|  | // Copyright 2016 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #ifndef BASE_OPTIONAL_H_ | 
|  | #define BASE_OPTIONAL_H_ | 
|  |  | 
|  | #include <type_traits> | 
|  | #include <utility> | 
|  |  | 
|  | #include "base/logging.h" | 
|  | #include "base/template_util.h" | 
|  |  | 
|  | namespace base { | 
|  |  | 
|  | // Specification: | 
|  | // http://en.cppreference.com/w/cpp/utility/optional/in_place_t | 
|  | struct in_place_t {}; | 
|  |  | 
|  | // Specification: | 
|  | // http://en.cppreference.com/w/cpp/utility/optional/nullopt_t | 
|  | struct nullopt_t { | 
|  | constexpr explicit nullopt_t(int) {} | 
|  | }; | 
|  |  | 
|  | // Specification: | 
|  | // http://en.cppreference.com/w/cpp/utility/optional/in_place | 
|  | constexpr in_place_t in_place = {}; | 
|  |  | 
|  | // Specification: | 
|  | // http://en.cppreference.com/w/cpp/utility/optional/nullopt | 
|  | constexpr nullopt_t nullopt(0); | 
|  |  | 
|  | // Forward declaration, which is refered by following helpers. | 
|  | template <typename T> | 
|  | class Optional; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename T, bool = std::is_trivially_destructible<T>::value> | 
|  | struct OptionalStorageBase { | 
|  | // Initializing |empty_| here instead of using default member initializing | 
|  | // to avoid errors in g++ 4.8. | 
|  | constexpr OptionalStorageBase() : empty_('\0') {} | 
|  |  | 
|  | template <class... Args> | 
|  | constexpr explicit OptionalStorageBase(in_place_t, Args&&... args) | 
|  | : is_populated_(true), value_(std::forward<Args>(args)...) {} | 
|  |  | 
|  | // When T is not trivially destructible we must call its | 
|  | // destructor before deallocating its memory. | 
|  | // Note that this hides the (implicitly declared) move constructor, which | 
|  | // would be used for constexpr move constructor in OptionalStorage<T>. | 
|  | // It is needed iff T is trivially move constructible. However, the current | 
|  | // is_trivially_{copy,move}_constructible implementation requires | 
|  | // is_trivially_destructible (which looks a bug, cf: | 
|  | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=51452 and | 
|  | // http://cplusplus.github.io/LWG/lwg-active.html#2116), so it is not | 
|  | // necessary for this case at the moment. Please see also the destructor | 
|  | // comment in "is_trivially_destructible = true" specialization below. | 
|  | ~OptionalStorageBase() { | 
|  | if (is_populated_) | 
|  | value_.~T(); | 
|  | } | 
|  |  | 
|  | template <class... Args> | 
|  | void Init(Args&&... args) { | 
|  | DCHECK(!is_populated_); | 
|  | ::new (&value_) T(std::forward<Args>(args)...); | 
|  | is_populated_ = true; | 
|  | } | 
|  |  | 
|  | bool is_populated_ = false; | 
|  | union { | 
|  | // |empty_| exists so that the union will always be initialized, even when | 
|  | // it doesn't contain a value. Union members must be initialized for the | 
|  | // constructor to be 'constexpr'. | 
|  | char empty_; | 
|  | T value_; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | struct OptionalStorageBase<T, true /* trivially destructible */> { | 
|  | // Initializing |empty_| here instead of using default member initializing | 
|  | // to avoid errors in g++ 4.8. | 
|  | constexpr OptionalStorageBase() : empty_('\0') {} | 
|  |  | 
|  | template <class... Args> | 
|  | constexpr explicit OptionalStorageBase(in_place_t, Args&&... args) | 
|  | : is_populated_(true), value_(std::forward<Args>(args)...) {} | 
|  |  | 
|  | // When T is trivially destructible (i.e. its destructor does nothing) there | 
|  | // is no need to call it. Implicitly defined destructor is trivial, because | 
|  | // both members (bool and union containing only variants which are trivially | 
|  | // destructible) are trivially destructible. | 
|  | // Explicitly-defaulted destructor is also trivial, but do not use it here, | 
|  | // because it hides the implicit move constructor. It is needed to implement | 
|  | // constexpr move constructor in OptionalStorage iff T is trivially move | 
|  | // constructible. Note that, if T is trivially move constructible, the move | 
|  | // constructor of OptionalStorageBase<T> is also implicitly defined and it is | 
|  | // trivially move constructor. If T is not trivially move constructible, | 
|  | // "not declaring move constructor without destructor declaration" here means | 
