|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "base/time/time.h" | 
|  |  | 
|  | #include <stdint.h> | 
|  | #include <sys/time.h> | 
|  | #include <time.h> | 
|  | #if defined(OS_ANDROID) && !defined(__LP64__) | 
|  | #include <time64.h> | 
|  | #endif | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include <limits> | 
|  |  | 
|  | #include "base/numerics/safe_math.h" | 
|  | #include "base/synchronization/lock.h" | 
|  | #include "build/build_config.h" | 
|  |  | 
|  | #if defined(OS_ANDROID) | 
|  | #include "base/os_compat_android.h" | 
|  | #elif defined(OS_NACL) | 
|  | #include "base/os_compat_nacl.h" | 
|  | #endif | 
|  |  | 
|  | #if defined(OS_MACOSX) | 
|  | static_assert(sizeof(time_t) >= 8, "Y2038 problem!"); | 
|  | #endif | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // This prevents a crash on traversing the environment global and looking up | 
|  | // the 'TZ' variable in libc. See: crbug.com/390567. | 
|  | base::Lock* GetSysTimeToTimeStructLock() { | 
|  | static auto* lock = new base::Lock(); | 
|  | return lock; | 
|  | } | 
|  |  | 
|  | // Define a system-specific SysTime that wraps either to a time_t or | 
|  | // a time64_t depending on the host system, and associated convertion. | 
|  | // See crbug.com/162007 | 
|  | #if defined(OS_ANDROID) && !defined(__LP64__) | 
|  | typedef time64_t SysTime; | 
|  |  | 
|  | SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) { | 
|  | base::AutoLock locked(*GetSysTimeToTimeStructLock()); | 
|  | if (is_local) | 
|  | return mktime64(timestruct); | 
|  | else | 
|  | return timegm64(timestruct); | 
|  | } | 
|  |  | 
|  | void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) { | 
|  | base::AutoLock locked(*GetSysTimeToTimeStructLock()); | 
|  | if (is_local) | 
|  | localtime64_r(&t, timestruct); | 
|  | else | 
|  | gmtime64_r(&t, timestruct); | 
|  | } | 
|  |  | 
|  | #elif defined(OS_AIX) | 
|  |  | 
|  | // The function timegm is not available on AIX. | 
|  | time_t aix_timegm(struct tm* tm) { | 
|  | time_t ret; | 
|  | char* tz; | 
|  |  | 
|  | tz = getenv("TZ"); | 
|  | if (tz) { | 
|  | tz = strdup(tz); | 
|  | } | 
|  | setenv("TZ", "GMT0", 1); | 
|  | tzset(); | 
|  | ret = mktime(tm); | 
|  | if (tz) { | 
|  | setenv("TZ", tz, 1); | 
|  | free(tz); | 
|  | } else { | 
|  | unsetenv("TZ"); | 
|  | } | 
|  | tzset(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | typedef time_t SysTime; | 
|  |  | 
|  | SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) { | 
|  | base::AutoLock locked(*GetSysTimeToTimeStructLock()); | 
|  | if (is_local) | 
|  | return mktime(timestruct); | 
|  | else | 
|  | return aix_timegm(timestruct); | 
|  | } | 
|  |  | 
|  | void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) { | 
|  | base::AutoLock locked(*GetSysTimeToTimeStructLock()); | 
|  | if (is_local) | 
|  | localtime_r(&t, timestruct); | 
|  | else | 
|  | gmtime_r(&t, timestruct); | 
|  | } | 
|  |  | 
|  | #else   // OS_ANDROID && !__LP64__ | 
|  | typedef time_t SysTime; | 
|  |  | 
|  | SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) { | 
|  | base::AutoLock locked(*GetSysTimeToTimeStructLock()); | 
|  | if (is_local) | 
|  | return mktime(timestruct); | 
|  | else | 
|  | return timegm(timestruct); | 
|  | } | 
|  |  | 
|  | void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) { | 
|  | base::AutoLock locked(*GetSysTimeToTimeStructLock()); | 
|  | if (is_local) | 
|  | localtime_r(&t, timestruct); | 
|  | else | 
|  | gmtime_r(&t, timestruct); | 
|  | } | 
|  | #endif  // OS_ANDROID | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | namespace base { | 
|  |  | 
|  | void Time::Explode(bool is_local, Exploded* exploded) const { | 
|  | // Time stores times with microsecond resolution, but Exploded only carries | 
|  | // millisecond resolution, so begin by being lossy.  Adjust from Windows | 
