| // Copyright 2007, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: wan@google.com (Zhanyong Wan) | 
 |  | 
 | // Google Mock - a framework for writing C++ mock classes. | 
 | // | 
 | // This file implements some commonly used actions. | 
 |  | 
 | #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | 
 | #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | 
 |  | 
 | #ifndef _WIN32_WCE | 
 | # include <errno.h> | 
 | #endif | 
 |  | 
 | #include <algorithm> | 
 | #include <string> | 
 |  | 
 | #include "gmock/internal/gmock-internal-utils.h" | 
 | #include "gmock/internal/gmock-port.h" | 
 |  | 
 | #if GTEST_LANG_CXX11  // Defined by gtest-port.h via gmock-port.h. | 
 | #include <functional> | 
 | #include <type_traits> | 
 | #endif  // GTEST_LANG_CXX11 | 
 |  | 
 | namespace testing { | 
 |  | 
 | // To implement an action Foo, define: | 
 | //   1. a class FooAction that implements the ActionInterface interface, and | 
 | //   2. a factory function that creates an Action object from a | 
 | //      const FooAction*. | 
 | // | 
 | // The two-level delegation design follows that of Matcher, providing | 
 | // consistency for extension developers.  It also eases ownership | 
 | // management as Action objects can now be copied like plain values. | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename F1, typename F2> | 
 | class ActionAdaptor; | 
 |  | 
 | // BuiltInDefaultValueGetter<T, true>::Get() returns a | 
 | // default-constructed T value.  BuiltInDefaultValueGetter<T, | 
 | // false>::Get() crashes with an error. | 
 | // | 
 | // This primary template is used when kDefaultConstructible is true. | 
 | template <typename T, bool kDefaultConstructible> | 
 | struct BuiltInDefaultValueGetter { | 
 |   static T Get() { return T(); } | 
 | }; | 
 | template <typename T> | 
 | struct BuiltInDefaultValueGetter<T, false> { | 
 |   static T Get() { | 
 |     Assert(false, __FILE__, __LINE__, | 
 |            "Default action undefined for the function return type."); | 
 |     return internal::Invalid<T>(); | 
 |     // The above statement will never be reached, but is required in | 
 |     // order for this function to compile. | 
 |   } | 
 | }; | 
 |  | 
 | // BuiltInDefaultValue<T>::Get() returns the "built-in" default value | 
 | // for type T, which is NULL when T is a raw pointer type, 0 when T is | 
 | // a numeric type, false when T is bool, or "" when T is string or | 
 | // std::string.  In addition, in C++11 and above, it turns a | 
 | // default-constructed T value if T is default constructible.  For any | 
 | // other type T, the built-in default T value is undefined, and the | 
 | // function will abort the process. | 
 | template <typename T> | 
 | class BuiltInDefaultValue { | 
 |  public: | 
 | #if GTEST_LANG_CXX11 | 
 |   // This function returns true iff type T has a built-in default value. | 
 |   static bool Exists() { | 
 |     return ::std::is_default_constructible<T>::value; | 
 |   } | 
 |  | 
 |   static T Get() { | 
 |     return BuiltInDefaultValueGetter< | 
 |         T, ::std::is_default_constructible<T>::value>::Get(); | 
 |   } | 
 |  | 
 | #else  // GTEST_LANG_CXX11 | 
 |   // This function returns true iff type T has a built-in default value. | 
 |   static bool Exists() { | 
 |     return false; | 
 |   } | 
 |  | 
 |   static T Get() { | 
 |     return BuiltInDefaultValueGetter<T, false>::Get(); | 
 |   } | 
 |  | 
 | #endif  // GTEST_LANG_CXX11 | 
 | }; | 
 |  | 
 | // This partial specialization says that we use the same built-in | 
 | // default value for T and const T. | 
 | template <typename T> | 
 | class BuiltInDefaultValue<const T> { | 
 |  public: | 
 |   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } | 
 |   static T Get() { return BuiltInDefaultValue<T>::Get(); } | 
 | }; | 
 |  | 
 | // This partial specialization defines the default values for pointer | 
 | // types. | 
 | template <typename T> | 
 | class BuiltInDefaultValue<T*> { | 
 |  public: | 
 |   static bool Exists() { return true; } | 
 |   static T* Get() { return NULL; } | 
 | }; | 
 |  | 
 | // The following specializations define the default values for | 
 | // specific types we care about. | 
 | #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ | 
 |   template <> \ | 
 |   class BuiltInDefaultValue<type> { \ | 
 |    public: \ | 
 |     static bool Exists() { return true; } \ | 
 |     static type Get() { return value; } \ | 
 |   } | 
 |  | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT | 
 | #if GTEST_HAS_GLOBAL_STRING | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, ""); | 
 | #endif  // GTEST_HAS_GLOBAL_STRING | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); | 
 |  | 
 | // There's no need for a default action for signed wchar_t, as that | 
 | // type is the same as wchar_t for gcc, and invalid for MSVC. | 
 | // | 
 | // There's also no need for a default action for unsigned wchar_t, as | 
 | // that type is the same as unsigned int for gcc, and invalid for | 
 | // MSVC. | 
 | #if GMOCK_WCHAR_T_IS_NATIVE_ | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT | 
 | #endif | 
 |  | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); | 
 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); | 
 |  | 