|  | // "delete move constructor", which works because any move constructor of | 
|  | // OptionalStorage will not refer to it in that case. | 
|  |  | 
|  | template <class... Args> | 
|  | void Init(Args&&... args) { | 
|  | DCHECK(!is_populated_); | 
|  | ::new (&value_) T(std::forward<Args>(args)...); | 
|  | is_populated_ = true; | 
|  | } | 
|  |  | 
|  | bool is_populated_ = false; | 
|  | union { | 
|  | // |empty_| exists so that the union will always be initialized, even when | 
|  | // it doesn't contain a value. Union members must be initialized for the | 
|  | // constructor to be 'constexpr'. | 
|  | char empty_; | 
|  | T value_; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | // Implement conditional constexpr copy and move constructors. These are | 
|  | // constexpr if is_trivially_{copy,move}_constructible<T>::value is true | 
|  | // respectively. If each is true, the corresponding constructor is defined as | 
|  | // "= default;", which generates a constexpr constructor (In this case, | 
|  | // the condition of constexpr-ness is satisfied because the base class also has | 
|  | // compiler generated constexpr {copy,move} constructors). Note that | 
|  | // placement-new is prohibited in constexpr. | 
|  | template <typename T, | 
|  | bool = is_trivially_copy_constructible<T>::value, | 
|  | bool = std::is_trivially_move_constructible<T>::value> | 
|  | struct OptionalStorage : OptionalStorageBase<T> { | 
|  | // This is no trivially {copy,move} constructible case. Other cases are | 
|  | // defined below as specializations. | 
|  |  | 
|  | // Accessing the members of template base class requires explicit | 
|  | // declaration. | 
|  | using OptionalStorageBase<T>::is_populated_; | 
|  | using OptionalStorageBase<T>::value_; | 
|  | using OptionalStorageBase<T>::Init; | 
|  |  | 
|  | // Inherit constructors (specifically, the in_place constructor). | 
|  | using OptionalStorageBase<T>::OptionalStorageBase; | 
|  |  | 
|  | // User defined constructor deletes the default constructor. | 
|  | // Define it explicitly. | 
|  | OptionalStorage() = default; | 
|  |  | 
|  | OptionalStorage(const OptionalStorage& other) { | 
|  | if (other.is_populated_) | 
|  | Init(other.value_); | 
|  | } | 
|  |  | 
|  | OptionalStorage(OptionalStorage&& other) noexcept( | 
|  | std::is_nothrow_move_constructible<T>::value) { | 
|  | if (other.is_populated_) | 
|  | Init(std::move(other.value_)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | struct OptionalStorage<T, | 
|  | true /* trivially copy constructible */, | 
|  | false /* trivially move constructible */> | 
|  | : OptionalStorageBase<T> { | 
|  | using OptionalStorageBase<T>::is_populated_; | 
|  | using OptionalStorageBase<T>::value_; | 
|  | using OptionalStorageBase<T>::Init; | 
|  | using OptionalStorageBase<T>::OptionalStorageBase; | 
|  |  | 
|  | OptionalStorage() = default; | 
|  | OptionalStorage(const OptionalStorage& other) = default; | 
|  |  | 
|  | OptionalStorage(OptionalStorage&& other) noexcept( | 
|  | std::is_nothrow_move_constructible<T>::value) { | 
|  | if (other.is_populated_) | 
|  | Init(std::move(other.value_)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | struct OptionalStorage<T, | 
|  | false /* trivially copy constructible */, | 
|  | true /* trivially move constructible */> | 
|  | : OptionalStorageBase<T> { | 
|  | using OptionalStorageBase<T>::is_populated_; | 
|  | using OptionalStorageBase<T>::value_; | 
|  | using OptionalStorageBase<T>::Init; | 
|  | using OptionalStorageBase<T>::OptionalStorageBase; | 
|  |  | 
|  | OptionalStorage() = default; | 
|  | OptionalStorage(OptionalStorage&& other) = default; | 
|  |  | 
|  | OptionalStorage(const OptionalStorage& other) { | 
|  | if (other.is_populated_) | 
|  | Init(other.value_); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | struct OptionalStorage<T, | 
|  | true /* trivially copy constructible */, | 
|  | true /* trivially move constructible */> | 
|  | : OptionalStorageBase<T> { | 
|  | // If both trivially {copy,move} constructible are true, it is not necessary | 
|  | // to use user-defined constructors. So, just inheriting constructors | 
|  | // from the base class works. | 
|  | using OptionalStorageBase<T>::OptionalStorageBase; | 
|  | }; | 
|  |  | 
