| // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "base/process/launch.h" | 
 |  | 
 | #include <dirent.h> | 
 | #include <errno.h> | 
 | #include <fcntl.h> | 
 | #include <sched.h> | 
 | #include <setjmp.h> | 
 | #include <signal.h> | 
 | #include <stddef.h> | 
 | #include <stdint.h> | 
 | #include <stdlib.h> | 
 | #include <sys/resource.h> | 
 | #include <sys/syscall.h> | 
 | #include <sys/time.h> | 
 | #include <sys/types.h> | 
 | #include <sys/wait.h> | 
 | #include <unistd.h> | 
 |  | 
 | #include <iterator> | 
 | #include <limits> | 
 | #include <memory> | 
 | #include <set> | 
 |  | 
 | #include "base/command_line.h" | 
 | #include "base/compiler_specific.h" | 
 | #include "base/debug/debugger.h" | 
 | #include "base/debug/stack_trace.h" | 
 | #include "base/files/dir_reader_posix.h" | 
 | #include "base/files/file_util.h" | 
 | #include "base/files/scoped_file.h" | 
 | #include "base/logging.h" | 
 | #include "base/metrics/histogram_macros.h" | 
 | #include "base/posix/eintr_wrapper.h" | 
 | #include "base/process/process.h" | 
 | #include "base/process/process_metrics.h" | 
 | #include "base/strings/stringprintf.h" | 
 | #include "base/synchronization/waitable_event.h" | 
 | #include "base/threading/platform_thread.h" | 
 | #include "base/threading/thread_restrictions.h" | 
 | #include "base/time/time.h" | 
 | #include "build_config.h" | 
 |  | 
 | #if defined(OS_LINUX) || defined(OS_AIX) | 
 | #include <sys/prctl.h> | 
 | #endif | 
 |  | 
 | #if defined(OS_CHROMEOS) | 
 | #include <sys/ioctl.h> | 
 | #endif | 
 |  | 
 | #if defined(OS_FREEBSD) | 
 | #include <sys/event.h> | 
 | #include <sys/ucontext.h> | 
 | #endif | 
 |  | 
 | #if defined(OS_MACOSX) | 
 | #include <crt_externs.h> | 
 | #include <sys/event.h> | 
 |  | 
 | #include "base/feature_list.h" | 
 | #else | 
 | extern char** environ; | 
 | #endif | 
 |  | 
 | namespace base { | 
 |  | 
 | // Friend and derived class of ScopedAllowBaseSyncPrimitives which allows | 
 | // GetAppOutputInternal() to join a process. GetAppOutputInternal() can't itself | 
 | // be a friend of ScopedAllowBaseSyncPrimitives because it is in the anonymous | 
 | // namespace. | 
 | class GetAppOutputScopedAllowBaseSyncPrimitives | 
 |     : public base::ScopedAllowBaseSyncPrimitives {}; | 
 |  | 
 | #if !defined(OS_NACL_NONSFI) | 
 |  | 
 | namespace { | 
 |  | 
 | #if defined(OS_MACOSX) | 
 | const Feature kMacLaunchProcessPosixSpawn{"MacLaunchProcessPosixSpawn", | 
 |                                           FEATURE_ENABLED_BY_DEFAULT}; | 
 | #endif | 
 |  | 
 | // Get the process's "environment" (i.e. the thing that setenv/getenv | 
 | // work with). | 
 | char** GetEnvironment() { | 
 | #if defined(OS_MACOSX) | 
 |   return *_NSGetEnviron(); | 
 | #else | 
 |   return environ; | 
 | #endif | 
 | } | 
 |  | 
 | // Set the process's "environment" (i.e. the thing that setenv/getenv | 
 | // work with). | 
 | void SetEnvironment(char** env) { | 
 | #if defined(OS_MACOSX) | 
 |   *_NSGetEnviron() = env; | 
 | #else | 
 |   environ = env; | 
 | #endif | 
 | } | 
 |  | 
 | // Set the calling thread's signal mask to new_sigmask and return | 
 | // the previous signal mask. | 
 | sigset_t SetSignalMask(const sigset_t& new_sigmask) { | 
 |   sigset_t old_sigmask; | 
 | #if defined(OS_ANDROID) | 
 |   // POSIX says pthread_sigmask() must be used in multi-threaded processes, | 
 |   // but Android's pthread_sigmask() was broken until 4.1: | 
 |   // https://code.google.com/p/android/issues/detail?id=15337 | 
 |   // http://stackoverflow.com/questions/13777109/pthread-sigmask-on-android-not-working | 
 |   RAW_CHECK(sigprocmask(SIG_SETMASK, &new_sigmask, &old_sigmask) == 0); | 
 | #else | 