 | #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // When an unexpected function call is encountered, Google Mock will | 
 | // let it return a default value if the user has specified one for its | 
 | // return type, or if the return type has a built-in default value; | 
 | // otherwise Google Mock won't know what value to return and will have | 
 | // to abort the process. | 
 | // | 
 | // The DefaultValue<T> class allows a user to specify the | 
 | // default value for a type T that is both copyable and publicly | 
 | // destructible (i.e. anything that can be used as a function return | 
 | // type).  The usage is: | 
 | // | 
 | //   // Sets the default value for type T to be foo. | 
 | //   DefaultValue<T>::Set(foo); | 
 | template <typename T> | 
 | class DefaultValue { | 
 |  public: | 
 |   // Sets the default value for type T; requires T to be | 
 |   // copy-constructable and have a public destructor. | 
 |   static void Set(T x) { | 
 |     delete producer_; | 
 |     producer_ = new FixedValueProducer(x); | 
 |   } | 
 |  | 
 |   // Provides a factory function to be called to generate the default value. | 
 |   // This method can be used even if T is only move-constructible, but it is not | 
 |   // limited to that case. | 
 |   typedef T (*FactoryFunction)(); | 
 |   static void SetFactory(FactoryFunction factory) { | 
 |     delete producer_; | 
 |     producer_ = new FactoryValueProducer(factory); | 
 |   } | 
 |  | 
 |   // Unsets the default value for type T. | 
 |   static void Clear() { | 
 |     delete producer_; | 
 |     producer_ = NULL; | 
 |   } | 
 |  | 
 |   // Returns true iff the user has set the default value for type T. | 
 |   static bool IsSet() { return producer_ != NULL; } | 
 |  | 
 |   // Returns true if T has a default return value set by the user or there | 
 |   // exists a built-in default value. | 
 |   static bool Exists() { | 
 |     return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); | 
 |   } | 
 |  | 
 |   // Returns the default value for type T if the user has set one; | 
 |   // otherwise returns the built-in default value. Requires that Exists() | 
 |   // is true, which ensures that the return value is well-defined. | 
 |   static T Get() { | 
 |     return producer_ == NULL ? | 
 |         internal::BuiltInDefaultValue<T>::Get() : producer_->Produce(); | 
 |   } | 
 |  | 
 |  private: | 
 |   class ValueProducer { | 
 |    public: | 
 |     virtual ~ValueProducer() {} | 
 |     virtual T Produce() = 0; | 
 |   }; | 
 |  | 
 |   class FixedValueProducer : public ValueProducer { | 
 |    public: | 
 |     explicit FixedValueProducer(T value) : value_(value) {} | 
 |     virtual T Produce() { return value_; } | 
 |  | 
 |    private: | 
 |     const T value_; | 
 |     GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); | 
 |   }; | 
 |  | 
 |   class FactoryValueProducer : public ValueProducer { | 
 |    public: | 
 |     explicit FactoryValueProducer(FactoryFunction factory) | 
 |         : factory_(factory) {} | 
 |     virtual T Produce() { return factory_(); } | 
 |  | 
 |    private: | 
 |     const FactoryFunction factory_; | 
 |     GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); | 
 |   }; | 
 |  | 
 |   static ValueProducer* producer_; | 
 | }; | 
 |  | 
 | // This partial specialization allows a user to set default values for | 
 | // reference types. | 
 | template <typename T> | 
 | class DefaultValue<T&> { | 
 |  public: | 
 |   // Sets the default value for type T&. | 
 |   static void Set(T& x) {  // NOLINT | 
 |     address_ = &x; | 
 |   } | 
 |  | 
 |   // Unsets the default value for type T&. | 
 |   static void Clear() { | 
 |     address_ = NULL; | 
 |   } | 
 |  | 
 |   // Returns true iff the user has set the default value for type T&. | 
 |   static bool IsSet() { return address_ != NULL; } | 
 |  | 
 |   // Returns true if T has a default return value set by the user or there | 
 |   // exists a built-in default value. | 
 |   static bool Exists() { | 
 |     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); | 
 |   } | 
 |  | 
 |   // Returns the default value for type T& if the user has set one; | 
 |   // otherwise returns the built-in default value if there is one; | 
 |   // otherwise aborts the process. | 
 |   static T& Get() { | 
 |     return address_ == NULL ? | 
 |         internal::BuiltInDefaultValue<T&>::Get() : *address_; | 
 |   } | 
 |  | 
 |  private: | 
 |   static T* address_; | 
 | }; | 
 |  | 
 | // This specialization allows DefaultValue<void>::Get() to | 
 | // compile. | 
 | template <> | 
 | class DefaultValue<void> { | 
 |  public: | 
 |   static bool Exists() { return true; } | 
 |   static void Get() {} | 
 | }; | 
 |  | 
 | // Points to the user-set default value for type T. | 
 | template <typename T> | 
 | typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = NULL; | 
 |  | 
 | // Points to the user-set default value for type T&. | 
 | template <typename T> | 
 | T* DefaultValue<T&>::address_ = NULL; | 
 |  | 
 | // Implement this interface to define an action for function type F. | 
 | template <typename F> | 
 | class ActionInterface { | 
 |  public: | 
 |   typedef typename internal::Function<F>::Result Result; | 
 |   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |   ActionInterface() {} | 
 |   virtual ~ActionInterface() {} | 