|  | // Base class to support conditionally usable copy-/move- constructors | 
|  | // and assign operators. | 
|  | template <typename T> | 
|  | class OptionalBase { | 
|  | // This class provides implementation rather than public API, so everything | 
|  | // should be hidden. Often we use composition, but we cannot in this case | 
|  | // because of C++ language restriction. | 
|  | protected: | 
|  | constexpr OptionalBase() = default; | 
|  | constexpr OptionalBase(const OptionalBase& other) = default; | 
|  | constexpr OptionalBase(OptionalBase&& other) = default; | 
|  |  | 
|  | template <class... Args> | 
|  | constexpr explicit OptionalBase(in_place_t, Args&&... args) | 
|  | : storage_(in_place, std::forward<Args>(args)...) {} | 
|  |  | 
|  | // Implementation of converting constructors. | 
|  | template <typename U> | 
|  | explicit OptionalBase(const OptionalBase<U>& other) { | 
|  | if (other.storage_.is_populated_) | 
|  | storage_.Init(other.storage_.value_); | 
|  | } | 
|  |  | 
|  | template <typename U> | 
|  | explicit OptionalBase(OptionalBase<U>&& other) { | 
|  | if (other.storage_.is_populated_) | 
|  | storage_.Init(std::move(other.storage_.value_)); | 
|  | } | 
|  |  | 
|  | ~OptionalBase() = default; | 
|  |  | 
|  | OptionalBase& operator=(const OptionalBase& other) { | 
|  | CopyAssign(other); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | OptionalBase& operator=(OptionalBase&& other) noexcept( | 
|  | std::is_nothrow_move_assignable<T>::value&& | 
|  | std::is_nothrow_move_constructible<T>::value) { | 
|  | MoveAssign(std::move(other)); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename U> | 
|  | void CopyAssign(const OptionalBase<U>& other) { | 
|  | if (other.storage_.is_populated_) | 
|  | InitOrAssign(other.storage_.value_); | 
|  | else | 
|  | FreeIfNeeded(); | 
|  | } | 
|  |  | 
|  | template <typename U> | 
|  | void MoveAssign(OptionalBase<U>&& other) { | 
|  | if (other.storage_.is_populated_) | 
|  | InitOrAssign(std::move(other.storage_.value_)); | 
|  | else | 
|  | FreeIfNeeded(); | 
|  | } | 
|  |  | 
|  | template <typename U> | 
|  | void InitOrAssign(U&& value) { | 
|  | if (storage_.is_populated_) | 
|  | storage_.value_ = std::forward<U>(value); | 
|  | else | 
|  | storage_.Init(std::forward<U>(value)); | 
|  | } | 
|  |  | 
|  | void FreeIfNeeded() { | 
|  | if (!storage_.is_populated_) | 
|  | return; | 
|  | storage_.value_.~T(); | 
|  | storage_.is_populated_ = false; | 
|  | } | 
|  |  | 
|  | // For implementing conversion, allow access to other typed OptionalBase | 
|  | // class. | 
|  | template <typename U> | 
|  | friend class OptionalBase; | 
|  |  | 
|  | OptionalStorage<T> storage_; | 
|  | }; | 
|  |  | 
|  | // The following {Copy,Move}{Constructible,Assignable} structs are helpers to | 
|  | // implement constructor/assign-operator overloading. Specifically, if T is | 
|  | // is not movable but copyable, Optional<T>'s move constructor should not | 
|  | // participate in overload resolution. This inheritance trick implements that. | 
|  | template <bool is_copy_constructible> | 
|  | struct CopyConstructible {}; | 
|  |  | 
|  | template <> | 
|  | struct CopyConstructible<false> { | 
|  | constexpr CopyConstructible() = default; | 
|  | constexpr CopyConstructible(const CopyConstructible&) = delete; | 
|  | constexpr CopyConstructible(CopyConstructible&&) = default; | 
|  | CopyConstructible& operator=(const CopyConstructible&) = default; | 
|  | CopyConstructible& operator=(CopyConstructible&&) = default; | 
|  | }; | 
|  |  | 
|  | template <bool is_move_constructible> | 
|  | struct MoveConstructible {}; | 
|  |  | 
|  | template <> | 
|  | struct MoveConstructible<false> { | 
|  | constexpr MoveConstructible() = default; | 
|  | constexpr MoveConstructible(const MoveConstructible&) = default; | 
|  | constexpr MoveConstructible(MoveConstructible&&) = delete; | 
|  | MoveConstructible& operator=(const MoveConstructible&) = default; | 
|  | MoveConstructible& operator=(MoveConstructible&&) = default; | 
|  | }; | 
|  |  | 
|  | template <bool is_copy_assignable> | 
|  | struct CopyAssignable {}; | 
|  |  | 
|  | template <> | 
|  | struct CopyAssignable<false> { | 
|  | constexpr CopyAssignable() = default; | 
|  | constexpr CopyAssignable(const CopyAssignable&) = default; | 
|  | constexpr CopyAssignable(CopyAssignable&&) = default; | 