 |   RAW_CHECK(pthread_sigmask(SIG_SETMASK, &new_sigmask, &old_sigmask) == 0); | 
 | #endif | 
 |   return old_sigmask; | 
 | } | 
 |  | 
 | #if (!defined(OS_LINUX) && !defined(OS_AIX)) || \ | 
 |     (!defined(__i386__) && !defined(__x86_64__) && !defined(__arm__)) | 
 | void ResetChildSignalHandlersToDefaults() { | 
 |   // The previous signal handlers are likely to be meaningless in the child's | 
 |   // context so we reset them to the defaults for now. http://crbug.com/44953 | 
 |   // These signal handlers are set up at least in browser_main_posix.cc: | 
 |   // BrowserMainPartsPosix::PreEarlyInitialization and stack_trace_posix.cc: | 
 |   // EnableInProcessStackDumping. | 
 |   signal(SIGHUP, SIG_DFL); | 
 |   signal(SIGINT, SIG_DFL); | 
 |   signal(SIGILL, SIG_DFL); | 
 |   signal(SIGABRT, SIG_DFL); | 
 |   signal(SIGFPE, SIG_DFL); | 
 |   signal(SIGBUS, SIG_DFL); | 
 |   signal(SIGSEGV, SIG_DFL); | 
 |   signal(SIGSYS, SIG_DFL); | 
 |   signal(SIGTERM, SIG_DFL); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | // TODO(jln): remove the Linux special case once kernels are fixed. | 
 |  | 
 | // Internally the kernel makes sigset_t an array of long large enough to have | 
 | // one bit per signal. | 
 | typedef uint64_t kernel_sigset_t; | 
 |  | 
 | // This is what struct sigaction looks like to the kernel at least on X86 and | 
 | // ARM. MIPS, for instance, is very different. | 
 | struct kernel_sigaction { | 
 |   void* k_sa_handler;  // For this usage it only needs to be a generic pointer. | 
 |   unsigned long k_sa_flags; | 
 |   void* k_sa_restorer;  // For this usage it only needs to be a generic pointer. | 
 |   kernel_sigset_t k_sa_mask; | 
 | }; | 
 |  | 
 | // glibc's sigaction() will prevent access to sa_restorer, so we need to roll | 
 | // our own. | 
 | int sys_rt_sigaction(int sig, const struct kernel_sigaction* act, | 
 |                      struct kernel_sigaction* oact) { | 
 |   return syscall(SYS_rt_sigaction, sig, act, oact, sizeof(kernel_sigset_t)); | 
 | } | 
 |  | 
 | // This function is intended to be used in between fork() and execve() and will | 
 | // reset all signal handlers to the default. | 
 | // The motivation for going through all of them is that sa_restorer can leak | 
 | // from parents and help defeat ASLR on buggy kernels.  We reset it to null. | 
 | // See crbug.com/177956. | 
 | void ResetChildSignalHandlersToDefaults(void) { | 
 |   for (int signum = 1; ; ++signum) { | 
 |     struct kernel_sigaction act = {nullptr}; | 
 |     int sigaction_get_ret = sys_rt_sigaction(signum, nullptr, &act); | 
 |     if (sigaction_get_ret && errno == EINVAL) { | 
 | #if !defined(NDEBUG) | 
 |       // Linux supports 32 real-time signals from 33 to 64. | 
 |       // If the number of signals in the Linux kernel changes, someone should | 
 |       // look at this code. | 
 |       const int kNumberOfSignals = 64; | 
 |       RAW_CHECK(signum == kNumberOfSignals + 1); | 
 | #endif  // !defined(NDEBUG) | 
 |       break; | 
 |     } | 
 |     // All other failures are fatal. | 
 |     if (sigaction_get_ret) { | 
 |       RAW_LOG(FATAL, "sigaction (get) failed."); | 
 |     } | 
 |  | 
 |     // The kernel won't allow to re-set SIGKILL or SIGSTOP. | 
 |     if (signum != SIGSTOP && signum != SIGKILL) { | 
 |       act.k_sa_handler = reinterpret_cast<void*>(SIG_DFL); | 
 |       act.k_sa_restorer = nullptr; | 
 |       if (sys_rt_sigaction(signum, &act, nullptr)) { | 
 |         RAW_LOG(FATAL, "sigaction (set) failed."); | 
 |       } | 
 |     } | 
 | #if !defined(NDEBUG) | 
 |     // Now ask the kernel again and check that no restorer will leak. | 
 |     if (sys_rt_sigaction(signum, nullptr, &act) || act.k_sa_restorer) { | 