 |  | 
 |   // Performs the action.  This method is not const, as in general an | 
 |   // action can have side effects and be stateful.  For example, a | 
 |   // get-the-next-element-from-the-collection action will need to | 
 |   // remember the current element. | 
 |   virtual Result Perform(const ArgumentTuple& args) = 0; | 
 |  | 
 |  private: | 
 |   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); | 
 | }; | 
 |  | 
 | // An Action<F> is a copyable and IMMUTABLE (except by assignment) | 
 | // object that represents an action to be taken when a mock function | 
 | // of type F is called.  The implementation of Action<T> is just a | 
 | // linked_ptr to const ActionInterface<T>, so copying is fairly cheap. | 
 | // Don't inherit from Action! | 
 | // | 
 | // You can view an object implementing ActionInterface<F> as a | 
 | // concrete action (including its current state), and an Action<F> | 
 | // object as a handle to it. | 
 | template <typename F> | 
 | class Action { | 
 |  public: | 
 |   typedef typename internal::Function<F>::Result Result; | 
 |   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |   // Constructs a null Action.  Needed for storing Action objects in | 
 |   // STL containers. | 
 |   Action() {} | 
 |  | 
 | #if GTEST_LANG_CXX11 | 
 |   // Construct an Action from a specified callable. | 
 |   // This cannot take std::function directly, because then Action would not be | 
 |   // directly constructible from lambda (it would require two conversions). | 
 |   template <typename G, | 
 |             typename = typename ::std::enable_if< | 
 |                 ::std::is_constructible<::std::function<F>, G>::value>::type> | 
 |   Action(G&& fun) : fun_(::std::forward<G>(fun)) {}  // NOLINT | 
 | #endif | 
 |  | 
 |   // Constructs an Action from its implementation. | 
 |   explicit Action(ActionInterface<F>* impl) : impl_(impl) {} | 
 |  | 
 |   // This constructor allows us to turn an Action<Func> object into an | 
 |   // Action<F>, as long as F's arguments can be implicitly converted | 
 |   // to Func's and Func's return type can be implicitly converted to | 
 |   // F's. | 
 |   template <typename Func> | 
 |   explicit Action(const Action<Func>& action); | 
 |  | 
 |   // Returns true iff this is the DoDefault() action. | 
 |   bool IsDoDefault() const { | 
 | #if GTEST_LANG_CXX11 | 
 |     return impl_ == nullptr && fun_ == nullptr; | 
 | #else | 
 |     return impl_ == NULL; | 
 | #endif | 
 |   } | 
 |  | 
 |   // Performs the action.  Note that this method is const even though | 
 |   // the corresponding method in ActionInterface is not.  The reason | 
 |   // is that a const Action<F> means that it cannot be re-bound to | 
 |   // another concrete action, not that the concrete action it binds to | 
 |   // cannot change state.  (Think of the difference between a const | 
 |   // pointer and a pointer to const.) | 
 |   Result Perform(ArgumentTuple args) const { | 
 |     if (IsDoDefault()) { | 
 |       internal::IllegalDoDefault(__FILE__, __LINE__); | 
 |     } | 
 | #if GTEST_LANG_CXX11 | 
 |     if (fun_ != nullptr) { | 
 |       return internal::Apply(fun_, ::std::move(args)); | 
 |     } | 
 | #endif | 
 |     return impl_->Perform(args); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename F1, typename F2> | 
 |   friend class internal::ActionAdaptor; | 
 |  | 
 |   template <typename G> | 
 |   friend class Action; | 
 |  | 
 |   // In C++11, Action can be implemented either as a generic functor (through | 
 |   // std::function), or legacy ActionInterface. In C++98, only ActionInterface | 
 |   // is available. The invariants are as follows: | 
 |   // * in C++98, impl_ is null iff this is the default action | 
 |   // * in C++11, at most one of fun_ & impl_ may be nonnull; both are null iff | 
 |   //   this is the default action | 
 | #if GTEST_LANG_CXX11 | 
 |   ::std::function<F> fun_; | 
 | #endif | 
 |   internal::linked_ptr<ActionInterface<F> > impl_; | 
 | }; | 
 |  | 
 | // The PolymorphicAction class template makes it easy to implement a | 
 | // polymorphic action (i.e. an action that can be used in mock | 
 | // functions of than one type, e.g. Return()). | 
 | // | 
 | // To define a polymorphic action, a user first provides a COPYABLE | 
 | // implementation class that has a Perform() method template: | 
 | // | 
 | //   class FooAction { | 
 | //    public: | 
 | //     template <typename Result, typename ArgumentTuple> | 
 | //     Result Perform(const ArgumentTuple& args) const { | 
 | //       // Processes the arguments and returns a result, using | 
 | //       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple. | 
 | //     } | 
 | //     ... | 
 | //   }; | 
 | // | 
 | // Then the user creates the polymorphic action using | 
 | // MakePolymorphicAction(object) where object has type FooAction.  See | 
 | // the definition of Return(void) and SetArgumentPointee<N>(value) for | 
 | // complete examples. | 
 | template <typename Impl> | 
 | class PolymorphicAction { | 
 |  public: | 
 |   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} | 
 |  | 
 |   template <typename F> | 
 |   operator Action<F>() const { | 
 |     return Action<F>(new MonomorphicImpl<F>(impl_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename F> | 