|  | CopyAssignable& operator=(const CopyAssignable&) = delete; | 
|  | CopyAssignable& operator=(CopyAssignable&&) = default; | 
|  | }; | 
|  |  | 
|  | template <bool is_move_assignable> | 
|  | struct MoveAssignable {}; | 
|  |  | 
|  | template <> | 
|  | struct MoveAssignable<false> { | 
|  | constexpr MoveAssignable() = default; | 
|  | constexpr MoveAssignable(const MoveAssignable&) = default; | 
|  | constexpr MoveAssignable(MoveAssignable&&) = default; | 
|  | MoveAssignable& operator=(const MoveAssignable&) = default; | 
|  | MoveAssignable& operator=(MoveAssignable&&) = delete; | 
|  | }; | 
|  |  | 
|  | // Helper to conditionally enable converting constructors and assign operators. | 
|  | template <typename T, typename U> | 
|  | struct IsConvertibleFromOptional | 
|  | : std::integral_constant< | 
|  | bool, | 
|  | std::is_constructible<T, Optional<U>&>::value || | 
|  | std::is_constructible<T, const Optional<U>&>::value || | 
|  | std::is_constructible<T, Optional<U>&&>::value || | 
|  | std::is_constructible<T, const Optional<U>&&>::value || | 
|  | std::is_convertible<Optional<U>&, T>::value || | 
|  | std::is_convertible<const Optional<U>&, T>::value || | 
|  | std::is_convertible<Optional<U>&&, T>::value || | 
|  | std::is_convertible<const Optional<U>&&, T>::value> {}; | 
|  |  | 
|  | template <typename T, typename U> | 
|  | struct IsAssignableFromOptional | 
|  | : std::integral_constant< | 
|  | bool, | 
|  | IsConvertibleFromOptional<T, U>::value || | 
|  | std::is_assignable<T&, Optional<U>&>::value || | 
|  | std::is_assignable<T&, const Optional<U>&>::value || | 
|  | std::is_assignable<T&, Optional<U>&&>::value || | 
|  | std::is_assignable<T&, const Optional<U>&&>::value> {}; | 
|  |  | 
|  | // Forward compatibility for C++17. | 
|  | // Introduce one more deeper nested namespace to avoid leaking using std::swap. | 
|  | namespace swappable_impl { | 
|  | using std::swap; | 
|  |  | 
|  | struct IsSwappableImpl { | 
|  | // Tests if swap can be called. Check<T&>(0) returns true_type iff swap | 
|  | // is available for T. Otherwise, Check's overload resolution falls back | 
|  | // to Check(...) declared below thanks to SFINAE, so returns false_type. | 
|  | template <typename T> | 
|  | static auto Check(int) | 
|  | -> decltype(swap(std::declval<T>(), std::declval<T>()), std::true_type()); | 
|  |  | 
|  | template <typename T> | 
|  | static std::false_type Check(...); | 
|  | }; | 
|  | }  // namespace swappable_impl | 
|  |  | 
|  | template <typename T> | 
|  | struct IsSwappable : decltype(swappable_impl::IsSwappableImpl::Check<T&>(0)) {}; | 
|  |  | 
|  | // Forward compatibility for C++20. | 
|  | template <typename T> | 
|  | using RemoveCvRefT = std::remove_cv_t<std::remove_reference_t<T>>; | 
|  |  | 
|  | }  // namespace internal | 
|  |  | 
|  | // On Windows, by default, empty-base class optimization does not work, | 
|  | // which means even if the base class is empty struct, it still consumes one | 
|  | // byte for its body. __declspec(empty_bases) enables the optimization. | 
|  | // cf) | 
|  | // https://blogs.msdn.microsoft.com/vcblog/2016/03/30/optimizing-the-layout-of-empty-base-classes-in-vs2015-update-2-3/ | 
|  | #ifdef OS_WIN | 
|  | #define OPTIONAL_DECLSPEC_EMPTY_BASES __declspec(empty_bases) | 
|  | #else | 
|  | #define OPTIONAL_DECLSPEC_EMPTY_BASES | 
|  | #endif | 
|  |  | 
|  | // base::Optional is a Chromium version of the C++17 optional class: | 
|  | // std::optional documentation: | 
|  | // http://en.cppreference.com/w/cpp/utility/optional | 
|  | // Chromium documentation: | 
|  | // https://chromium.googlesource.com/chromium/src/+/master/docs/optional.md | 
|  | // | 
|  | // These are the differences between the specification and the implementation: | 
|  | // - Constructors do not use 'constexpr' as it is a C++14 extension. | 
|  | // - 'constexpr' might be missing in some places for reasons specified locally. | 
|  | // - No exceptions are thrown, because they are banned from Chromium. | 
|  | //   Marked noexcept for only move constructor and move assign operators. | 
|  | // - All the non-members are in the 'base' namespace instead of 'std'. | 
|  | // | 
|  | // Note that T cannot have a constructor T(Optional<T>) etc. Optional<T> checks | 
|  | // T's constructor (specifically via IsConvertibleFromOptional), and in the | 