 |       RAW_LOG(FATAL, "Cound not fix sa_restorer."); | 
 |     } | 
 | #endif  // !defined(NDEBUG) | 
 |   } | 
 | } | 
 | #endif  // !defined(OS_LINUX) || | 
 |         // (!defined(__i386__) && !defined(__x86_64__) && !defined(__arm__)) | 
 | }  // anonymous namespace | 
 |  | 
 | // Functor for |ScopedDIR| (below). | 
 | struct ScopedDIRClose { | 
 |   inline void operator()(DIR* x) const { | 
 |     if (x) | 
 |       closedir(x); | 
 |   } | 
 | }; | 
 |  | 
 | // Automatically closes |DIR*|s. | 
 | typedef std::unique_ptr<DIR, ScopedDIRClose> ScopedDIR; | 
 |  | 
 | #if defined(OS_LINUX) || defined(OS_AIX) | 
 | static const char kFDDir[] = "/proc/self/fd"; | 
 | #elif defined(OS_MACOSX) | 
 | static const char kFDDir[] = "/dev/fd"; | 
 | #elif defined(OS_SOLARIS) | 
 | static const char kFDDir[] = "/dev/fd"; | 
 | #elif defined(OS_FREEBSD) | 
 | static const char kFDDir[] = "/dev/fd"; | 
 | #elif defined(OS_OPENBSD) | 
 | static const char kFDDir[] = "/dev/fd"; | 
 | #elif defined(OS_ANDROID) | 
 | static const char kFDDir[] = "/proc/self/fd"; | 
 | #endif | 
 |  | 
 | void CloseSuperfluousFds(const base::InjectiveMultimap& saved_mapping) { | 
 |   // DANGER: no calls to malloc or locks are allowed from now on: | 
 |   // http://crbug.com/36678 | 
 |  | 
 |   // Get the maximum number of FDs possible. | 
 |   size_t max_fds = GetMaxFds(); | 
 |  | 
 |   DirReaderPosix fd_dir(kFDDir); | 
 |   if (!fd_dir.IsValid()) { | 
 |     // Fallback case: Try every possible fd. | 
 |     for (size_t i = 0; i < max_fds; ++i) { | 
 |       const int fd = static_cast<int>(i); | 
 |       if (fd == STDIN_FILENO || fd == STDOUT_FILENO || fd == STDERR_FILENO) | 
 |         continue; | 
 |       // Cannot use STL iterators here, since debug iterators use locks. | 
 |       size_t j; | 
 |       for (j = 0; j < saved_mapping.size(); j++) { | 
 |         if (fd == saved_mapping[j].dest) | 
 |           break; | 
 |       } | 
 |       if (j < saved_mapping.size()) | 
 |         continue; | 
 |  | 
 |       // Since we're just trying to close anything we can find, | 
 |       // ignore any error return values of close(). | 
 |       close(fd); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   const int dir_fd = fd_dir.fd(); | 
 |  | 
 |   for ( ; fd_dir.Next(); ) { | 
 |     // Skip . and .. entries. | 
 |     if (fd_dir.name()[0] == '.') | 
 |       continue; | 
 |  | 
 |     char *endptr; | 
 |     errno = 0; | 
 |     const long int fd = strtol(fd_dir.name(), &endptr, 10); | 
 |     if (fd_dir.name()[0] == 0 || *endptr || fd < 0 || errno) | 
 |       continue; | 
 |     if (fd == STDIN_FILENO || fd == STDOUT_FILENO || fd == STDERR_FILENO) | 
 |       continue; | 
 |     // Cannot use STL iterators here, since debug iterators use locks. | 
 |     size_t i; | 
 |     for (i = 0; i < saved_mapping.size(); i++) { | 
 |       if (fd == saved_mapping[i].dest) | 
 |         break; | 
 |     } | 
 |     if (i < saved_mapping.size()) | 
 |       continue; | 
 |     if (fd == dir_fd) | 
 |       continue; | 
 |  | 
 |     int ret = IGNORE_EINTR(close(fd)); | 
 |     DPCHECK(ret == 0); | 
 |   } | 
 | } | 
 |  | 
 | Process LaunchProcess(const CommandLine& cmdline, | 
 |                       const LaunchOptions& options) { | 
 |   return LaunchProcess(cmdline.argv(), options); | 
 | } | 
 |  | 
 | Process LaunchProcess(const std::vector<std::string>& argv, | 
 |                       const LaunchOptions& options) { | 
 |   TRACE_EVENT0("base", "LaunchProcess"); | 
 | #if defined(OS_MACOSX) | 
 |   if (FeatureList::IsEnabled(kMacLaunchProcessPosixSpawn)) { | 
 |     // TODO(rsesek): Do this unconditionally. There is one user for each of | 
 |     // these two options. https://crbug.com/179923. | 
