|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "base/time/time.h" | 
|  |  | 
|  | #include <CoreFoundation/CFDate.h> | 
|  | #include <CoreFoundation/CFTimeZone.h> | 
|  | #include <mach/mach.h> | 
|  | #include <mach/mach_time.h> | 
|  | #include <stddef.h> | 
|  | #include <stdint.h> | 
|  | #include <sys/sysctl.h> | 
|  | #include <sys/time.h> | 
|  | #include <sys/types.h> | 
|  | #include <time.h> | 
|  |  | 
|  | #include "base/logging.h" | 
|  | #include "base/mac/mach_logging.h" | 
|  | #include "base/mac/scoped_cftyperef.h" | 
|  | #include "base/mac/scoped_mach_port.h" | 
|  | #include "base/macros.h" | 
|  | #include "base/numerics/safe_conversions.h" | 
|  | #include "base/time/time_override.h" | 
|  | #include "build_config.h" | 
|  |  | 
|  | #if defined(OS_IOS) | 
|  | #include <time.h> | 
|  | #include "base/ios/ios_util.h" | 
|  | #endif | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | #if defined(OS_MACOSX) && !defined(OS_IOS) | 
|  | int64_t MachAbsoluteTimeToTicks(uint64_t mach_absolute_time) { | 
|  | static mach_timebase_info_data_t timebase_info; | 
|  | if (timebase_info.denom == 0) { | 
|  | // Zero-initialization of statics guarantees that denom will be 0 before | 
|  | // calling mach_timebase_info.  mach_timebase_info will never set denom to | 
|  | // 0 as that would be invalid, so the zero-check can be used to determine | 
|  | // whether mach_timebase_info has already been called.  This is | 
|  | // recommended by Apple's QA1398. | 
|  | kern_return_t kr = mach_timebase_info(&timebase_info); | 
|  | MACH_DCHECK(kr == KERN_SUCCESS, kr) << "mach_timebase_info"; | 
|  | } | 
|  |  | 
|  | // timebase_info converts absolute time tick units into nanoseconds.  Convert | 
|  | // to microseconds up front to stave off overflows. | 
|  | base::CheckedNumeric<uint64_t> result(mach_absolute_time / | 
|  | base::Time::kNanosecondsPerMicrosecond); | 
|  | result *= timebase_info.numer; | 
|  | result /= timebase_info.denom; | 
|  |  | 
|  | // Don't bother with the rollover handling that the Windows version does. | 
|  | // With numer and denom = 1 (the expected case), the 64-bit absolute time | 
|  | // reported in nanoseconds is enough to last nearly 585 years. | 
|  | return base::checked_cast<int64_t>(result.ValueOrDie()); | 
|  | } | 
|  | #endif  // defined(OS_MACOSX) && !defined(OS_IOS) | 
|  |  | 
|  | // Returns monotonically growing number of ticks in microseconds since some | 
|  | // unspecified starting point. | 
|  | int64_t ComputeCurrentTicks() { | 
|  | #if defined(OS_IOS) | 
|  | // iOS 10 supports clock_gettime(CLOCK_MONOTONIC, ...), which is | 
|  | // around 15 times faster than sysctl() call. Use it if possible; | 
|  | // otherwise, fall back to sysctl(). | 
|  | if (__builtin_available(iOS 10, *)) { | 
|  | struct timespec tp; | 
|  | if (clock_gettime(CLOCK_MONOTONIC, &tp) == 0) { | 
|  | return (int64_t)tp.tv_sec * 1000000 + tp.tv_nsec / 1000; | 
|  | } | 
|  | } | 
|  |  | 
|  | // On iOS mach_absolute_time stops while the device is sleeping. Instead use | 
|  | // now - KERN_BOOTTIME to get a time difference that is not impacted by clock | 
|  | // changes. KERN_BOOTTIME will be updated by the system whenever the system | 
|  | // clock change. | 
|  | struct timeval boottime; | 
|  | int mib[2] = {CTL_KERN, KERN_BOOTTIME}; | 