|  | // check whether T can be constructible from Optional<T>, which is recursive | 
|  | // so it does not work. As of Feb 2018, std::optional C++17 implementation in | 
|  | // both clang and gcc has same limitation. MSVC SFINAE looks to have different | 
|  | // behavior, but anyway it reports an error, too. | 
|  | template <typename T> | 
|  | class OPTIONAL_DECLSPEC_EMPTY_BASES Optional | 
|  | : public internal::OptionalBase<T>, | 
|  | public internal::CopyConstructible<std::is_copy_constructible<T>::value>, | 
|  | public internal::MoveConstructible<std::is_move_constructible<T>::value>, | 
|  | public internal::CopyAssignable<std::is_copy_constructible<T>::value && | 
|  | std::is_copy_assignable<T>::value>, | 
|  | public internal::MoveAssignable<std::is_move_constructible<T>::value && | 
|  | std::is_move_assignable<T>::value> { | 
|  | public: | 
|  | #undef OPTIONAL_DECLSPEC_EMPTY_BASES | 
|  | using value_type = T; | 
|  |  | 
|  | // Defer default/copy/move constructor implementation to OptionalBase. | 
|  | constexpr Optional() = default; | 
|  | constexpr Optional(const Optional& other) = default; | 
|  | constexpr Optional(Optional&& other) noexcept( | 
|  | std::is_nothrow_move_constructible<T>::value) = default; | 
|  |  | 
|  | constexpr Optional(nullopt_t) {}  // NOLINT(runtime/explicit) | 
|  |  | 
|  | // Converting copy constructor. "explicit" only if | 
|  | // std::is_convertible<const U&, T>::value is false. It is implemented by | 
|  | // declaring two almost same constructors, but that condition in enable_if_t | 
|  | // is different, so that either one is chosen, thanks to SFINAE. | 
|  | template < | 
|  | typename U, | 
|  | std::enable_if_t<std::is_constructible<T, const U&>::value && | 
|  | !internal::IsConvertibleFromOptional<T, U>::value && | 
|  | std::is_convertible<const U&, T>::value, | 
|  | bool> = false> | 
|  | Optional(const Optional<U>& other) : internal::OptionalBase<T>(other) {} | 
|  |  | 
|  | template < | 
|  | typename U, | 
|  | std::enable_if_t<std::is_constructible<T, const U&>::value && | 
|  | !internal::IsConvertibleFromOptional<T, U>::value && | 
|  | !std::is_convertible<const U&, T>::value, | 
|  | bool> = false> | 
|  | explicit Optional(const Optional<U>& other) | 
|  | : internal::OptionalBase<T>(other) {} | 
|  |  | 
|  | // Converting move constructor. Similar to converting copy constructor, | 
|  | // declaring two (explicit and non-explicit) constructors. | 
|  | template < | 
|  | typename U, | 
|  | std::enable_if_t<std::is_constructible<T, U&&>::value && | 
|  | !internal::IsConvertibleFromOptional<T, U>::value && | 
|  | std::is_convertible<U&&, T>::value, | 
|  | bool> = false> | 
|  | Optional(Optional<U>&& other) : internal::OptionalBase<T>(std::move(other)) {} | 
|  |  | 
|  | template < | 
|  | typename U, | 
|  | std::enable_if_t<std::is_constructible<T, U&&>::value && | 
|  | !internal::IsConvertibleFromOptional<T, U>::value && | 
|  | !std::is_convertible<U&&, T>::value, | 
|  | bool> = false> | 
|  | explicit Optional(Optional<U>&& other) | 
|  | : internal::OptionalBase<T>(std::move(other)) {} | 
|  |  | 
|  | template <class... Args> | 
|  | constexpr explicit Optional(in_place_t, Args&&... args) | 
|  | : internal::OptionalBase<T>(in_place, std::forward<Args>(args)...) {} | 
|  |  | 
|  | template < | 
|  | class U, | 
|  | class... Args, | 
|  | class = std::enable_if_t<std::is_constructible<value_type, | 
|  | std::initializer_list<U>&, | 
|  | Args...>::value>> | 
|  | constexpr explicit Optional(in_place_t, | 
|  | std::initializer_list<U> il, | 
|  | Args&&... args) | 
|  | : internal::OptionalBase<T>(in_place, il, std::forward<Args>(args)...) {} | 
|  |  | 
|  | // Forward value constructor. Similar to converting constructors, | 
|  | // conditionally explicit. | 
|  | template < | 
|  | typename U = value_type, | 
|  | std::enable_if_t< | 
|  | std::is_constructible<T, U&&>::value && | 
|  | !std::is_same<internal::RemoveCvRefT<U>, in_place_t>::value && | 
|  | !std::is_same<internal::RemoveCvRefT<U>, Optional<T>>::value && | 
|  | std::is_convertible<U&&, T>::value, | 
|  | bool> = false> | 
|  | constexpr Optional(U&& value) | 
|  | : internal::OptionalBase<T>(in_place, std::forward<U>(value)) {} | 
|  |  | 
|  | template < | 
|  | typename U = value_type, | 