 |     if (!options.pre_exec_delegate && options.current_directory.empty()) | 
 |       return LaunchProcessPosixSpawn(argv, options); | 
 |   } | 
 | #endif | 
 |  | 
 |   InjectiveMultimap fd_shuffle1; | 
 |   InjectiveMultimap fd_shuffle2; | 
 |   fd_shuffle1.reserve(options.fds_to_remap.size()); | 
 |   fd_shuffle2.reserve(options.fds_to_remap.size()); | 
 |  | 
 |   std::vector<char*> argv_cstr; | 
 |   argv_cstr.reserve(argv.size() + 1); | 
 |   for (const auto& arg : argv) | 
 |     argv_cstr.push_back(const_cast<char*>(arg.c_str())); | 
 |   argv_cstr.push_back(nullptr); | 
 |  | 
 |   std::unique_ptr<char* []> new_environ; | 
 |   char* const empty_environ = nullptr; | 
 |   char* const* old_environ = GetEnvironment(); | 
 |   if (options.clear_environ) | 
 |     old_environ = &empty_environ; | 
 |   if (!options.environ.empty()) | 
 |     new_environ = AlterEnvironment(old_environ, options.environ); | 
 |  | 
 |   sigset_t full_sigset; | 
 |   sigfillset(&full_sigset); | 
 |   const sigset_t orig_sigmask = SetSignalMask(full_sigset); | 
 |  | 
 |   const char* current_directory = nullptr; | 
 |   if (!options.current_directory.empty()) { | 
 |     current_directory = options.current_directory.value().c_str(); | 
 |   } | 
 |  | 
 |   pid_t pid; | 
 |   base::TimeTicks before_fork = TimeTicks::Now(); | 
 | #if defined(OS_LINUX) || defined(OS_AIX) | 
 |   if (options.clone_flags) { | 
 |     // Signal handling in this function assumes the creation of a new | 
 |     // process, so we check that a thread is not being created by mistake | 
 |     // and that signal handling follows the process-creation rules. | 
 |     RAW_CHECK( | 
 |         !(options.clone_flags & (CLONE_SIGHAND | CLONE_THREAD | CLONE_VM))); | 
 |  | 
 |     // We specify a null ptid and ctid. | 
 |     RAW_CHECK( | 
 |         !(options.clone_flags & | 
 |           (CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT_SETTID))); | 
 |  | 
 |     // Since we use waitpid, we do not support custom termination signals in the | 
 |     // clone flags. | 
 |     RAW_CHECK((options.clone_flags & 0xff) == 0); | 
 |  | 
 |     pid = ForkWithFlags(options.clone_flags | SIGCHLD, nullptr, nullptr); | 
 |   } else | 
 | #endif | 
 |   { | 
 |     pid = fork(); | 
 |   } | 
 |  | 
 |   // Always restore the original signal mask in the parent. | 
 |   if (pid != 0) { | 
 |     base::TimeTicks after_fork = TimeTicks::Now(); | 
 |     SetSignalMask(orig_sigmask); | 
 |  | 
 |     base::TimeDelta fork_time = after_fork - before_fork; | 
 |     UMA_HISTOGRAM_TIMES("MPArch.ForkTime", fork_time); | 
 |   } | 
 |  | 
 |   if (pid < 0) { | 
 |     DPLOG(ERROR) << "fork"; | 
 |     return Process(); | 
 |   } else if (pid == 0) { | 
 |     // Child process | 
 |  | 
 |     // DANGER: no calls to malloc or locks are allowed from now on: | 
 |     // http://crbug.com/36678 | 
 |  | 
 |     // DANGER: fork() rule: in the child, if you don't end up doing exec*(), | 
 |     // you call _exit() instead of exit(). This is because _exit() does not | 
 |     // call any previously-registered (in the parent) exit handlers, which | 
 |     // might do things like block waiting for threads that don't even exist | 
 |     // in the child. | 
 |  | 
 |     // If a child process uses the readline library, the process block forever. | 
 |     // In BSD like OSes including OS X it is safe to assign /dev/null as stdin. | 
 |     // See http://crbug.com/56596. | 
 |     base::ScopedFD null_fd(HANDLE_EINTR(open("/dev/null", O_RDONLY))); | 
 |     if (!null_fd.is_valid()) { | 
 |       RAW_LOG(ERROR, "Failed to open /dev/null"); | 
 |       _exit(127); | 
 |     } | 
 |  | 