|  | // epoch (1601) to Unix epoch (1970); | 
|  | int64_t microseconds = us_ - kTimeTToMicrosecondsOffset; | 
|  | // The following values are all rounded towards -infinity. | 
|  | int64_t milliseconds;  // Milliseconds since epoch. | 
|  | SysTime seconds;       // Seconds since epoch. | 
|  | int millisecond;       // Exploded millisecond value (0-999). | 
|  | if (microseconds >= 0) { | 
|  | // Rounding towards -infinity <=> rounding towards 0, in this case. | 
|  | milliseconds = microseconds / kMicrosecondsPerMillisecond; | 
|  | seconds = milliseconds / kMillisecondsPerSecond; | 
|  | millisecond = milliseconds % kMillisecondsPerSecond; | 
|  | } else { | 
|  | // Round these *down* (towards -infinity). | 
|  | milliseconds = (microseconds - kMicrosecondsPerMillisecond + 1) / | 
|  | kMicrosecondsPerMillisecond; | 
|  | seconds = | 
|  | (milliseconds - kMillisecondsPerSecond + 1) / kMillisecondsPerSecond; | 
|  | // Make this nonnegative (and between 0 and 999 inclusive). | 
|  | millisecond = milliseconds % kMillisecondsPerSecond; | 
|  | if (millisecond < 0) | 
|  | millisecond += kMillisecondsPerSecond; | 
|  | } | 
|  |  | 
|  | struct tm timestruct; | 
|  | SysTimeToTimeStruct(seconds, ×truct, is_local); | 
|  |  | 
|  | exploded->year = timestruct.tm_year + 1900; | 
|  | exploded->month = timestruct.tm_mon + 1; | 
|  | exploded->day_of_week = timestruct.tm_wday; | 
|  | exploded->day_of_month = timestruct.tm_mday; | 
|  | exploded->hour = timestruct.tm_hour; | 
|  | exploded->minute = timestruct.tm_min; | 
|  | exploded->second = timestruct.tm_sec; | 
|  | exploded->millisecond = millisecond; | 
|  | } | 
|  |  | 
|  | // static | 
|  | bool Time::FromExploded(bool is_local, const Exploded& exploded, Time* time) { | 
|  | CheckedNumeric<int> month = exploded.month; | 
|  | month--; | 
|  | CheckedNumeric<int> year = exploded.year; | 
|  | year -= 1900; | 
|  | if (!month.IsValid() || !year.IsValid()) { | 
|  | *time = Time(0); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | struct tm timestruct; | 
|  | timestruct.tm_sec = exploded.second; | 
|  | timestruct.tm_min = exploded.minute; | 
|  | timestruct.tm_hour = exploded.hour; | 
|  | timestruct.tm_mday = exploded.day_of_month; | 
|  | timestruct.tm_mon = month.ValueOrDie(); | 
|  | timestruct.tm_year = year.ValueOrDie(); | 
|  | timestruct.tm_wday = exploded.day_of_week;  // mktime/timegm ignore this | 
|  | timestruct.tm_yday = 0;                     // mktime/timegm ignore this | 
|  | timestruct.tm_isdst = -1;                   // attempt to figure it out | 
|  | #if !defined(OS_NACL) && !defined(OS_SOLARIS) && !defined(OS_AIX) | 
|  | timestruct.tm_gmtoff = 0;   // not a POSIX field, so mktime/timegm ignore | 
|  | timestruct.tm_zone = nullptr;  // not a POSIX field, so mktime/timegm ignore | 
|  | #endif | 
|  |  | 
|  | SysTime seconds; | 
|  |  | 
|  | // Certain exploded dates do not really exist due to daylight saving times, | 
|  | // and this causes mktime() to return implementation-defined values when | 
|  | // tm_isdst is set to -1. On Android, the function will return -1, while the | 
|  | // C libraries of other platforms typically return a liberally-chosen value. | 
|  | // Handling this requires the special code below. | 
|  |  | 
|  | // SysTimeFromTimeStruct() modifies the input structure, save current value. | 
|  | struct tm timestruct0 = timestruct; | 
|  |  | 
|  | seconds = SysTimeFromTimeStruct(×truct, is_local); | 
|  | if (seconds == -1) { | 
|  | // Get the time values with tm_isdst == 0 and 1, then select the closest one | 
|  | // to UTC 00:00:00 that isn't -1. | 
|  | timestruct = timestruct0; | 
|  | timestruct.tm_isdst = 0; | 
|  | int64_t seconds_isdst0 = SysTimeFromTimeStruct(×truct, is_local); | 
|  |  | 
|  | timestruct = timestruct0; | 
|  | timestruct.tm_isdst = 1; | 
|  | int64_t seconds_isdst1 = SysTimeFromTimeStruct(×truct, is_local); | 
|  |  | 
