] = 0x10325476; | 
 |   ctx->bits[0] = 0; | 
 |   ctx->bits[1] = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Update context to reflect the concatenation of another buffer full | 
 |  * of bytes. | 
 |  */ | 
 | void MD5Update(MD5Context* context, const StringPiece& data) { | 
 |   struct Context* ctx = reinterpret_cast<struct Context*>(context); | 
 |   const uint8_t* buf = reinterpret_cast<const uint8_t*>(data.data()); | 
 |   size_t len = data.size(); | 
 |  | 
 |   /* Update bitcount */ | 
 |  | 
 |   uint32_t t = ctx->bits[0]; | 
 |   if ((ctx->bits[0] = t + (static_cast<uint32_t>(len) << 3)) < t) | 
 |     ctx->bits[1]++; /* Carry from low to high */ | 
 |   ctx->bits[1] += static_cast<uint32_t>(len >> 29); | 
 |  | 
 |   t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ | 
 |  | 
 |   /* Handle any leading odd-sized chunks */ | 
 |  | 
 |   if (t) { | 
 |     uint8_t* p = static_cast<uint8_t*>(ctx->in + t); | 
 |  | 
 |     t = 64 - t; | 
 |     if (len < t) { | 
 |       memcpy(p, buf, len); | 
 |       return; | 
 |     } | 
 |     memcpy(p, buf, t); | 
 |     byteReverse(ctx->in, 16); | 
 |     MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); | 
 |     buf += t; | 
 |     len -= t; | 
 |   } | 
 |  | 
 |   /* Process data in 64-byte chunks */ | 
 |  | 
 |   while (len >= 64) { | 
 |     memcpy(ctx->in, buf, 64); | 
 |     byteReverse(ctx->in, 16); | 
 |     MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); | 
 |     buf += 64; | 
 |     len -= 64; | 
 |   } | 
 |  | 
 |   /* Handle any remaining bytes of data. */ | 
 |  | 
 |   memcpy(ctx->in, buf, len); | 
 | } | 
 |  | 
 | /* | 
 |  * Final wrapup - pad to 64-byte boundary with the bit pattern | 
 |  * 1 0* (64-bit count of bits processed, MSB-first) | 
 |  */ | 
 | void MD5Final(MD5Digest* digest, MD5Context* context) { | 
 |   struct Context* ctx = reinterpret_cast<struct Context*>(context); | 
 |   unsigned count; | 
 |   uint8_t* p; | 
 |  | 
 |   /* Compute number of bytes mod 64 */ | 
 |   count = (ctx->bits[0] >> 3) & 0x3F; | 
 |  | 
 |   /* Set the first char of padding to 0x80.  This is safe since there is | 
 |      always at least one byte free */ | 
 |   p = ctx->in + count; | 
 |   *p++ = 0x80; | 
 |  | 
 |   /* Bytes of padding needed to make 64 bytes */ | 
 |   count = 64 - 1 - count; | 
 |  | 
 |   /* Pad out to 56 mod 64 */ | 
 |   if (count < 8) { | 
 |     /* Two lots of padding:  Pad the first block to 64 bytes */ | 
 |     memset(p, 0, count); | 
 |     byteReverse(ctx->in, 16); | 
 |     MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); | 
 |  | 
 |     /* Now fill the next block with 56 bytes */ | 
 |     memset(ctx->in, 0, 56); | 
 |   } else { | 
 |     /* Pad block to 56 bytes */ | 
 |     memset(p, 0, count - 8); | 
 |   } | 
 |   byteReverse(ctx->in, 14); | 
 |  | 
 |   /* Append length in bits and transform */ | 
 |   memcpy(&ctx->in[14 * sizeof(ctx->bits[0])], &ctx->bits[0], | 
 |          sizeof(ctx->bits[0])); | 
 |   memcpy(&ctx->in[15 * sizeof(ctx->bits[1])], &ctx->bits[1], | 
 |          sizeof(ctx->bits[1])); | 
 |  | 
 |   MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); | 
 |   byteReverse(reinterpret_cast<uint8_t*>(ctx->buf), 4); | 
 |   memcpy(digest->a, ctx->buf, 16); | 
 |   memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ | 
 | } | 
 |  | 
 | void MD5IntermediateFinal(MD5Digest* digest, const MD5Context* context) { | 
 |   /* MD5Final mutates the MD5Context*. Make a copy for generating the | 
 |      intermediate value. */ | 
 |   MD5Context context_copy; | 
 |   memcpy(&context_copy, context, sizeof(context_copy)); | 
 |   MD5Final(digest, &context_copy); | 
 | } | 
 |  | 
 | std::string MD5DigestToBase16(const MD5Digest& digest) { | 
 |   static char const zEncode[] = "0123456789abcdef"; | 
 |  | 
 |   std::string ret; | 
 |   ret.resize(32); | 
 |  | 
 |   for (int i = 0, j = 0; i < 16; i++, j += 2) { | 
 |     uint8_t a = digest.a[i]; | 
 |     ret[j] = zEncode[(a >> 4) & 0xf]; | 
 |     ret[j + 1] = zEncode[a & 0xf]; | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | void MD5Sum(const void* data, size_t length, MD5Digest* digest) { | 
 |   MD5Context ctx; | 
 |   MD5Init(&ctx); | 
 |   MD5Update(&ctx, StringPiece(reinterpret_cast<const char*>(data), length)); | 
 |   MD5Final(digest, &ctx); | 
 | } | 
 |  | 
 | std::string MD5String(const StringPiece& str) { | 
 |   MD5Digest digest; | 
 |   MD5Sum(str.data(), str.length(), &digest); | 
 |   return MD5DigestToBase16(digest); | 
 | } | 
 |  | 
 | }  // namespace base |