|  | size_t size = sizeof(boottime); | 
|  | int kr = sysctl(mib, arraysize(mib), &boottime, &size, nullptr, 0); | 
|  | DCHECK_EQ(KERN_SUCCESS, kr); | 
|  | base::TimeDelta time_difference = | 
|  | base::subtle::TimeNowIgnoringOverride() - | 
|  | (base::Time::FromTimeT(boottime.tv_sec) + | 
|  | base::TimeDelta::FromMicroseconds(boottime.tv_usec)); | 
|  | return time_difference.InMicroseconds(); | 
|  | #else | 
|  | // mach_absolute_time is it when it comes to ticks on the Mac.  Other calls | 
|  | // with less precision (such as TickCount) just call through to | 
|  | // mach_absolute_time. | 
|  | return MachAbsoluteTimeToTicks(mach_absolute_time()); | 
|  | #endif  // defined(OS_IOS) | 
|  | } | 
|  |  | 
|  | int64_t ComputeThreadTicks() { | 
|  | #if defined(OS_IOS) | 
|  | NOTREACHED(); | 
|  | return 0; | 
|  | #else | 
|  | base::mac::ScopedMachSendRight thread(mach_thread_self()); | 
|  | mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT; | 
|  | thread_basic_info_data_t thread_info_data; | 
|  |  | 
|  | if (thread.get() == MACH_PORT_NULL) { | 
|  | DLOG(ERROR) << "Failed to get mach_thread_self()"; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | kern_return_t kr = thread_info( | 
|  | thread.get(), | 
|  | THREAD_BASIC_INFO, | 
|  | reinterpret_cast<thread_info_t>(&thread_info_data), | 
|  | &thread_info_count); | 
|  | MACH_DCHECK(kr == KERN_SUCCESS, kr) << "thread_info"; | 
|  |  | 
|  | base::CheckedNumeric<int64_t> absolute_micros( | 
|  | thread_info_data.user_time.seconds + | 
|  | thread_info_data.system_time.seconds); | 
|  | absolute_micros *= base::Time::kMicrosecondsPerSecond; | 
|  | absolute_micros += (thread_info_data.user_time.microseconds + | 
|  | thread_info_data.system_time.microseconds); | 
|  | return absolute_micros.ValueOrDie(); | 
|  | #endif  // defined(OS_IOS) | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | namespace base { | 
|  |  | 
|  | // The Time routines in this file use Mach and CoreFoundation APIs, since the | 
|  | // POSIX definition of time_t in Mac OS X wraps around after 2038--and | 
|  | // there are already cookie expiration dates, etc., past that time out in | 
|  | // the field.  Using CFDate prevents that problem, and using mach_absolute_time | 
|  | // for TimeTicks gives us nice high-resolution interval timing. | 
|  |  | 
|  | // Time ----------------------------------------------------------------------- | 
|  |  | 
|  | namespace subtle { | 
|  | Time TimeNowIgnoringOverride() { | 
|  | return Time::FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent()); | 
|  | } | 
|  |  | 
|  | Time TimeNowFromSystemTimeIgnoringOverride() { | 
|  | // Just use TimeNowIgnoringOverride() because it returns the system time. | 
|  | return TimeNowIgnoringOverride(); | 
|  | } | 
|  | }  // namespace subtle | 
|  |  | 
|  | // static | 
|  | Time Time::FromCFAbsoluteTime(CFAbsoluteTime t) { | 
|  | static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity, | 
|  | "CFAbsoluteTime must have an infinity value"); | 
|  | if (t == 0) | 
|  | return Time();  // Consider 0 as a null Time. | 
|  | if (t == std::numeric_limits<CFAbsoluteTime>::infinity()) | 
|  | return Max(); | 
|  | return Time(static_cast<int64_t>((t + kCFAbsoluteTimeIntervalSince1970) * | 
|  | kMicrosecondsPerSecond) + | 
|  | kTimeTToMicrosecondsOffset); | 
|  | } | 