|  | std::enable_if_t< | 
|  | std::is_constructible<T, U&&>::value && | 
|  | !std::is_same<internal::RemoveCvRefT<U>, in_place_t>::value && | 
|  | !std::is_same<internal::RemoveCvRefT<U>, Optional<T>>::value && | 
|  | !std::is_convertible<U&&, T>::value, | 
|  | bool> = false> | 
|  | constexpr explicit Optional(U&& value) | 
|  | : internal::OptionalBase<T>(in_place, std::forward<U>(value)) {} | 
|  |  | 
|  | ~Optional() = default; | 
|  |  | 
|  | // Defer copy-/move- assign operator implementation to OptionalBase. | 
|  | Optional& operator=(const Optional& other) = default; | 
|  | Optional& operator=(Optional&& other) noexcept( | 
|  | std::is_nothrow_move_assignable<T>::value&& | 
|  | std::is_nothrow_move_constructible<T>::value) = default; | 
|  |  | 
|  | Optional& operator=(nullopt_t) { | 
|  | FreeIfNeeded(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Perfect-forwarded assignment. | 
|  | template <typename U> | 
|  | std::enable_if_t< | 
|  | !std::is_same<internal::RemoveCvRefT<U>, Optional<T>>::value && | 
|  | std::is_constructible<T, U>::value && | 
|  | std::is_assignable<T&, U>::value && | 
|  | (!std::is_scalar<T>::value || | 
|  | !std::is_same<std::decay_t<U>, T>::value), | 
|  | Optional&> | 
|  | operator=(U&& value) { | 
|  | InitOrAssign(std::forward<U>(value)); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Copy assign the state of other. | 
|  | template <typename U> | 
|  | std::enable_if_t<!internal::IsAssignableFromOptional<T, U>::value && | 
|  | std::is_constructible<T, const U&>::value && | 
|  | std::is_assignable<T&, const U&>::value, | 
|  | Optional&> | 
|  | operator=(const Optional<U>& other) { | 
|  | CopyAssign(other); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Move assign the state of other. | 
|  | template <typename U> | 
|  | std::enable_if_t<!internal::IsAssignableFromOptional<T, U>::value && | 
|  | std::is_constructible<T, U>::value && | 
|  | std::is_assignable<T&, U>::value, | 
|  | Optional&> | 
|  | operator=(Optional<U>&& other) { | 
|  | MoveAssign(std::move(other)); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | constexpr const T* operator->() const { | 
|  | CHECK(storage_.is_populated_); | 
|  | return &storage_.value_; | 
|  | } | 
|  |  | 
|  | constexpr T* operator->() { | 
|  | CHECK(storage_.is_populated_); | 
|  | return &storage_.value_; | 
|  | } | 
|  |  | 
|  | constexpr const T& operator*() const & { | 
|  | CHECK(storage_.is_populated_); | 
|  | return storage_.value_; | 
|  | } | 
|  |  | 
|  | constexpr T& operator*() & { | 
|  | CHECK(storage_.is_populated_); | 
|  | return storage_.value_; | 
|  | } | 
|  |  | 
|  | constexpr const T&& operator*() const && { | 
|  | CHECK(storage_.is_populated_); | 
|  | return std::move(storage_.value_); | 
|  | } | 
|  |  | 
|  | constexpr T&& operator*() && { | 
|  | CHECK(storage_.is_populated_); | 
|  | return std::move(storage_.value_); | 
|  | } | 
|  |  | 
|  | constexpr explicit operator bool() const { return storage_.is_populated_; } | 
|  |  | 
|  | constexpr bool has_value() const { return storage_.is_populated_; } | 
|  |  | 
|  | constexpr T& value() & { | 
|  | CHECK(storage_.is_populated_); | 
|  | return storage_.value_; | 
|  | } | 
|  |  | 
|  | constexpr const T& value() const & { | 
|  | CHECK(storage_.is_populated_); | 
|  | return storage_.value_; | 
|  | } | 
|  |  | 
|  | constexpr T&& value() && { | 
|  | CHECK(storage_.is_populated_); | 
|  | return std::move(storage_.value_); | 
|  | } | 
|  |  | 
|  | constexpr const T&& value() const && { | 
|  | CHECK(storage_.is_populated_); | 
|  | return std::move(storage_.value_); | 
|  | } | 
|  |  | 
|  | template <class U> | 
|  | constexpr T value_or(U&& default_value) const& { | 
|  | // TODO(mlamouri): add the following assert when possible: | 
|  | // static_assert(std::is_copy_constructible<T>::value, | 
|  | //               "T must be copy constructible"); | 
|  | static_assert(std::is_convertible<U, T>::value, | 
|  | "U must be convertible to T"); | 
|  | return storage_.is_populated_ | 
|  | ? value() | 
|  | : static_cast<T>(std::forward<U>(default_value)); | 
|  | } | 
|  |  | 
|  | template <class U> | 
|  | constexpr T value_or(U&& default_value) && { | 
|  | // TODO(mlamouri): add the following assert when possible: | 
|  | // static_assert(std::is_move_constructible<T>::value, | 
