|  | // Copyright (c) 2006, Google Inc. | 
|  | // All rights reserved. | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | // notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | // copyright notice, this list of conditions and the following disclaimer | 
|  | // in the documentation and/or other materials provided with the | 
|  | // distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | // contributors may be used to endorse or promote products derived from | 
|  | // this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: Satoru Takabayashi | 
|  | // Stack-footprint reduction work done by Raksit Ashok | 
|  | // | 
|  | // Implementation note: | 
|  | // | 
|  | // We don't use heaps but only use stacks.  We want to reduce the | 
|  | // stack consumption so that the symbolizer can run on small stacks. | 
|  | // | 
|  | // Here are some numbers collected with GCC 4.1.0 on x86: | 
|  | // - sizeof(Elf32_Sym)  = 16 | 
|  | // - sizeof(Elf32_Shdr) = 40 | 
|  | // - sizeof(Elf64_Sym)  = 24 | 
|  | // - sizeof(Elf64_Shdr) = 64 | 
|  | // | 
|  | // This implementation is intended to be async-signal-safe but uses | 
|  | // some functions which are not guaranteed to be so, such as memchr() | 
|  | // and memmove().  We assume they are async-signal-safe. | 
|  | // | 
|  | // Additional header can be specified by the GLOG_BUILD_CONFIG_INCLUDE | 
|  | // macro to add platform specific defines (e.g. OS_OPENBSD). | 
|  |  | 
|  | #ifdef GLOG_BUILD_CONFIG_INCLUDE | 
|  | #include GLOG_BUILD_CONFIG_INCLUDE | 
|  | #endif  // GLOG_BUILD_CONFIG_INCLUDE | 
|  |  | 
|  | #include "utilities.h" | 
|  |  | 
|  | #if defined(HAVE_SYMBOLIZE) | 
|  |  | 
|  | #include <string.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <limits> | 
|  |  | 
|  | #include "symbolize.h" | 
|  | #include "demangle.h" | 
|  |  | 
|  | _START_GOOGLE_NAMESPACE_ | 
|  |  | 
|  | // We don't use assert() since it's not guaranteed to be | 
|  | // async-signal-safe.  Instead we define a minimal assertion | 
|  | // macro. So far, we don't need pretty printing for __FILE__, etc. | 
|  |  | 
|  | // A wrapper for abort() to make it callable in ? :. | 
|  | static int AssertFail() { | 
|  | abort(); | 
|  | return 0;  // Should not reach. | 
|  | } | 
|  |  | 
|  | #define SAFE_ASSERT(expr) ((expr) ? 0 : AssertFail()) | 
|  |  | 
|  | static SymbolizeCallback g_symbolize_callback = NULL; | 
|  | void InstallSymbolizeCallback(SymbolizeCallback callback) { | 
|  | g_symbolize_callback = callback; | 
|  | } | 
|  |  | 
|  | static SymbolizeOpenObjectFileCallback g_symbolize_open_object_file_callback = | 
|  | NULL; | 
|  | void InstallSymbolizeOpenObjectFileCallback( | 
|  | SymbolizeOpenObjectFileCallback callback) { | 
|  | g_symbolize_open_object_file_callback = callback; | 
|  | } | 
|  |  | 
|  | // This function wraps the Demangle function to provide an interface | 
|  | // where the input symbol is demangled in-place. | 
|  | // To keep stack consumption low, we would like this function to not | 
|  | // get inlined. | 
|  | static ATTRIBUTE_NOINLINE void DemangleInplace(char *out, int out_size) { | 
|  | char demangled[256];  // Big enough for sane demangled symbols. | 
|  | if (Demangle(out, demangled, sizeof(demangled))) { | 
|  | // Demangling succeeded. Copy to out if the space allows. | 
|  | size_t len = strlen(demangled); | 
|  | if (len + 1 <= (size_t)out_size) {  // +1 for '\0'. | 
|  | SAFE_ASSERT(len < sizeof(demangled)); | 
|  | memmove(out, demangled, len + 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | _END_GOOGLE_NAMESPACE_ | 
|  |  | 
|  | #if defined(__ELF__) | 
|  |  | 
|  | #include <dlfcn.h> | 
|  | #if defined(OS_OPENBSD) | 
|  | #include <sys/exec_elf.h> | 
|  | #else | 
|  | #include <elf.h> | 
|  | #endif | 
|  | #include <errno.h> | 
|  | #include <fcntl.h> | 
|  | #include <limits.h> | 
|  | #include <stdint.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <stddef.h> | 