|  |  | 
|  | CFAbsoluteTime Time::ToCFAbsoluteTime() const { | 
|  | static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity, | 
|  | "CFAbsoluteTime must have an infinity value"); | 
|  | if (is_null()) | 
|  | return 0;  // Consider 0 as a null Time. | 
|  | if (is_max()) | 
|  | return std::numeric_limits<CFAbsoluteTime>::infinity(); | 
|  | return (static_cast<CFAbsoluteTime>(us_ - kTimeTToMicrosecondsOffset) / | 
|  | kMicrosecondsPerSecond) - | 
|  | kCFAbsoluteTimeIntervalSince1970; | 
|  | } | 
|  |  | 
|  | // Note: These implementations of Time::FromExploded() and Time::Explode() are | 
|  | // only used on iOS now. Since Mac is now always 64-bit, we can use the POSIX | 
|  | // versions of these functions as time_t is not capped at year 2038 on 64-bit | 
|  | // builds. The POSIX functions are preferred since they don't suffer from some | 
|  | // performance problems that are present in these implementations. | 
|  | // See crbug.com/781601 for more details. | 
|  | #if defined(OS_IOS) | 
|  | // static | 
|  | bool Time::FromExploded(bool is_local, const Exploded& exploded, Time* time) { | 
|  | base::ScopedCFTypeRef<CFTimeZoneRef> time_zone( | 
|  | is_local | 
|  | ? CFTimeZoneCopySystem() | 
|  | : CFTimeZoneCreateWithTimeIntervalFromGMT(kCFAllocatorDefault, 0)); | 
|  | base::ScopedCFTypeRef<CFCalendarRef> gregorian(CFCalendarCreateWithIdentifier( | 
|  | kCFAllocatorDefault, kCFGregorianCalendar)); | 
|  | CFCalendarSetTimeZone(gregorian, time_zone); | 
|  | CFAbsoluteTime absolute_time; | 
|  | // 'S' is not defined in componentDesc in Apple documentation, but can be | 
|  | // found at http://www.opensource.apple.com/source/CF/CF-855.17/CFCalendar.c | 
|  | CFCalendarComposeAbsoluteTime( | 
|  | gregorian, &absolute_time, "yMdHmsS", exploded.year, exploded.month, | 
|  | exploded.day_of_month, exploded.hour, exploded.minute, exploded.second, | 
|  | exploded.millisecond); | 
|  | CFAbsoluteTime seconds = absolute_time + kCFAbsoluteTimeIntervalSince1970; | 
|  |  | 
|  | // CFAbsolutTime is typedef of double. Convert seconds to | 
|  | // microseconds and then cast to int64. If | 
|  | // it cannot be suited to int64, then fail to avoid overflows. | 
|  | double microseconds = | 
|  | (seconds * kMicrosecondsPerSecond) + kTimeTToMicrosecondsOffset; | 
|  | if (microseconds > std::numeric_limits<int64_t>::max() || | 
|  | microseconds < std::numeric_limits<int64_t>::min()) { | 
|  | *time = Time(0); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | base::Time converted_time = Time(static_cast<int64_t>(microseconds)); | 
|  |  | 
|  | // If |exploded.day_of_month| is set to 31 | 
|  | // on a 28-30 day month, it will return the first day of the next month. | 
|  | // Thus round-trip the time and compare the initial |exploded| with | 
|  | // |utc_to_exploded| time. | 
|  | base::Time::Exploded to_exploded; | 
|  | if (!is_local) | 
|  | converted_time.UTCExplode(&to_exploded); | 
|  | else | 
|  | converted_time.LocalExplode(&to_exploded); | 
|  |  | 
|  | if (ExplodedMostlyEquals(to_exploded, exploded)) { | 
|  | *time = converted_time; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | *time = Time(0); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Time::Explode(bool is_local, Exploded* exploded) const { | 
|  | // Avoid rounding issues, by only putting the integral number of seconds | 