 |     int new_fd = HANDLE_EINTR(dup2(null_fd.get(), STDIN_FILENO)); | 
 |     if (new_fd != STDIN_FILENO) { | 
 |       RAW_LOG(ERROR, "Failed to dup /dev/null for stdin"); | 
 |       _exit(127); | 
 |     } | 
 |  | 
 |     if (options.new_process_group) { | 
 |       // Instead of inheriting the process group ID of the parent, the child | 
 |       // starts off a new process group with pgid equal to its process ID. | 
 |       if (setpgid(0, 0) < 0) { | 
 |         RAW_LOG(ERROR, "setpgid failed"); | 
 |         _exit(127); | 
 |       } | 
 |     } | 
 |  | 
 |     if (options.maximize_rlimits) { | 
 |       // Some resource limits need to be maximal in this child. | 
 |       for (size_t i = 0; i < options.maximize_rlimits->size(); ++i) { | 
 |         const int resource = (*options.maximize_rlimits)[i]; | 
 |         struct rlimit limit; | 
 |         if (getrlimit(resource, &limit) < 0) { | 
 |           RAW_LOG(WARNING, "getrlimit failed"); | 
 |         } else if (limit.rlim_cur < limit.rlim_max) { | 
 |           limit.rlim_cur = limit.rlim_max; | 
 |           if (setrlimit(resource, &limit) < 0) { | 
 |             RAW_LOG(WARNING, "setrlimit failed"); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 | #if defined(OS_MACOSX) | 
 |     RestoreDefaultExceptionHandler(); | 
 | #endif  // defined(OS_MACOSX) | 
 |  | 
 |     ResetChildSignalHandlersToDefaults(); | 
 |     SetSignalMask(orig_sigmask); | 
 |  | 
 | #if 0 | 
 |     // When debugging it can be helpful to check that we really aren't making | 
 |     // any hidden calls to malloc. | 
 |     void *malloc_thunk = | 
 |         reinterpret_cast<void*>(reinterpret_cast<intptr_t>(malloc) & ~4095); | 
 |     mprotect(malloc_thunk, 4096, PROT_READ | PROT_WRITE | PROT_EXEC); | 
 |     memset(reinterpret_cast<void*>(malloc), 0xff, 8); | 
 | #endif  // 0 | 
 |  | 
 | #if defined(OS_CHROMEOS) | 
 |     if (options.ctrl_terminal_fd >= 0) { | 
 |       // Set process' controlling terminal. | 
 |       if (HANDLE_EINTR(setsid()) != -1) { | 
 |         if (HANDLE_EINTR( | 
 |                 ioctl(options.ctrl_terminal_fd, TIOCSCTTY, nullptr)) == -1) { | 
 |           RAW_LOG(WARNING, "ioctl(TIOCSCTTY), ctrl terminal not set"); | 
 |         } | 
 |       } else { | 
 |         RAW_LOG(WARNING, "setsid failed, ctrl terminal not set"); | 
 |       } | 
 |     } | 
 | #endif  // defined(OS_CHROMEOS) | 
 |  | 
 |     // Cannot use STL iterators here, since debug iterators use locks. | 
 |     for (size_t i = 0; i < options.fds_to_remap.size(); ++i) { | 
 |       const FileHandleMappingVector::value_type& value = | 
 |           options.fds_to_remap[i]; | 
 |       fd_shuffle1.push_back(InjectionArc(value.first, value.second, false)); | 
 |       fd_shuffle2.push_back(InjectionArc(value.first, value.second, false)); | 
 |     } | 
 |  | 
 |     if (!options.environ.empty() || options.clear_environ) | 
 |       SetEnvironment(new_environ.get()); | 
 |  | 
 |     // fd_shuffle1 is mutated by this call because it cannot malloc. | 
 |     if (!ShuffleFileDescriptors(&fd_shuffle1)) | 
 |       _exit(127); | 
 |  | 
 |     CloseSuperfluousFds(fd_shuffle2); | 
 |  | 
 |     // Set NO_NEW_PRIVS by default. Since NO_NEW_PRIVS only exists in kernel | 
 |     // 3.5+, do not check the return value of prctl here. | 
 | #if defined(OS_LINUX) || defined(OS_AIX) | 
 | #ifndef PR_SET_NO_NEW_PRIVS | 
 | #define PR_SET_NO_NEW_PRIVS 38 | 
 | #endif | 
 |     if (!options.allow_new_privs) { | 
 |       if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) && errno != EINVAL) { | 
 |         // Only log if the error is not EINVAL (i.e. not supported). | 
 |         RAW_LOG(FATAL, "prctl(PR_SET_NO_NEW_PRIVS) failed"); | 
 |       } | 