 |   class MonomorphicImpl : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename internal::Function<F>::Result Result; | 
 |     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} | 
 |  | 
 |     virtual Result Perform(const ArgumentTuple& args) { | 
 |       return impl_.template Perform<Result>(args); | 
 |     } | 
 |  | 
 |    private: | 
 |     Impl impl_; | 
 |  | 
 |     GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); | 
 |   }; | 
 |  | 
 |   Impl impl_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(PolymorphicAction); | 
 | }; | 
 |  | 
 | // Creates an Action from its implementation and returns it.  The | 
 | // created Action object owns the implementation. | 
 | template <typename F> | 
 | Action<F> MakeAction(ActionInterface<F>* impl) { | 
 |   return Action<F>(impl); | 
 | } | 
 |  | 
 | // Creates a polymorphic action from its implementation.  This is | 
 | // easier to use than the PolymorphicAction<Impl> constructor as it | 
 | // doesn't require you to explicitly write the template argument, e.g. | 
 | // | 
 | //   MakePolymorphicAction(foo); | 
 | // vs | 
 | //   PolymorphicAction<TypeOfFoo>(foo); | 
 | template <typename Impl> | 
 | inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { | 
 |   return PolymorphicAction<Impl>(impl); | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | // Allows an Action<F2> object to pose as an Action<F1>, as long as F2 | 
 | // and F1 are compatible. | 
 | template <typename F1, typename F2> | 
 | class ActionAdaptor : public ActionInterface<F1> { | 
 |  public: | 
 |   typedef typename internal::Function<F1>::Result Result; | 
 |   typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |   explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {} | 
 |  | 
 |   virtual Result Perform(const ArgumentTuple& args) { | 
 |     return impl_->Perform(args); | 
 |   } | 
 |  | 
 |  private: | 
 |   const internal::linked_ptr<ActionInterface<F2> > impl_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(ActionAdaptor); | 
 | }; | 
 |  | 
 | // Helper struct to specialize ReturnAction to execute a move instead of a copy | 
 | // on return. Useful for move-only types, but could be used on any type. | 
 | template <typename T> | 
 | struct ByMoveWrapper { | 
 |   explicit ByMoveWrapper(T value) : payload(internal::move(value)) {} | 
 |   T payload; | 
 | }; | 
 |  | 
 | // Implements the polymorphic Return(x) action, which can be used in | 
 | // any function that returns the type of x, regardless of the argument | 
 | // types. | 
 | // | 
 | // Note: The value passed into Return must be converted into | 
 | // Function<F>::Result when this action is cast to Action<F> rather than | 
 | // when that action is performed. This is important in scenarios like | 
 | // | 
 | // MOCK_METHOD1(Method, T(U)); | 
 | // ... | 
 | // { | 
 | //   Foo foo; | 
 | //   X x(&foo); | 
 | //   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); | 
 | // } | 
 | // | 
 | // In the example above the variable x holds reference to foo which leaves | 
 | // scope and gets destroyed.  If copying X just copies a reference to foo, | 
 | // that copy will be left with a hanging reference.  If conversion to T | 
 | // makes a copy of foo, the above code is safe. To support that scenario, we | 
 | // need to make sure that the type conversion happens inside the EXPECT_CALL | 
 | // statement, and conversion of the result of Return to Action<T(U)> is a | 
 | // good place for that. | 
 | // | 
 | // The real life example of the above scenario happens when an invocation | 
 | // of gtl::Container() is passed into Return. | 
 | // | 
 | template <typename R> | 
 | class ReturnAction { | 
 |  public: | 
 |   // Constructs a ReturnAction object from the value to be returned. | 
 |   // 'value' is passed by value instead of by const reference in order | 
 |   // to allow Return("string literal") to compile. | 
 |   explicit ReturnAction(R value) : value_(new R(internal::move(value))) {} | 
 |  | 
 |   // This template type conversion operator allows Return(x) to be | 
 |   // used in ANY function that returns x's type. | 
 |   template <typename F> | 
 |   operator Action<F>() const { | 
 |     // Assert statement belongs here because this is the best place to verify | 
 |     // conditions on F. It produces the clearest error messages | 
 |     // in most compilers. | 
 |     // Impl really belongs in this scope as a local class but can't | 
 |     // because MSVC produces duplicate symbols in different translation units | 
 |     // in this case. Until MS fixes that bug we put Impl into the class scope | 
 |     // and put the typedef both here (for use in assert statement) and | 
 |     // in the Impl class. But both definitions must be the same. | 
 |     typedef typename Function<F>::Result Result; | 
 |     GTEST_COMPILE_ASSERT_( | 
 |         !is_reference<Result>::value, | 
 |         use_ReturnRef_instead_of_Return_to_return_a_reference); | 
 |     return Action<F>(new Impl<R, F>(value_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Implements the Return(x) action for a particular function type F. | 
 |   template <typename R_, typename F> | 
 |   class Impl : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename Function<F>::Result Result; | 