|  | // (rounded towards -infinity) into a |CFAbsoluteTime| (which is a |double|). | 
|  | int64_t microsecond = us_ % kMicrosecondsPerSecond; | 
|  | if (microsecond < 0) | 
|  | microsecond += kMicrosecondsPerSecond; | 
|  | CFAbsoluteTime seconds = ((us_ - microsecond - kTimeTToMicrosecondsOffset) / | 
|  | kMicrosecondsPerSecond) - | 
|  | kCFAbsoluteTimeIntervalSince1970; | 
|  |  | 
|  | base::ScopedCFTypeRef<CFTimeZoneRef> time_zone( | 
|  | is_local | 
|  | ? CFTimeZoneCopySystem() | 
|  | : CFTimeZoneCreateWithTimeIntervalFromGMT(kCFAllocatorDefault, 0)); | 
|  | base::ScopedCFTypeRef<CFCalendarRef> gregorian(CFCalendarCreateWithIdentifier( | 
|  | kCFAllocatorDefault, kCFGregorianCalendar)); | 
|  | CFCalendarSetTimeZone(gregorian, time_zone); | 
|  | int second, day_of_week; | 
|  | // 'E' sets the day of week, but is not defined in componentDesc in Apple | 
|  | // documentation. It can be found in open source code here: | 
|  | // http://www.opensource.apple.com/source/CF/CF-855.17/CFCalendar.c | 
|  | CFCalendarDecomposeAbsoluteTime(gregorian, seconds, "yMdHmsE", | 
|  | &exploded->year, &exploded->month, | 
|  | &exploded->day_of_month, &exploded->hour, | 
|  | &exploded->minute, &second, &day_of_week); | 
|  | // Make sure seconds are rounded down towards -infinity. | 
|  | exploded->second = floor(second); | 
|  | // |Exploded|'s convention for day of week is 0 = Sunday, i.e. different | 
|  | // from CF's 1 = Sunday. | 
|  | exploded->day_of_week = (day_of_week - 1) % 7; | 
|  | // Calculate milliseconds ourselves, since we rounded the |seconds|, making | 
|  | // sure to round towards -infinity. | 
|  | exploded->millisecond = | 
|  | (microsecond >= 0) ? microsecond / kMicrosecondsPerMillisecond : | 
|  | (microsecond - kMicrosecondsPerMillisecond + 1) / | 
|  | kMicrosecondsPerMillisecond; | 
|  | } | 
|  | #endif  // OS_IOS | 
|  |  | 
|  | // TimeTicks ------------------------------------------------------------------ | 
|  |  | 
|  | namespace subtle { | 
|  | TimeTicks TimeTicksNowIgnoringOverride() { | 
|  | return TimeTicks() + TimeDelta::FromMicroseconds(ComputeCurrentTicks()); | 
|  | } | 
|  | }  // namespace subtle | 
|  |  | 
|  | // static | 
|  | bool TimeTicks::IsHighResolution() { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool TimeTicks::IsConsistentAcrossProcesses() { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #if defined(OS_MACOSX) && !defined(OS_IOS) | 
|  | // static | 
|  | TimeTicks TimeTicks::FromMachAbsoluteTime(uint64_t mach_absolute_time) { | 
|  | return TimeTicks(MachAbsoluteTimeToTicks(mach_absolute_time)); | 
|  | } | 
|  | #endif  // defined(OS_MACOSX) && !defined(OS_IOS) | 
|  |  | 
|  | // static | 
|  | TimeTicks::Clock TimeTicks::GetClock() { | 
|  | #if defined(OS_IOS) | 
|  | return Clock::IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME; | 
|  | #else | 
|  | return Clock::MAC_MACH_ABSOLUTE_TIME; | 
|  | #endif  // defined(OS_IOS) | 
|  | } | 
|  |  | 
|  | // ThreadTicks ---------------------------------------------------------------- | 
|  |  | 
|  | namespace subtle { | 
|  | ThreadTicks ThreadTicksNowIgnoringOverride() { | 
|  | return ThreadTicks() + TimeDelta::FromMicroseconds(ComputeThreadTicks()); | 
|  | } | 
|  | }  // namespace subtle | 
|  |  | 
|  | }  // namespace base |