|  | #include <string.h> | 
|  | #include <sys/stat.h> | 
|  | #include <sys/types.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include "symbolize.h" | 
|  | #include "config.h" | 
|  | #include "glog/raw_logging.h" | 
|  |  | 
|  | // Re-runs fn until it doesn't cause EINTR. | 
|  | #define NO_INTR(fn)   do {} while ((fn) < 0 && errno == EINTR) | 
|  |  | 
|  | _START_GOOGLE_NAMESPACE_ | 
|  |  | 
|  | // Read up to "count" bytes from file descriptor "fd" into the buffer | 
|  | // starting at "buf" while handling short reads and EINTR.  On | 
|  | // success, return the number of bytes read.  Otherwise, return -1. | 
|  | static ssize_t ReadPersistent(const int fd, void *buf, const size_t count) { | 
|  | SAFE_ASSERT(fd >= 0); | 
|  | SAFE_ASSERT(count <= std::numeric_limits<ssize_t>::max()); | 
|  | char *buf0 = reinterpret_cast<char *>(buf); | 
|  | ssize_t num_bytes = 0; | 
|  | while (num_bytes < count) { | 
|  | ssize_t len; | 
|  | NO_INTR(len = read(fd, buf0 + num_bytes, count - num_bytes)); | 
|  | if (len < 0) {  // There was an error other than EINTR. | 
|  | return -1; | 
|  | } | 
|  | if (len == 0) {  // Reached EOF. | 
|  | break; | 
|  | } | 
|  | num_bytes += len; | 
|  | } | 
|  | SAFE_ASSERT(num_bytes <= count); | 
|  | return num_bytes; | 
|  | } | 
|  |  | 
|  | // Read up to "count" bytes from "offset" in the file pointed by file | 
|  | // descriptor "fd" into the buffer starting at "buf".  On success, | 
|  | // return the number of bytes read.  Otherwise, return -1. | 
|  | static ssize_t ReadFromOffset(const int fd, void *buf, | 
|  | const size_t count, const off_t offset) { | 
|  | off_t off = lseek(fd, offset, SEEK_SET); | 
|  | if (off == (off_t)-1) { | 
|  | return -1; | 
|  | } | 
|  | return ReadPersistent(fd, buf, count); | 
|  | } | 
|  |  | 
|  | // Try reading exactly "count" bytes from "offset" bytes in a file | 
|  | // pointed by "fd" into the buffer starting at "buf" while handling | 
|  | // short reads and EINTR.  On success, return true. Otherwise, return | 
|  | // false. | 
|  | static bool ReadFromOffsetExact(const int fd, void *buf, | 
|  | const size_t count, const off_t offset) { | 
|  | ssize_t len = ReadFromOffset(fd, buf, count, offset); | 
|  | return len == count; | 
|  | } | 
|  |  | 
|  | // Returns elf_header.e_type if the file pointed by fd is an ELF binary. | 
|  | static int FileGetElfType(const int fd) { | 
|  | ElfW(Ehdr) elf_header; | 
|  | if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { | 
|  | return -1; | 
|  | } | 
|  | if (memcmp(elf_header.e_ident, ELFMAG, SELFMAG) != 0) { | 
|  | return -1; | 
|  | } | 
|  | return elf_header.e_type; | 
|  | } | 
|  |  | 
|  | // Read the section headers in the given ELF binary, and if a section | 
|  | // of the specified type is found, set the output to this section header | 
|  | // and return true.  Otherwise, return false. | 
|  | // To keep stack consumption low, we would like this function to not get | 
|  | // inlined. | 
|  | static ATTRIBUTE_NOINLINE bool | 
|  | GetSectionHeaderByType(const int fd, ElfW(Half) sh_num, const off_t sh_offset, | 
|  | ElfW(Word) type, ElfW(Shdr) *out) { | 
|  | // Read at most 16 section headers at a time to save read calls. | 
|  | ElfW(Shdr) buf[16]; | 
|  | for (int i = 0; i < sh_num;) { | 
|  | const ssize_t num_bytes_left = (sh_num - i) * sizeof(buf[0]); | 
|  | const ssize_t num_bytes_to_read = | 
|  | (sizeof(buf) > num_bytes_left) ? num_bytes_left : sizeof(buf); | 
|  | const ssize_t len = ReadFromOffset(fd, buf, num_bytes_to_read, | 
|  | sh_offset + i * sizeof(buf[0])); | 
|  | SAFE_ASSERT(len % sizeof(buf[0]) == 0); | 
|  | const ssize_t num_headers_in_buf = len / sizeof(buf[0]); | 
|  | SAFE_ASSERT(num_headers_in_buf <= sizeof(buf) / sizeof(buf[0])); | 
|  | for (int j = 0; j < num_headers_in_buf; ++j) { | 
|  | if (buf[j].sh_type == type) { | 