 |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     // The implicit cast is necessary when Result has more than one | 
 |     // single-argument constructor (e.g. Result is std::vector<int>) and R | 
 |     // has a type conversion operator template.  In that case, value_(value) | 
 |     // won't compile as the compiler doesn't known which constructor of | 
 |     // Result to call.  ImplicitCast_ forces the compiler to convert R to | 
 |     // Result without considering explicit constructors, thus resolving the | 
 |     // ambiguity. value_ is then initialized using its copy constructor. | 
 |     explicit Impl(const linked_ptr<R>& value) | 
 |         : value_before_cast_(*value), | 
 |           value_(ImplicitCast_<Result>(value_before_cast_)) {} | 
 |  | 
 |     virtual Result Perform(const ArgumentTuple&) { return value_; } | 
 |  | 
 |    private: | 
 |     GTEST_COMPILE_ASSERT_(!is_reference<Result>::value, | 
 |                           Result_cannot_be_a_reference_type); | 
 |     // We save the value before casting just in case it is being cast to a | 
 |     // wrapper type. | 
 |     R value_before_cast_; | 
 |     Result value_; | 
 |  | 
 |     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |   // Partially specialize for ByMoveWrapper. This version of ReturnAction will | 
 |   // move its contents instead. | 
 |   template <typename R_, typename F> | 
 |   class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename Function<F>::Result Result; | 
 |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     explicit Impl(const linked_ptr<R>& wrapper) | 
 |         : performed_(false), wrapper_(wrapper) {} | 
 |  | 
 |     virtual Result Perform(const ArgumentTuple&) { | 
 |       GTEST_CHECK_(!performed_) | 
 |           << "A ByMove() action should only be performed once."; | 
 |       performed_ = true; | 
 |       return internal::move(wrapper_->payload); | 
 |     } | 
 |  | 
 |    private: | 
 |     bool performed_; | 
 |     const linked_ptr<R> wrapper_; | 
 |  | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |   const linked_ptr<R> value_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(ReturnAction); | 
 | }; | 
 |  | 
 | // Implements the ReturnNull() action. | 
 | class ReturnNullAction { | 
 |  public: | 
 |   // Allows ReturnNull() to be used in any pointer-returning function. In C++11 | 
 |   // this is enforced by returning nullptr, and in non-C++11 by asserting a | 
 |   // pointer type on compile time. | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   static Result Perform(const ArgumentTuple&) { | 
 | #if GTEST_LANG_CXX11 | 
 |     return nullptr; | 
 | #else | 
 |     GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value, | 
 |                           ReturnNull_can_be_used_to_return_a_pointer_only); | 
 |     return NULL; | 
 | #endif  // GTEST_LANG_CXX11 | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the Return() action. | 
 | class ReturnVoidAction { | 
 |  public: | 
 |   // Allows Return() to be used in any void-returning function. | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   static void Perform(const ArgumentTuple&) { | 
 |     CompileAssertTypesEqual<void, Result>(); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the polymorphic ReturnRef(x) action, which can be used | 
 | // in any function that returns a reference to the type of x, | 
 | // regardless of the argument types. | 
 | template <typename T> | 
 | class ReturnRefAction { | 
 |  public: | 
 |   // Constructs a ReturnRefAction object from the reference to be returned. | 
 |   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT | 
 |  | 
 |   // This template type conversion operator allows ReturnRef(x) to be | 
 |   // used in ANY function that returns a reference to x's type. | 
 |   template <typename F> | 
 |   operator Action<F>() const { | 
 |     typedef typename Function<F>::Result Result; | 
 |     // Asserts that the function return type is a reference.  This | 
 |     // catches the user error of using ReturnRef(x) when Return(x) | 
 |     // should be used, and generates some helpful error message. | 
 |     GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value, | 
 |                           use_Return_instead_of_ReturnRef_to_return_a_value); | 
 |     return Action<F>(new Impl<F>(ref_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Implements the ReturnRef(x) action for a particular function type F. | 
 |   template <typename F> | 
 |   class Impl : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename Function<F>::Result Result; | 
 |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT | 
 |  | 
 |     virtual Result Perform(const ArgumentTuple&) { | 
 |       return ref_; | 
 |     } | 
 |  | 
 |    private: | 
 |     T& ref_; | 
 |  | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |   T& ref_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(ReturnRefAction); | 
 | }; | 
 |  | 
 | // Implements the polymorphic ReturnRefOfCopy(x) action, which can be | 
 | // used in any function that returns a reference to the type of x, | 
 | // regardless of the argument types. | 
 | template <typename T> | 
 | class ReturnRefOfCopyAction { | 
 |  public: | 
 |   // Constructs a ReturnRefOfCopyAction object from the reference to | 
 |   // be returned. | 