|  | // seconds_isdst0 or seconds_isdst1 can be -1 for some timezones. | 
|  | // E.g. "CLST" (Chile Summer Time) returns -1 for 'tm_isdt == 1'. | 
|  | if (seconds_isdst0 < 0) | 
|  | seconds = seconds_isdst1; | 
|  | else if (seconds_isdst1 < 0) | 
|  | seconds = seconds_isdst0; | 
|  | else | 
|  | seconds = std::min(seconds_isdst0, seconds_isdst1); | 
|  | } | 
|  |  | 
|  | // Handle overflow.  Clamping the range to what mktime and timegm might | 
|  | // return is the best that can be done here.  It's not ideal, but it's better | 
|  | // than failing here or ignoring the overflow case and treating each time | 
|  | // overflow as one second prior to the epoch. | 
|  | int64_t milliseconds = 0; | 
|  | if (seconds == -1 && (exploded.year < 1969 || exploded.year > 1970)) { | 
|  | // If exploded.year is 1969 or 1970, take -1 as correct, with the | 
|  | // time indicating 1 second prior to the epoch.  (1970 is allowed to handle | 
|  | // time zone and DST offsets.)  Otherwise, return the most future or past | 
|  | // time representable.  Assumes the time_t epoch is 1970-01-01 00:00:00 UTC. | 
|  | // | 
|  | // The minimum and maximum representible times that mktime and timegm could | 
|  | // return are used here instead of values outside that range to allow for | 
|  | // proper round-tripping between exploded and counter-type time | 
|  | // representations in the presence of possible truncation to time_t by | 
|  | // division and use with other functions that accept time_t. | 
|  | // | 
|  | // When representing the most distant time in the future, add in an extra | 
|  | // 999ms to avoid the time being less than any other possible value that | 
|  | // this function can return. | 
|  |  | 
|  | // On Android, SysTime is int64_t, special care must be taken to avoid | 
|  | // overflows. | 
|  | const int64_t min_seconds = (sizeof(SysTime) < sizeof(int64_t)) | 
|  | ? std::numeric_limits<SysTime>::min() | 
|  | : std::numeric_limits<int32_t>::min(); | 
|  | const int64_t max_seconds = (sizeof(SysTime) < sizeof(int64_t)) | 
|  | ? std::numeric_limits<SysTime>::max() | 
|  | : std::numeric_limits<int32_t>::max(); | 
|  | if (exploded.year < 1969) { | 
|  | milliseconds = min_seconds * kMillisecondsPerSecond; | 
|  | } else { | 
|  | milliseconds = max_seconds * kMillisecondsPerSecond; | 
|  | milliseconds += (kMillisecondsPerSecond - 1); | 
|  | } | 
|  | } else { | 
|  | base::CheckedNumeric<int64_t> checked_millis = seconds; | 
|  | checked_millis *= kMillisecondsPerSecond; | 
|  | checked_millis += exploded.millisecond; | 
|  | if (!checked_millis.IsValid()) { | 
|  | *time = base::Time(0); | 
|  | return false; | 
|  | } | 
|  | milliseconds = checked_millis.ValueOrDie(); | 
|  | } | 
|  |  | 
|  | // Adjust from Unix (1970) to Windows (1601) epoch avoiding overflows. | 
|  | base::CheckedNumeric<int64_t> checked_microseconds_win_epoch = milliseconds; | 
|  | checked_microseconds_win_epoch *= kMicrosecondsPerMillisecond; | 
|  | checked_microseconds_win_epoch += kTimeTToMicrosecondsOffset; | 
|  | if (!checked_microseconds_win_epoch.IsValid()) { | 
|  | *time = base::Time(0); | 
|  | return false; | 
|  | } | 
|  | base::Time converted_time(checked_microseconds_win_epoch.ValueOrDie()); | 
|  |  | 
|  | // If |exploded.day_of_month| is set to 31 on a 28-30 day month, it will | 
|  | // return the first day of the next month. Thus round-trip the time and | 
|  | // compare the initial |exploded| with |utc_to_exploded| time. | 
|  | base::Time::Exploded to_exploded; | 
|  | if (!is_local) | 
|  | converted_time.UTCExplode(&to_exploded); | 
|  | else | 
|  | converted_time.LocalExplode(&to_exploded); | 
|  |  | 
|  | if (ExplodedMostlyEquals(to_exploded, exploded)) { | 
|  | *time = converted_time; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | *time = Time(0); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | }  // namespace base |