|  | *out = buf[j]; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | i += num_headers_in_buf; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // There is no particular reason to limit section name to 63 characters, | 
|  | // but there has (as yet) been no need for anything longer either. | 
|  | const int kMaxSectionNameLen = 64; | 
|  |  | 
|  | // name_len should include terminating '\0'. | 
|  | bool GetSectionHeaderByName(int fd, const char *name, size_t name_len, | 
|  | ElfW(Shdr) *out) { | 
|  | ElfW(Ehdr) elf_header; | 
|  | if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ElfW(Shdr) shstrtab; | 
|  | off_t shstrtab_offset = (elf_header.e_shoff + | 
|  | elf_header.e_shentsize * elf_header.e_shstrndx); | 
|  | if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < elf_header.e_shnum; ++i) { | 
|  | off_t section_header_offset = (elf_header.e_shoff + | 
|  | elf_header.e_shentsize * i); | 
|  | if (!ReadFromOffsetExact(fd, out, sizeof(*out), section_header_offset)) { | 
|  | return false; | 
|  | } | 
|  | char header_name[kMaxSectionNameLen]; | 
|  | if (sizeof(header_name) < name_len) { | 
|  | RAW_LOG(WARNING, "Section name '%s' is too long (%" PRIuS "); " | 
|  | "section will not be found (even if present).", name, name_len); | 
|  | // No point in even trying. | 
|  | return false; | 
|  | } | 
|  | off_t name_offset = shstrtab.sh_offset + out->sh_name; | 
|  | ssize_t n_read = ReadFromOffset(fd, &header_name, name_len, name_offset); | 
|  | if (n_read == -1) { | 
|  | return false; | 
|  | } else if (n_read != name_len) { | 
|  | // Short read -- name could be at end of file. | 
|  | continue; | 
|  | } | 
|  | if (memcmp(header_name, name, name_len) == 0) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Read a symbol table and look for the symbol containing the | 
|  | // pc. Iterate over symbols in a symbol table and look for the symbol | 
|  | // containing "pc".  On success, return true and write the symbol name | 
|  | // to out.  Otherwise, return false. | 
|  | // To keep stack consumption low, we would like this function to not get | 
|  | // inlined. | 
|  | static ATTRIBUTE_NOINLINE bool | 
|  | FindSymbol(uint64_t pc, const int fd, char *out, int out_size, | 
|  | uint64_t symbol_offset, const ElfW(Shdr) *strtab, | 
|  | const ElfW(Shdr) *symtab) { | 
|  | if (symtab == NULL) { | 
|  | return false; | 
|  | } | 
|  | const int num_symbols = symtab->sh_size / symtab->sh_entsize; | 
|  | for (int i = 0; i < num_symbols;) { | 
|  | off_t offset = symtab->sh_offset + i * symtab->sh_entsize; | 
|  |  | 
|  | // If we are reading Elf64_Sym's, we want to limit this array to | 
|  | // 32 elements (to keep stack consumption low), otherwise we can | 
|  | // have a 64 element Elf32_Sym array. | 
|  | #if __WORDSIZE == 64 | 
|  | #define NUM_SYMBOLS 32 | 
|  | #else | 
|  | #define NUM_SYMBOLS 64 | 
|  | #endif | 
|  |  | 
|  | // Read at most NUM_SYMBOLS symbols at once to save read() calls. | 
|  | ElfW(Sym) buf[NUM_SYMBOLS]; | 
|  | int num_symbols_to_read = std::min(NUM_SYMBOLS, num_symbols - i); | 
|  | const ssize_t len = | 
|  | ReadFromOffset(fd, &buf, sizeof(buf[0]) * num_symbols_to_read, offset); | 
|  | SAFE_ASSERT(len % sizeof(buf[0]) == 0); | 
|  | const ssize_t num_symbols_in_buf = len / sizeof(buf[0]); | 
|  | SAFE_ASSERT(num_symbols_in_buf <= num_symbols_to_read); | 
|  | for (int j = 0; j < num_symbols_in_buf; ++j) { | 
|  | const ElfW(Sym)& symbol = buf[j]; | 
|  | uint64_t start_address = symbol.st_value; | 
|  | start_address += symbol_offset; | 
|  | uint64_t end_address = start_address + symbol.st_size; | 
|  | if (symbol.st_value != 0 &&  // Skip null value symbols. | 
|  | symbol.st_shndx != 0 &&  // Skip undefined symbols. | 
|  | start_address <= pc && pc < end_address) { | 
|  | ssize_t len1 = ReadFromOffset(fd, out, out_size, | 
|  | strtab->sh_offset + symbol.st_name); | 
|  | if (len1 <= 0 || memchr(out, '\0', out_size) == NULL) { | 
|  | return false; | 
|  | } | 
|  | return true;  // Obtained the symbol name. | 
|  | } | 
|  | } | 