 |   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT | 
 |  | 
 |   // This template type conversion operator allows ReturnRefOfCopy(x) to be | 
 |   // used in ANY function that returns a reference to x's type. | 
 |   template <typename F> | 
 |   operator Action<F>() const { | 
 |     typedef typename Function<F>::Result Result; | 
 |     // Asserts that the function return type is a reference.  This | 
 |     // catches the user error of using ReturnRefOfCopy(x) when Return(x) | 
 |     // should be used, and generates some helpful error message. | 
 |     GTEST_COMPILE_ASSERT_( | 
 |         internal::is_reference<Result>::value, | 
 |         use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); | 
 |     return Action<F>(new Impl<F>(value_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Implements the ReturnRefOfCopy(x) action for a particular function type F. | 
 |   template <typename F> | 
 |   class Impl : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename Function<F>::Result Result; | 
 |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     explicit Impl(const T& value) : value_(value) {}  // NOLINT | 
 |  | 
 |     virtual Result Perform(const ArgumentTuple&) { | 
 |       return value_; | 
 |     } | 
 |  | 
 |    private: | 
 |     T value_; | 
 |  | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |   const T value_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction); | 
 | }; | 
 |  | 
 | // Implements the polymorphic DoDefault() action. | 
 | class DoDefaultAction { | 
 |  public: | 
 |   // This template type conversion operator allows DoDefault() to be | 
 |   // used in any function. | 
 |   template <typename F> | 
 |   operator Action<F>() const { return Action<F>(); }  // NOLINT | 
 | }; | 
 |  | 
 | // Implements the Assign action to set a given pointer referent to a | 
 | // particular value. | 
 | template <typename T1, typename T2> | 
 | class AssignAction { | 
 |  public: | 
 |   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} | 
 |  | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   void Perform(const ArgumentTuple& /* args */) const { | 
 |     *ptr_ = value_; | 
 |   } | 
 |  | 
 |  private: | 
 |   T1* const ptr_; | 
 |   const T2 value_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(AssignAction); | 
 | }; | 
 |  | 
 | #if !GTEST_OS_WINDOWS_MOBILE | 
 |  | 
 | // Implements the SetErrnoAndReturn action to simulate return from | 
 | // various system calls and libc functions. | 
 | template <typename T> | 
 | class SetErrnoAndReturnAction { | 
 |  public: | 
 |   SetErrnoAndReturnAction(int errno_value, T result) | 
 |       : errno_(errno_value), | 
 |         result_(result) {} | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   Result Perform(const ArgumentTuple& /* args */) const { | 
 |     errno = errno_; | 
 |     return result_; | 
 |   } | 
 |  | 
 |  private: | 
 |   const int errno_; | 
 |   const T result_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction); | 
 | }; | 
 |  | 
 | #endif  // !GTEST_OS_WINDOWS_MOBILE | 
 |  | 
 | // Implements the SetArgumentPointee<N>(x) action for any function | 
 | // whose N-th argument (0-based) is a pointer to x's type.  The | 
 | // template parameter kIsProto is true iff type A is ProtocolMessage, | 
 | // proto2::Message, or a sub-class of those. | 
 | template <size_t N, typename A, bool kIsProto> | 
 | class SetArgumentPointeeAction { | 
 |  public: | 
 |   // Constructs an action that sets the variable pointed to by the | 
 |   // N-th function argument to 'value'. | 
 |   explicit SetArgumentPointeeAction(const A& value) : value_(value) {} | 
 |  | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   void Perform(const ArgumentTuple& args) const { | 
 |     CompileAssertTypesEqual<void, Result>(); | 
 |     *::testing::get<N>(args) = value_; | 
 |   } | 
 |  | 
 |  private: | 
 |   const A value_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction); | 
 | }; | 
 |  | 
 | template <size_t N, typename Proto> | 
 | class SetArgumentPointeeAction<N, Proto, true> { | 
 |  public: | 
 |   // Constructs an action that sets the variable pointed to by the | 
 |   // N-th function argument to 'proto'.  Both ProtocolMessage and | 
 |   // proto2::Message have the CopyFrom() method, so the same | 
 |   // implementation works for both. | 
 |   explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) { | 
 |     proto_->CopyFrom(proto); | 
 |   } | 
 |  | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   void Perform(const ArgumentTuple& args) const { | 
 |     CompileAssertTypesEqual<void, Result>(); | 
 |     ::testing::get<N>(args)->CopyFrom(*proto_); | 
 |   } | 
 |  | 
 |  private: | 
 |   const internal::linked_ptr<Proto> proto_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction); | 
 | }; | 
 |  | 
 | // Implements the InvokeWithoutArgs(f) action.  The template argument | 
 | // FunctionImpl is the implementation type of f, which can be either a | 
 | // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an | 
 | // Action<F> as long as f's type is compatible with F (i.e. f can be | 
 | // assigned to a tr1::function<F>). | 
 | template <typename FunctionImpl> | 
 | class InvokeWithoutArgsAction { | 
 |  public: | 
 |   // The c'tor makes a copy of function_impl (either a function | 