 |     } | 
 |  | 
 |     if (options.kill_on_parent_death) { | 
 |       if (prctl(PR_SET_PDEATHSIG, SIGKILL) != 0) { | 
 |         RAW_LOG(ERROR, "prctl(PR_SET_PDEATHSIG) failed"); | 
 |         _exit(127); | 
 |       } | 
 |     } | 
 | #endif | 
 |  | 
 |     if (current_directory != nullptr) { | 
 |       RAW_CHECK(chdir(current_directory) == 0); | 
 |     } | 
 |  | 
 |     if (options.pre_exec_delegate != nullptr) { | 
 |       options.pre_exec_delegate->RunAsyncSafe(); | 
 |     } | 
 |  | 
 |     const char* executable_path = !options.real_path.empty() ? | 
 |         options.real_path.value().c_str() : argv_cstr[0]; | 
 |  | 
 |     execvp(executable_path, argv_cstr.data()); | 
 |  | 
 |     RAW_LOG(ERROR, "LaunchProcess: failed to execvp:"); | 
 |     RAW_LOG(ERROR, argv_cstr[0]); | 
 |     _exit(127); | 
 |   } else { | 
 |     // Parent process | 
 |     if (options.wait) { | 
 |       // While this isn't strictly disk IO, waiting for another process to | 
 |       // finish is the sort of thing ThreadRestrictions is trying to prevent. | 
 |       base::AssertBlockingAllowed(); | 
 |       pid_t ret = HANDLE_EINTR(waitpid(pid, nullptr, 0)); | 
 |       DPCHECK(ret > 0); | 
 |     } | 
 |   } | 
 |  | 
 |   return Process(pid); | 
 | } | 
 |  | 
 | void RaiseProcessToHighPriority() { | 
 |   // On POSIX, we don't actually do anything here.  We could try to nice() or | 
 |   // setpriority() or sched_getscheduler, but these all require extra rights. | 
 | } | 
 |  | 
 | // Executes the application specified by |argv| and wait for it to exit. Stores | 
 | // the output (stdout) in |output|. If |do_search_path| is set, it searches the | 
 | // path for the application; in that case, |envp| must be null, and it will use | 
 | // the current environment. If |do_search_path| is false, |argv[0]| should fully | 
 | // specify the path of the application, and |envp| will be used as the | 
 | // environment. If |include_stderr| is true, includes stderr otherwise redirects | 
 | // it to /dev/null. | 
 | // The return value of the function indicates success or failure. In the case of | 
 | // success, the application exit code will be returned in |*exit_code|, which | 
 | // should be checked to determine if the application ran successfully. | 
 | static bool GetAppOutputInternal( | 
 |     const std::vector<std::string>& argv, | 
 |     char* const envp[], | 
 |     bool include_stderr, | 
 |     std::string* output, | 
 |     bool do_search_path, | 
 |     int* exit_code) { | 
 |   base::AssertBlockingAllowed(); | 
 |   // exit_code must be supplied so calling function can determine success. | 
 |   DCHECK(exit_code); | 
 |   *exit_code = EXIT_FAILURE; | 
 |  | 
 |   // Declare and call reserve() here before calling fork() because the child | 
 |   // process cannot allocate memory. | 
 |   std::vector<char*> argv_cstr; | 
 |   argv_cstr.reserve(argv.size() + 1); | 
 |   InjectiveMultimap fd_shuffle1; | 
 |   InjectiveMultimap fd_shuffle2; | 
 |   fd_shuffle1.reserve(3); | 
 |   fd_shuffle2.reserve(3); | 
 |  | 
 |   // Either |do_search_path| should be false or |envp| should be null, but not | 
 |   // both. | 
 |   DCHECK(!do_search_path ^ !envp); | 
 |  | 
 |   int pipe_fd[2]; | 
 |   if (pipe(pipe_fd) < 0) | 
 |     return false; | 
 |  | 
 |   pid_t pid = fork(); | 
 |   switch (pid) { | 
 |     case -1: { | 
 |       // error | 
 |       close(pipe_fd[0]); | 
 |       close(pipe_fd[1]); | 
 |       return false; | 
 |     } | 
 |     case 0: { | 
 |       // child | 
 |       // | 
 |       // DANGER: no calls to malloc or locks are allowed from now on: | 
 |       // http://crbug.com/36678 | 
 |  | 
 | #if defined(OS_MACOSX) | 