|  | i += num_symbols_in_buf; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Get the symbol name of "pc" from the file pointed by "fd".  Process | 
|  | // both regular and dynamic symbol tables if necessary.  On success, | 
|  | // write the symbol name to "out" and return true.  Otherwise, return | 
|  | // false. | 
|  | static bool GetSymbolFromObjectFile(const int fd, | 
|  | uint64_t pc, | 
|  | char* out, | 
|  | int out_size, | 
|  | uint64_t base_address) { | 
|  | // Read the ELF header. | 
|  | ElfW(Ehdr) elf_header; | 
|  | if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ElfW(Shdr) symtab, strtab; | 
|  |  | 
|  | // Consult a regular symbol table first. | 
|  | if (GetSectionHeaderByType(fd, elf_header.e_shnum, elf_header.e_shoff, | 
|  | SHT_SYMTAB, &symtab)) { | 
|  | if (!ReadFromOffsetExact(fd, &strtab, sizeof(strtab), elf_header.e_shoff + | 
|  | symtab.sh_link * sizeof(symtab))) { | 
|  | return false; | 
|  | } | 
|  | if (FindSymbol(pc, fd, out, out_size, base_address, &strtab, &symtab)) { | 
|  | return true;  // Found the symbol in a regular symbol table. | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the symbol is not found, then consult a dynamic symbol table. | 
|  | if (GetSectionHeaderByType(fd, elf_header.e_shnum, elf_header.e_shoff, | 
|  | SHT_DYNSYM, &symtab)) { | 
|  | if (!ReadFromOffsetExact(fd, &strtab, sizeof(strtab), elf_header.e_shoff + | 
|  | symtab.sh_link * sizeof(symtab))) { | 
|  | return false; | 
|  | } | 
|  | if (FindSymbol(pc, fd, out, out_size, base_address, &strtab, &symtab)) { | 
|  | return true;  // Found the symbol in a dynamic symbol table. | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Thin wrapper around a file descriptor so that the file descriptor | 
|  | // gets closed for sure. | 
|  | struct FileDescriptor { | 
|  | const int fd_; | 
|  | explicit FileDescriptor(int fd) : fd_(fd) {} | 
|  | ~FileDescriptor() { | 
|  | if (fd_ >= 0) { | 
|  | NO_INTR(close(fd_)); | 
|  | } | 
|  | } | 
|  | int get() { return fd_; } | 
|  |  | 
|  | private: | 
|  | explicit FileDescriptor(const FileDescriptor&); | 
|  | void operator=(const FileDescriptor&); | 
|  | }; | 
|  |  | 
|  | // Helper class for reading lines from file. | 
|  | // | 
|  | // Note: we don't use ProcMapsIterator since the object is big (it has | 
|  | // a 5k array member) and uses async-unsafe functions such as sscanf() | 
|  | // and snprintf(). | 
|  | class LineReader { | 
|  | public: | 
|  | explicit LineReader(int fd, char *buf, int buf_len) : fd_(fd), | 
|  | buf_(buf), buf_len_(buf_len), bol_(buf), eol_(buf), eod_(buf) { | 
|  | } | 
|  |  | 
|  | // Read '\n'-terminated line from file.  On success, modify "bol" | 
|  | // and "eol", then return true.  Otherwise, return false. | 
|  | // | 
|  | // Note: if the last line doesn't end with '\n', the line will be | 
|  | // dropped.  It's an intentional behavior to make the code simple. | 
|  | bool ReadLine(const char **bol, const char **eol) { | 
|  | if (BufferIsEmpty()) {  // First time. | 
|  | const ssize_t num_bytes = ReadPersistent(fd_, buf_, buf_len_); | 
|  | if (num_bytes <= 0) {  // EOF or error. | 
|  | return false; | 
|  | } | 
|  | eod_ = buf_ + num_bytes; | 
|  | bol_ = buf_; | 
|  | } else { | 
|  | bol_ = eol_ + 1;  // Advance to the next line in the buffer. | 
|  | SAFE_ASSERT(bol_ <= eod_);  // "bol_" can point to "eod_". | 
|  | if (!HasCompleteLine()) { | 
|  | const int incomplete_line_length = eod_ - bol_; | 
|  | // Move the trailing incomplete line to the beginning. | 
|  | memmove(buf_, bol_, incomplete_line_length); | 
|  | // Read text from file and append it. | 
|  | char * const append_pos = buf_ + incomplete_line_length; | 
|  | const int capacity_left = buf_len_ - incomplete_line_length; | 
|  | const ssize_t num_bytes = ReadPersistent(fd_, append_pos, | 
|  | capacity_left); | 
|  | if (num_bytes <= 0) {  // EOF or error. | 
|  | return false; | 
|  | } | 