 |   // pointer or a functor). | 
 |   explicit InvokeWithoutArgsAction(FunctionImpl function_impl) | 
 |       : function_impl_(function_impl) {} | 
 |  | 
 |   // Allows InvokeWithoutArgs(f) to be used as any action whose type is | 
 |   // compatible with f. | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   Result Perform(const ArgumentTuple&) { return function_impl_(); } | 
 |  | 
 |  private: | 
 |   FunctionImpl function_impl_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction); | 
 | }; | 
 |  | 
 | // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. | 
 | template <class Class, typename MethodPtr> | 
 | class InvokeMethodWithoutArgsAction { | 
 |  public: | 
 |   InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr) | 
 |       : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {} | 
 |  | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   Result Perform(const ArgumentTuple&) const { | 
 |     return (obj_ptr_->*method_ptr_)(); | 
 |   } | 
 |  | 
 |  private: | 
 |   Class* const obj_ptr_; | 
 |   const MethodPtr method_ptr_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction); | 
 | }; | 
 |  | 
 | // Implements the InvokeWithoutArgs(callback) action. | 
 | template <typename CallbackType> | 
 | class InvokeCallbackWithoutArgsAction { | 
 |  public: | 
 |   // The c'tor takes ownership of the callback. | 
 |   explicit InvokeCallbackWithoutArgsAction(CallbackType* callback) | 
 |       : callback_(callback) { | 
 |     callback->CheckIsRepeatable();  // Makes sure the callback is permanent. | 
 |   } | 
 |  | 
 |   // This type conversion operator template allows Invoke(callback) to | 
 |   // be used wherever the callback's return type can be implicitly | 
 |   // converted to that of the mock function. | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   Result Perform(const ArgumentTuple&) const { return callback_->Run(); } | 
 |  | 
 |  private: | 
 |   const internal::linked_ptr<CallbackType> callback_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(InvokeCallbackWithoutArgsAction); | 
 | }; | 
 |  | 
 | // Implements the IgnoreResult(action) action. | 
 | template <typename A> | 
 | class IgnoreResultAction { | 
 |  public: | 
 |   explicit IgnoreResultAction(const A& action) : action_(action) {} | 
 |  | 
 |   template <typename F> | 
 |   operator Action<F>() const { | 
 |     // Assert statement belongs here because this is the best place to verify | 
 |     // conditions on F. It produces the clearest error messages | 
 |     // in most compilers. | 
 |     // Impl really belongs in this scope as a local class but can't | 
 |     // because MSVC produces duplicate symbols in different translation units | 
 |     // in this case. Until MS fixes that bug we put Impl into the class scope | 
 |     // and put the typedef both here (for use in assert statement) and | 
 |     // in the Impl class. But both definitions must be the same. | 
 |     typedef typename internal::Function<F>::Result Result; | 
 |  | 
 |     // Asserts at compile time that F returns void. | 
 |     CompileAssertTypesEqual<void, Result>(); | 
 |  | 
 |     return Action<F>(new Impl<F>(action_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename F> | 
 |   class Impl : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename internal::Function<F>::Result Result; | 
 |     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | 
 |  | 
 |     explicit Impl(const A& action) : action_(action) {} | 
 |  | 
 |     virtual void Perform(const ArgumentTuple& args) { | 
 |       // Performs the action and ignores its result. | 
 |       action_.Perform(args); | 
 |     } | 
 |  | 
 |    private: | 
 |     // Type OriginalFunction is the same as F except that its return | 
 |     // type is IgnoredValue. | 
 |     typedef typename internal::Function<F>::MakeResultIgnoredValue | 
 |         OriginalFunction; | 
 |  | 
 |     const Action<OriginalFunction> action_; | 
 |  | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |   const A action_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(IgnoreResultAction); | 
 | }; | 
 |  | 
 | // A ReferenceWrapper<T> object represents a reference to type T, | 
 | // which can be either const or not.  It can be explicitly converted | 
 | // from, and implicitly converted to, a T&.  Unlike a reference, | 
 | // ReferenceWrapper<T> can be copied and can survive template type | 
 | // inference.  This is used to support by-reference arguments in the | 
 | // InvokeArgument<N>(...) action.  The idea was from "reference | 
 | // wrappers" in tr1, which we don't have in our source tree yet. | 
 | template <typename T> | 
 | class ReferenceWrapper { | 
 |  public: | 
 |   // Constructs a ReferenceWrapper<T> object from a T&. | 
 |   explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {}  // NOLINT | 
 |  | 
 |   // Allows a ReferenceWrapper<T> object to be implicitly converted to | 
 |   // a T&. | 
 |   operator T&() const { return *pointer_; } | 
 |  private: | 
 |   T* pointer_; | 
 | }; | 
 |  | 
 | // Allows the expression ByRef(x) to be printed as a reference to x. | 
 | template <typename T> | 
 | void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) { | 
 |   T& value = ref; | 
 |   UniversalPrinter<T&>::Print(value, os); | 
 | } | 
 |  | 