|  | //               "T must be move constructible"); | 
|  | static_assert(std::is_convertible<U, T>::value, | 
|  | "U must be convertible to T"); | 
|  | return storage_.is_populated_ | 
|  | ? std::move(value()) | 
|  | : static_cast<T>(std::forward<U>(default_value)); | 
|  | } | 
|  |  | 
|  | void swap(Optional& other) { | 
|  | if (!storage_.is_populated_ && !other.storage_.is_populated_) | 
|  | return; | 
|  |  | 
|  | if (storage_.is_populated_ != other.storage_.is_populated_) { | 
|  | if (storage_.is_populated_) { | 
|  | other.storage_.Init(std::move(storage_.value_)); | 
|  | FreeIfNeeded(); | 
|  | } else { | 
|  | storage_.Init(std::move(other.storage_.value_)); | 
|  | other.FreeIfNeeded(); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | DCHECK(storage_.is_populated_ && other.storage_.is_populated_); | 
|  | using std::swap; | 
|  | swap(**this, *other); | 
|  | } | 
|  |  | 
|  | void reset() { FreeIfNeeded(); } | 
|  |  | 
|  | template <class... Args> | 
|  | T& emplace(Args&&... args) { | 
|  | FreeIfNeeded(); | 
|  | storage_.Init(std::forward<Args>(args)...); | 
|  | return storage_.value_; | 
|  | } | 
|  |  | 
|  | template <class U, class... Args> | 
|  | std::enable_if_t< | 
|  | std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value, | 
|  | T&> | 
|  | emplace(std::initializer_list<U> il, Args&&... args) { | 
|  | FreeIfNeeded(); | 
|  | storage_.Init(il, std::forward<Args>(args)...); | 
|  | return storage_.value_; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Accessing template base class's protected member needs explicit | 
|  | // declaration to do so. | 
|  | using internal::OptionalBase<T>::CopyAssign; | 
|  | using internal::OptionalBase<T>::FreeIfNeeded; | 
|  | using internal::OptionalBase<T>::InitOrAssign; | 
|  | using internal::OptionalBase<T>::MoveAssign; | 
|  | using internal::OptionalBase<T>::storage_; | 
|  | }; | 
|  |  | 
|  | // Here after defines comparation operators. The definition follows | 
|  | // http://en.cppreference.com/w/cpp/utility/optional/operator_cmp | 
|  | // while bool() casting is replaced by has_value() to meet the chromium | 
|  | // style guide. | 
|  | template <class T, class U> | 
|  | constexpr bool operator==(const Optional<T>& lhs, const Optional<U>& rhs) { | 
|  | if (lhs.has_value() != rhs.has_value()) | 
|  | return false; | 
|  | if (!lhs.has_value()) | 
|  | return true; | 
|  | return *lhs == *rhs; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator!=(const Optional<T>& lhs, const Optional<U>& rhs) { | 
|  | if (lhs.has_value() != rhs.has_value()) | 
|  | return true; | 
|  | if (!lhs.has_value()) | 
|  | return false; | 
|  | return *lhs != *rhs; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator<(const Optional<T>& lhs, const Optional<U>& rhs) { | 
|  | if (!rhs.has_value()) | 
|  | return false; | 
|  | if (!lhs.has_value()) | 
|  | return true; | 
|  | return *lhs < *rhs; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator<=(const Optional<T>& lhs, const Optional<U>& rhs) { | 
|  | if (!lhs.has_value()) | 
|  | return true; | 
|  | if (!rhs.has_value()) | 
|  | return false; | 
|  | return *lhs <= *rhs; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator>(const Optional<T>& lhs, const Optional<U>& rhs) { | 
|  | if (!lhs.has_value()) | 
|  | return false; | 
|  | if (!rhs.has_value()) | 
|  | return true; | 
|  | return *lhs > *rhs; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator>=(const Optional<T>& lhs, const Optional<U>& rhs) { | 
|  | if (!rhs.has_value()) | 
|  | return true; | 
|  | if (!lhs.has_value()) | 
|  | return false; | 
|  | return *lhs >= *rhs; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | constexpr bool operator==(const Optional<T>& opt, nullopt_t) { | 
|  | return !opt; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | constexpr bool operator==(nullopt_t, const Optional<T>& opt) { | 
|  | return !opt; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | constexpr bool operator!=(const Optional<T>& opt, nullopt_t) { | 
|  | return opt.has_value(); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | constexpr bool operator!=(nullopt_t, const Optional<T>& opt) { | 
|  | return opt.has_value(); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | constexpr bool operator<(const Optional<T>& opt, nullopt_t) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | constexpr bool operator<(nullopt_t, const Optional<T>& opt) { | 