|  | eod_ = append_pos + num_bytes; | 
|  | bol_ = buf_; | 
|  | } | 
|  | } | 
|  | eol_ = FindLineFeed(); | 
|  | if (eol_ == NULL) {  // '\n' not found.  Malformed line. | 
|  | return false; | 
|  | } | 
|  | *eol_ = '\0';  // Replace '\n' with '\0'. | 
|  |  | 
|  | *bol = bol_; | 
|  | *eol = eol_; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Beginning of line. | 
|  | const char *bol() { | 
|  | return bol_; | 
|  | } | 
|  |  | 
|  | // End of line. | 
|  | const char *eol() { | 
|  | return eol_; | 
|  | } | 
|  |  | 
|  | private: | 
|  | explicit LineReader(const LineReader&); | 
|  | void operator=(const LineReader&); | 
|  |  | 
|  | char *FindLineFeed() { | 
|  | return reinterpret_cast<char *>(memchr(bol_, '\n', eod_ - bol_)); | 
|  | } | 
|  |  | 
|  | bool BufferIsEmpty() { | 
|  | return buf_ == eod_; | 
|  | } | 
|  |  | 
|  | bool HasCompleteLine() { | 
|  | return !BufferIsEmpty() && FindLineFeed() != NULL; | 
|  | } | 
|  |  | 
|  | const int fd_; | 
|  | char * const buf_; | 
|  | const int buf_len_; | 
|  | char *bol_; | 
|  | char *eol_; | 
|  | const char *eod_;  // End of data in "buf_". | 
|  | }; | 
|  | }  // namespace | 
|  |  | 
|  | // Place the hex number read from "start" into "*hex".  The pointer to | 
|  | // the first non-hex character or "end" is returned. | 
|  | static char *GetHex(const char *start, const char *end, uint64_t *hex) { | 
|  | *hex = 0; | 
|  | const char *p; | 
|  | for (p = start; p < end; ++p) { | 
|  | int ch = *p; | 
|  | if ((ch >= '0' && ch <= '9') || | 
|  | (ch >= 'A' && ch <= 'F') || (ch >= 'a' && ch <= 'f')) { | 
|  | *hex = (*hex << 4) | (ch < 'A' ? ch - '0' : (ch & 0xF) + 9); | 
|  | } else {  // Encountered the first non-hex character. | 
|  | break; | 
|  | } | 
|  | } | 
|  | SAFE_ASSERT(p <= end); | 
|  | return const_cast<char *>(p); | 
|  | } | 
|  |  | 
|  | // Searches for the object file (from /proc/self/maps) that contains | 
|  | // the specified pc.  If found, sets |start_address| to the start address | 
|  | // of where this object file is mapped in memory, sets the module base | 
|  | // address into |base_address|, copies the object file name into | 
|  | // |out_file_name|, and attempts to open the object file.  If the object | 
|  | // file is opened successfully, returns the file descriptor.  Otherwise, | 
|  | // returns -1.  |out_file_name_size| is the size of the file name buffer | 
|  | // (including the null-terminator). | 
|  | static ATTRIBUTE_NOINLINE int | 
|  | OpenObjectFileContainingPcAndGetStartAddress(uint64_t pc, | 
|  | uint64_t &start_address, | 
|  | uint64_t &base_address, | 
|  | char *out_file_name, | 
|  | int out_file_name_size) { | 
|  | int object_fd; | 
|  |  | 
|  | int maps_fd; | 
|  | NO_INTR(maps_fd = open("/proc/self/maps", O_RDONLY)); | 
|  | FileDescriptor wrapped_maps_fd(maps_fd); | 
|  | if (wrapped_maps_fd.get() < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int mem_fd; | 
|  | NO_INTR(mem_fd = open("/proc/self/mem", O_RDONLY)); | 
|  | FileDescriptor wrapped_mem_fd(mem_fd); | 
|  | if (wrapped_mem_fd.get() < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Iterate over maps and look for the map containing the pc.  Then | 
|  | // look into the symbol tables inside. | 
|  | char buf[1024];  // Big enough for line of sane /proc/self/maps | 
|  | int num_maps = 0; | 
|  | LineReader reader(wrapped_maps_fd.get(), buf, sizeof(buf)); | 
|  | while (true) { | 
|  | num_maps++; | 
|  | const char *cursor; | 
|  | const char *eol; | 
|  | if (!reader.ReadLine(&cursor, &eol)) {  // EOF or malformed line. | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Start parsing line in /proc/self/maps.  Here is an example: | 
|  | // | 
|  | // 08048000-0804c000 r-xp 00000000 08:01 2142121    /bin/cat | 
|  | // | 
|  | // We want start address (08048000), end address (0804c000), flags | 
|  | // (r-xp) and file name (/bin/cat). | 
|  |  | 
|  | // Read start address. | 
|  | cursor = GetHex(cursor, eol, &start_address); | 