 |       RestoreDefaultExceptionHandler(); | 
 | #endif | 
 |  | 
 |       // Obscure fork() rule: in the child, if you don't end up doing exec*(), | 
 |       // you call _exit() instead of exit(). This is because _exit() does not | 
 |       // call any previously-registered (in the parent) exit handlers, which | 
 |       // might do things like block waiting for threads that don't even exist | 
 |       // in the child. | 
 |       int dev_null = open("/dev/null", O_WRONLY); | 
 |       if (dev_null < 0) | 
 |         _exit(127); | 
 |  | 
 |       fd_shuffle1.push_back(InjectionArc(pipe_fd[1], STDOUT_FILENO, true)); | 
 |       fd_shuffle1.push_back(InjectionArc(include_stderr ? pipe_fd[1] : dev_null, | 
 |                                          STDERR_FILENO, true)); | 
 |       fd_shuffle1.push_back(InjectionArc(dev_null, STDIN_FILENO, true)); | 
 |       // Adding another element here? Remeber to increase the argument to | 
 |       // reserve(), above. | 
 |  | 
 |       for (size_t i = 0; i < fd_shuffle1.size(); ++i) | 
 |         fd_shuffle2.push_back(fd_shuffle1[i]); | 
 |  | 
 |       if (!ShuffleFileDescriptors(&fd_shuffle1)) | 
 |         _exit(127); | 
 |  | 
 |       CloseSuperfluousFds(fd_shuffle2); | 
 |  | 
 |       for (const auto& arg : argv) | 
 |         argv_cstr.push_back(const_cast<char*>(arg.c_str())); | 
 |       argv_cstr.push_back(nullptr); | 
 |  | 
 |       if (do_search_path) | 
 |         execvp(argv_cstr[0], argv_cstr.data()); | 
 |       else | 
 |         execve(argv_cstr[0], argv_cstr.data(), envp); | 
 |       _exit(127); | 
 |     } | 
 |     default: { | 
 |       // parent | 
 |       // | 
 |       // Close our writing end of pipe now. Otherwise later read would not | 
 |       // be able to detect end of child's output (in theory we could still | 
 |       // write to the pipe). | 
 |       close(pipe_fd[1]); | 
 |  | 
 |       output->clear(); | 
 |  | 
 |       while (true) { | 
 |         char buffer[256]; | 
 |         ssize_t bytes_read = | 
 |             HANDLE_EINTR(read(pipe_fd[0], buffer, sizeof(buffer))); | 
 |         if (bytes_read <= 0) | 
 |           break; | 
 |         output->append(buffer, bytes_read); | 
 |       } | 
 |       close(pipe_fd[0]); | 
 |  | 
 |       // Always wait for exit code (even if we know we'll declare | 
 |       // GOT_MAX_OUTPUT). | 
 |       Process process(pid); | 
 |       // A process launched with GetAppOutput*() usually doesn't wait on the | 
 |       // process that launched it and thus chances of deadlock are low. | 
 |       GetAppOutputScopedAllowBaseSyncPrimitives allow_base_sync_primitives; | 
 |       return process.WaitForExit(exit_code); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool GetAppOutput(const CommandLine& cl, std::string* output) { | 
 |   return GetAppOutput(cl.argv(), output); | 
 | } | 
 |  | 
 | bool GetAppOutput(const std::vector<std::string>& argv, std::string* output) { | 
 |   // Run |execve()| with the current environment. | 
 |   int exit_code; | 
 |   bool result = | 
 |       GetAppOutputInternal(argv, nullptr, false, output, true, &exit_code); | 
 |   return result && exit_code == EXIT_SUCCESS; | 
 | } | 
 |  | 
 | bool GetAppOutputAndError(const CommandLine& cl, std::string* output) { | 
 |   // Run |execve()| with the current environment. | 
 |   int exit_code; | 
 |   bool result = | 
 |       GetAppOutputInternal(cl.argv(), nullptr, true, output, true, &exit_code); | 
 |   return result && exit_code == EXIT_SUCCESS; | 
 | } | 
 |  | 
 | bool GetAppOutputAndError(const std::vector<std::string>& argv, | 
 |                           std::string* output) { | 
 |   int exit_code; | 
 |   bool result = | 