|  | return opt.has_value(); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | constexpr bool operator<=(const Optional<T>& opt, nullopt_t) { | 
|  | return !opt; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | constexpr bool operator<=(nullopt_t, const Optional<T>& opt) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | constexpr bool operator>(const Optional<T>& opt, nullopt_t) { | 
|  | return opt.has_value(); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | constexpr bool operator>(nullopt_t, const Optional<T>& opt) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | constexpr bool operator>=(const Optional<T>& opt, nullopt_t) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | constexpr bool operator>=(nullopt_t, const Optional<T>& opt) { | 
|  | return !opt; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator==(const Optional<T>& opt, const U& value) { | 
|  | return opt.has_value() ? *opt == value : false; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator==(const U& value, const Optional<T>& opt) { | 
|  | return opt.has_value() ? value == *opt : false; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator!=(const Optional<T>& opt, const U& value) { | 
|  | return opt.has_value() ? *opt != value : true; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator!=(const U& value, const Optional<T>& opt) { | 
|  | return opt.has_value() ? value != *opt : true; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator<(const Optional<T>& opt, const U& value) { | 
|  | return opt.has_value() ? *opt < value : true; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator<(const U& value, const Optional<T>& opt) { | 
|  | return opt.has_value() ? value < *opt : false; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator<=(const Optional<T>& opt, const U& value) { | 
|  | return opt.has_value() ? *opt <= value : true; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator<=(const U& value, const Optional<T>& opt) { | 
|  | return opt.has_value() ? value <= *opt : false; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator>(const Optional<T>& opt, const U& value) { | 
|  | return opt.has_value() ? *opt > value : false; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator>(const U& value, const Optional<T>& opt) { | 
|  | return opt.has_value() ? value > *opt : true; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator>=(const Optional<T>& opt, const U& value) { | 
|  | return opt.has_value() ? *opt >= value : false; | 
|  | } | 
|  |  | 
|  | template <class T, class U> | 
|  | constexpr bool operator>=(const U& value, const Optional<T>& opt) { | 
|  | return opt.has_value() ? value >= *opt : true; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | constexpr Optional<std::decay_t<T>> make_optional(T&& value) { | 
|  | return Optional<std::decay_t<T>>(std::forward<T>(value)); | 
|  | } | 
|  |  | 
|  | template <class T, class... Args> | 
|  | constexpr Optional<T> make_optional(Args&&... args) { | 
|  | return Optional<T>(in_place, std::forward<Args>(args)...); | 
|  | } | 
|  |  | 
|  | template <class T, class U, class... Args> | 
|  | constexpr Optional<T> make_optional(std::initializer_list<U> il, | 
|  | Args&&... args) { | 
|  | return Optional<T>(in_place, il, std::forward<Args>(args)...); | 
|  | } | 
|  |  | 
|  | // Partial specialization for a function template is not allowed. Also, it is | 
|  | // not allowed to add overload function to std namespace, while it is allowed | 
|  | // to specialize the template in std. Thus, swap() (kind of) overloading is | 
|  | // defined in base namespace, instead. | 
|  | template <class T> | 
|  | std::enable_if_t<std::is_move_constructible<T>::value && | 
|  | internal::IsSwappable<T>::value> | 
|  | swap(Optional<T>& lhs, Optional<T>& rhs) { | 
|  | lhs.swap(rhs); | 
|  | } | 
|  |  | 
|  | }  // namespace base | 
|  |  | 
|  | namespace std { | 
|  |  | 
|  | template <class T> | 
|  | struct hash<base::Optional<T>> { | 
|  | size_t operator()(const base::Optional<T>& opt) const { | 
|  | return opt == base::nullopt ? 0 : std::hash<T>()(*opt); | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // namespace std | 
|  |  | 
|  | #endif  // BASE_OPTIONAL_H_ |