|  | if (cursor == eol || *cursor != '-') { | 
|  | return -1;  // Malformed line. | 
|  | } | 
|  | ++cursor;  // Skip '-'. | 
|  |  | 
|  | // Read end address. | 
|  | uint64_t end_address; | 
|  | cursor = GetHex(cursor, eol, &end_address); | 
|  | if (cursor == eol || *cursor != ' ') { | 
|  | return -1;  // Malformed line. | 
|  | } | 
|  | ++cursor;  // Skip ' '. | 
|  |  | 
|  | // Read flags.  Skip flags until we encounter a space or eol. | 
|  | const char * const flags_start = cursor; | 
|  | while (cursor < eol && *cursor != ' ') { | 
|  | ++cursor; | 
|  | } | 
|  | // We expect at least four letters for flags (ex. "r-xp"). | 
|  | if (cursor == eol || cursor < flags_start + 4) { | 
|  | return -1;  // Malformed line. | 
|  | } | 
|  |  | 
|  | // Determine the base address by reading ELF headers in process memory. | 
|  | ElfW(Ehdr) ehdr; | 
|  | if (flags_start[0] == 'r' && | 
|  | ReadFromOffsetExact(mem_fd, &ehdr, sizeof(ElfW(Ehdr)), start_address) && | 
|  | memcmp(ehdr.e_ident, ELFMAG, SELFMAG) == 0) { | 
|  | switch (ehdr.e_type) { | 
|  | case ET_EXEC: | 
|  | base_address = 0; | 
|  | break; | 
|  | case ET_DYN: | 
|  | // Find the segment containing file offset 0. This will correspond | 
|  | // to the ELF header that we just read. Normally this will have | 
|  | // virtual address 0, but this is not guaranteed. We must subtract | 
|  | // the virtual address from the address where the ELF header was | 
|  | // mapped to get the base address. | 
|  | // | 
|  | // If we fail to find a segment for file offset 0, use the address | 
|  | // of the ELF header as the base address. | 
|  | base_address = start_address; | 
|  | for (unsigned i = 0; i != ehdr.e_phnum; ++i) { | 
|  | ElfW(Phdr) phdr; | 
|  | if (ReadFromOffsetExact( | 
|  | mem_fd, &phdr, sizeof(phdr), | 
|  | start_address + ehdr.e_phoff + i * sizeof(phdr)) && | 
|  | phdr.p_type == PT_LOAD && phdr.p_offset == 0) { | 
|  | base_address = start_address - phdr.p_vaddr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | // ET_REL or ET_CORE. These aren't directly executable, so they don't | 
|  | // affect the base address. | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check start and end addresses. | 
|  | if (!(start_address <= pc && pc < end_address)) { | 
|  | continue;  // We skip this map.  PC isn't in this map. | 
|  | } | 
|  |  | 
|  | // Check flags.  We are only interested in "r-x" maps. | 
|  | if (memcmp(flags_start, "r-x", 3) != 0) {  // Not a "r-x" map. | 
|  | continue;  // We skip this map. | 
|  | } | 
|  | ++cursor;  // Skip ' '. | 
|  |  | 
|  | // Read file offset. | 
|  | uint64_t file_offset; | 
|  | cursor = GetHex(cursor, eol, &file_offset); | 
|  | if (cursor == eol || *cursor != ' ') { | 
|  | return -1;  // Malformed line. | 
|  | } | 
|  | ++cursor;  // Skip ' '. | 
|  |  | 
|  | // Skip to file name.  "cursor" now points to dev.  We need to | 
|  | // skip at least two spaces for dev and inode. | 
|  | int num_spaces = 0; | 
|  | while (cursor < eol) { | 
|  | if (*cursor == ' ') { | 
|  | ++num_spaces; | 
|  | } else if (num_spaces >= 2) { | 
|  | // The first non-space character after skipping two spaces | 
|  | // is the beginning of the file name. | 
|  | break; | 
|  | } | 
|  | ++cursor; | 
|  | } | 
|  | if (cursor == eol) { | 
|  | return -1;  // Malformed line. | 
|  | } | 
|  |  | 
|  | // Finally, "cursor" now points to file name of our interest. | 
|  | NO_INTR(object_fd = open(cursor, O_RDONLY)); | 
|  | if (object_fd < 0) { | 
|  | // Failed to open object file.  Copy the object file name to | 
|  | // |out_file_name|. | 
|  | strncpy(out_file_name, cursor, out_file_name_size); | 
|  | // Making sure |out_file_name| is always null-terminated. | 
|  | out_file_name[out_file_name_size - 1] = '\0'; | 
|  | return -1; | 
|  | } | 
|  | return object_fd; | 
|  | } | 
|  | } | 
|  |  | 
|  | // POSIX doesn't define any async-signal safe function for converting | 