 |       GetAppOutputInternal(argv, nullptr, true, output, true, &exit_code); | 
 |   return result && exit_code == EXIT_SUCCESS; | 
 | } | 
 |  | 
 | bool GetAppOutputWithExitCode(const CommandLine& cl, | 
 |                               std::string* output, | 
 |                               int* exit_code) { | 
 |   // Run |execve()| with the current environment. | 
 |   return GetAppOutputInternal(cl.argv(), nullptr, false, output, true, | 
 |                               exit_code); | 
 | } | 
 |  | 
 | #endif  // !defined(OS_NACL_NONSFI) | 
 |  | 
 | #if defined(OS_LINUX) || defined(OS_NACL_NONSFI) || defined(OS_AIX) | 
 | namespace { | 
 |  | 
 | // This function runs on the stack specified on the clone call. It uses longjmp | 
 | // to switch back to the original stack so the child can return from sys_clone. | 
 | int CloneHelper(void* arg) { | 
 |   jmp_buf* env_ptr = reinterpret_cast<jmp_buf*>(arg); | 
 |   longjmp(*env_ptr, 1); | 
 |  | 
 |   // Should not be reached. | 
 |   RAW_CHECK(false); | 
 |   return 1; | 
 | } | 
 |  | 
 | // This function is noinline to ensure that stack_buf is below the stack pointer | 
 | // that is saved when setjmp is called below. This is needed because when | 
 | // compiled with FORTIFY_SOURCE, glibc's longjmp checks that the stack is moved | 
 | // upwards. See crbug.com/442912 for more details. | 
 | #if defined(ADDRESS_SANITIZER) | 
 | // Disable AddressSanitizer instrumentation for this function to make sure | 
 | // |stack_buf| is allocated on thread stack instead of ASan's fake stack. | 
 | // Under ASan longjmp() will attempt to clean up the area between the old and | 
 | // new stack pointers and print a warning that may confuse the user. | 
 | __attribute__((no_sanitize_address)) | 
 | #endif | 
 | NOINLINE pid_t CloneAndLongjmpInChild(unsigned long flags, | 
 |                                       pid_t* ptid, | 
 |                                       pid_t* ctid, | 
 |                                       jmp_buf* env) { | 
 |   // We use the libc clone wrapper instead of making the syscall | 
 |   // directly because making the syscall may fail to update the libc's | 
 |   // internal pid cache. The libc interface unfortunately requires | 
 |   // specifying a new stack, so we use setjmp/longjmp to emulate | 
 |   // fork-like behavior. | 
 |   alignas(16) char stack_buf[PTHREAD_STACK_MIN]; | 
 | #if defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY) ||   \ | 
 |     defined(ARCH_CPU_MIPS_FAMILY) || defined(ARCH_CPU_S390_FAMILY) || \ | 
 |     defined(ARCH_CPU_PPC64_FAMILY) | 
 |   // The stack grows downward. | 
 |   void* stack = stack_buf + sizeof(stack_buf); | 
 | #else | 
 | #error "Unsupported architecture" | 
 | #endif | 
 |   return clone(&CloneHelper, stack, flags, env, ptid, nullptr, ctid); | 
 | } | 
 |  | 
 | }  // anonymous namespace | 
 |  | 
 | pid_t ForkWithFlags(unsigned long flags, pid_t* ptid, pid_t* ctid) { | 
 |   const bool clone_tls_used = flags & CLONE_SETTLS; | 
 |   const bool invalid_ctid = | 
 |       (flags & (CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)) && !ctid; | 
 |   const bool invalid_ptid = (flags & CLONE_PARENT_SETTID) && !ptid; | 
 |  | 
 |   // We do not support CLONE_VM. | 
 |   const bool clone_vm_used = flags & CLONE_VM; | 
 |  | 
 |   if (clone_tls_used || invalid_ctid || invalid_ptid || clone_vm_used) { | 
 |     RAW_LOG(FATAL, "Invalid usage of ForkWithFlags"); | 
 |   } | 
 |  | 
 |   jmp_buf env; | 
 |   if (setjmp(env) == 0) { | 
 |     return CloneAndLongjmpInChild(flags, ptid, ctid, &env); | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 | #endif  // defined(OS_LINUX) || defined(OS_NACL_NONSFI) | 
 |  | 
 | }  // namespace base |