|  | // an integer to ASCII. We'll have to define our own version. | 
|  | // itoa_r() converts a (signed) integer to ASCII. It returns "buf", if the | 
|  | // conversion was successful or NULL otherwise. It never writes more than "sz" | 
|  | // bytes. Output will be truncated as needed, and a NUL character is always | 
|  | // appended. | 
|  | // NOTE: code from sandbox/linux/seccomp-bpf/demo.cc. | 
|  | char *itoa_r(intptr_t i, char *buf, size_t sz, int base, size_t padding) { | 
|  | // Make sure we can write at least one NUL byte. | 
|  | size_t n = 1; | 
|  | if (n > sz) | 
|  | return NULL; | 
|  |  | 
|  | if (base < 2 || base > 16) { | 
|  | buf[0] = '\000'; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | char *start = buf; | 
|  |  | 
|  | uintptr_t j = i; | 
|  |  | 
|  | // Handle negative numbers (only for base 10). | 
|  | if (i < 0 && base == 10) { | 
|  | // This does "j = -i" while avoiding integer overflow. | 
|  | j = static_cast<uintptr_t>(-(i + 1)) + 1; | 
|  |  | 
|  | // Make sure we can write the '-' character. | 
|  | if (++n > sz) { | 
|  | buf[0] = '\000'; | 
|  | return NULL; | 
|  | } | 
|  | *start++ = '-'; | 
|  | } | 
|  |  | 
|  | // Loop until we have converted the entire number. Output at least one | 
|  | // character (i.e. '0'). | 
|  | char *ptr = start; | 
|  | do { | 
|  | // Make sure there is still enough space left in our output buffer. | 
|  | if (++n > sz) { | 
|  | buf[0] = '\000'; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Output the next digit. | 
|  | *ptr++ = "0123456789abcdef"[j % base]; | 
|  | j /= base; | 
|  |  | 
|  | if (padding > 0) | 
|  | padding--; | 
|  | } while (j > 0 || padding > 0); | 
|  |  | 
|  | // Terminate the output with a NUL character. | 
|  | *ptr = '\000'; | 
|  |  | 
|  | // Conversion to ASCII actually resulted in the digits being in reverse | 
|  | // order. We can't easily generate them in forward order, as we can't tell | 
|  | // the number of characters needed until we are done converting. | 
|  | // So, now, we reverse the string (except for the possible "-" sign). | 
|  | while (--ptr > start) { | 
|  | char ch = *ptr; | 
|  | *ptr = *start; | 
|  | *start++ = ch; | 
|  | } | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | // Safely appends string |source| to string |dest|.  Never writes past the | 
|  | // buffer size |dest_size| and guarantees that |dest| is null-terminated. | 
|  | void SafeAppendString(const char* source, char* dest, int dest_size) { | 
|  | int dest_string_length = strlen(dest); | 
|  | SAFE_ASSERT(dest_string_length < dest_size); | 
|  | dest += dest_string_length; | 
|  | dest_size -= dest_string_length; | 
|  | strncpy(dest, source, dest_size); | 
|  | // Making sure |dest| is always null-terminated. | 
|  | dest[dest_size - 1] = '\0'; | 
|  | } | 
|  |  | 
|  | // Converts a 64-bit value into a hex string, and safely appends it to |dest|. | 
|  | // Never writes past the buffer size |dest_size| and guarantees that |dest| is | 
|  | // null-terminated. | 
|  | void SafeAppendHexNumber(uint64_t value, char* dest, int dest_size) { | 
|  | // 64-bit numbers in hex can have up to 16 digits. | 
|  | char buf[17] = {'\0'}; | 
|  | SafeAppendString(itoa_r(value, buf, sizeof(buf), 16, 0), dest, dest_size); | 
|  | } | 
|  |  | 
|  | // The implementation of our symbolization routine.  If it | 
|  | // successfully finds the symbol containing "pc" and obtains the | 
|  | // symbol name, returns true and write the symbol name to "out". | 
|  | // Otherwise, returns false. If Callback function is installed via | 
|  | // InstallSymbolizeCallback(), the function is also called in this function, | 
|  | // and "out" is used as its output. | 
|  | // To keep stack consumption low, we would like this function to not | 
|  | // get inlined. | 
|  | static ATTRIBUTE_NOINLINE bool SymbolizeAndDemangle(void *pc, char *out, | 
|  | int out_size) { | 
|  | uint64_t pc0 = reinterpret_cast<uintptr_t>(pc); | 
|  | uint64_t start_address = 0; | 
|  | uint64_t base_address = 0; | 
|  | int object_fd = -1; | 
|  |  | 
|  | if (out_size < 1) { | 
|  | return false; | 
|  | } | 
|  | out[0] = '\0'; | 
|  | SafeAppendString("(", out, out_size); | 
|  |  | 
|  | if (g_symbolize_open_object_file_callback) { | 
|  | object_fd = g_symbolize_open_object_file_callback(pc0, start_address, | 
|  | base_address, out + 1, | 
|  | out_size - 1); | 
|  | } else { | 
|  | object_fd = OpenObjectFileContainingPcAndGetStartAddress(pc0, start_address, | 
|  | base_address, | 
|  | out + 1, | 
|  | out_size - 1); | 
|  | } | 
|  |  | 
|  | // Check whether a file name was returned. | 
|  | #if !defined(PRINT_UNSYMBOLIZED_STACK_TRACES) | 
|  | if (object_fd < 0) { | 
|  | #endif | 
|  | if (out[1]) { | 
|  | // The object file containing PC was determined successfully however the | 
|  | // object file was not opened successfully.  This is still considered | 
|  | // success because the object file name and offset are known and tools | 
|  | // like asan_symbolize.py can be used for the symbolization. | 
|  | out[out_size - 1] = '\0';  // Making sure |out| is always null-terminated. | 
|  | SafeAppendString("+0x", out, out_size); | 
|  | SafeAppendHexNumber(pc0 - base_address, out, out_size); | 
|  | SafeAppendString(")", out, out_size); | 
|  | return true; | 
|  | } | 
|  | // Failed to determine the object file containing PC.  Bail out. | 
|  | return false; | 
|  | #if !defined(PRINT_UNSYMBOLIZED_STACK_TRACES) | 
|  | } | 
|  | #endif | 
|  | FileDescriptor wrapped_object_fd(object_fd); | 
|  | int elf_type = FileGetElfType(wrapped_object_fd.get()); | 
|  | if (elf_type == -1) { | 
|  | return false; | 
|  | } | 
|  | if (g_symbolize_callback) { | 
|  | // Run the call back if it's installed. | 
|  | // Note: relocation (and much of the rest of this code) will be | 
|  | // wrong for prelinked shared libraries and PIE executables. | 
|  | uint64_t relocation = (elf_type == ET_DYN) ? start_address : 0; | 
|  | int num_bytes_written = g_symbolize_callback(wrapped_object_fd.get(), | 
|  | pc, out, out_size, | 
|  | relocation); | 
|  | if (num_bytes_written > 0) { | 
|  | out += num_bytes_written; | 
|  | out_size -= num_bytes_written; | 
|  | } | 
|  | } | 
|  | if (!GetSymbolFromObjectFile(wrapped_object_fd.get(), pc0, | 
|  | out, out_size, base_address)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Symbolization succeeded.  Now we try to demangle the symbol. | 
|  | DemangleInplace(out, out_size); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | _END_GOOGLE_NAMESPACE_ | 
|  |  | 
|  | #elif defined(OS_MACOSX) && defined(HAVE_DLADDR) | 
|  |  | 
|  | #include <dlfcn.h> | 
|  | #include <string.h> | 
|  |  | 
|  | _START_GOOGLE_NAMESPACE_ | 
|  |  | 
|  | static ATTRIBUTE_NOINLINE bool SymbolizeAndDemangle(void *pc, char *out, | 
|  | int out_size) { | 
|  | Dl_info info; | 
|  | if (dladdr(pc, &info)) { | 
|  | if ((int)strlen(info.dli_sname) < out_size) { | 
|  | strcpy(out, info.dli_sname); | 
|  | // Symbolization succeeded.  Now we try to demangle the symbol. | 
|  | DemangleInplace(out, out_size); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | _END_GOOGLE_NAMESPACE_ | 
|  |  | 
|  | #else | 
|  | # error BUG: HAVE_SYMBOLIZE was wrongly set | 
|  | #endif | 
|  |  | 
|  | _START_GOOGLE_NAMESPACE_ | 
|  |  | 
|  | bool Symbolize(void *pc, char *out, int out_size) { | 
|  | SAFE_ASSERT(out_size >= 0); | 
|  | return SymbolizeAndDemangle(pc, out, out_size); | 
|  | } | 
|  |  | 
|  | _END_GOOGLE_NAMESPACE_ | 
|  |  | 
|  | #else  /* HAVE_SYMBOLIZE */ | 
|  |  | 
|  | #include <assert.h> | 
|  |  | 
|  | #include "config.h" | 
|  |  | 
|  | _START_GOOGLE_NAMESPACE_ | 
|  |  | 
|  | // TODO: Support other environments. | 
|  | bool Symbolize(void *pc, char *out, int out_size) { | 
|  | assert(0); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | _END_GOOGLE_NAMESPACE_ | 
|  |  | 
|  | #endif |