 | // Does two actions sequentially.  Used for implementing the DoAll(a1, | 
 | // a2, ...) action. | 
 | template <typename Action1, typename Action2> | 
 | class DoBothAction { | 
 |  public: | 
 |   DoBothAction(Action1 action1, Action2 action2) | 
 |       : action1_(action1), action2_(action2) {} | 
 |  | 
 |   // This template type conversion operator allows DoAll(a1, ..., a_n) | 
 |   // to be used in ANY function of compatible type. | 
 |   template <typename F> | 
 |   operator Action<F>() const { | 
 |     return Action<F>(new Impl<F>(action1_, action2_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Implements the DoAll(...) action for a particular function type F. | 
 |   template <typename F> | 
 |   class Impl : public ActionInterface<F> { | 
 |    public: | 
 |     typedef typename Function<F>::Result Result; | 
 |     typedef typename Function<F>::ArgumentTuple ArgumentTuple; | 
 |     typedef typename Function<F>::MakeResultVoid VoidResult; | 
 |  | 
 |     Impl(const Action<VoidResult>& action1, const Action<F>& action2) | 
 |         : action1_(action1), action2_(action2) {} | 
 |  | 
 |     virtual Result Perform(const ArgumentTuple& args) { | 
 |       action1_.Perform(args); | 
 |       return action2_.Perform(args); | 
 |     } | 
 |  | 
 |    private: | 
 |     const Action<VoidResult> action1_; | 
 |     const Action<F> action2_; | 
 |  | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |   Action1 action1_; | 
 |   Action2 action2_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(DoBothAction); | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // An Unused object can be implicitly constructed from ANY value. | 
 | // This is handy when defining actions that ignore some or all of the | 
 | // mock function arguments.  For example, given | 
 | // | 
 | //   MOCK_METHOD3(Foo, double(const string& label, double x, double y)); | 
 | //   MOCK_METHOD3(Bar, double(int index, double x, double y)); | 
 | // | 
 | // instead of | 
 | // | 
 | //   double DistanceToOriginWithLabel(const string& label, double x, double y) { | 
 | //     return sqrt(x*x + y*y); | 
 | //   } | 
 | //   double DistanceToOriginWithIndex(int index, double x, double y) { | 
 | //     return sqrt(x*x + y*y); | 
 | //   } | 
 | //   ... | 
 | //   EXPECT_CALL(mock, Foo("abc", _, _)) | 
 | //       .WillOnce(Invoke(DistanceToOriginWithLabel)); | 
 | //   EXPECT_CALL(mock, Bar(5, _, _)) | 
 | //       .WillOnce(Invoke(DistanceToOriginWithIndex)); | 
 | // | 
 | // you could write | 
 | // | 
 | //   // We can declare any uninteresting argument as Unused. | 
 | //   double DistanceToOrigin(Unused, double x, double y) { | 
 | //     return sqrt(x*x + y*y); | 
 | //   } | 
 | //   ... | 
 | //   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); | 
 | //   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); | 
 | typedef internal::IgnoredValue Unused; | 
 |  | 
 | // This constructor allows us to turn an Action<From> object into an | 
 | // Action<To>, as long as To's arguments can be implicitly converted | 
 | // to From's and From's return type cann be implicitly converted to | 
 | // To's. | 
 | template <typename To> | 
 | template <typename From> | 
 | Action<To>::Action(const Action<From>& from) | 
 |     : | 
 | #if GTEST_LANG_CXX11 | 
 |       fun_(from.fun_), | 
 | #endif | 
 |       impl_(from.impl_ == NULL ? NULL | 
 |                                : new internal::ActionAdaptor<To, From>(from)) { | 
 | } | 
 |  | 
 | // Creates an action that returns 'value'.  'value' is passed by value | 
 | // instead of const reference - otherwise Return("string literal") | 
 | // will trigger a compiler error about using array as initializer. | 
 | template <typename R> | 
 | internal::ReturnAction<R> Return(R value) { | 
 |   return internal::ReturnAction<R>(internal::move(value)); | 
 | } | 
 |  | 
 | // Creates an action that returns NULL. | 
 | inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { | 
 |   return MakePolymorphicAction(internal::ReturnNullAction()); | 
 | } | 
 |  | 
 | // Creates an action that returns from a void function. | 
 | inline PolymorphicAction<internal::ReturnVoidAction> Return() { | 
 |   return MakePolymorphicAction(internal::ReturnVoidAction()); | 
 | } | 
 |  | 
 | // Creates an action that returns the reference to a variable. | 
 | template <typename R> | 
 | inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT | 
 |   return internal::ReturnRefAction<R>(x); | 
 | } | 
 |  | 
 | // Creates an action that returns the reference to a copy of the | 
 | // argument.  The copy is created when the action is constructed and | 
 | // lives as long as the action. | 
 | template <typename R> | 
 | inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { | 
 |   return internal::ReturnRefOfCopyAction<R>(x); | 
 | } | 
 |  | 
 | // Modifies the parent action (a Return() action) to perform a move of the | 
 | // argument instead of a copy. | 
 | // Return(ByMove()) actions can only be executed once and will assert this | 
 | // invariant. | 
 | template <typename R> | 
 | internal::ByMoveWrapper<R> ByMove(R x) { | 
 |   return internal::ByMoveWrapper<R>(internal::move(x)); | 
 | } | 
 |  | 
 | // Creates an action that does the default action for the give mock function. | 
 | inline internal::DoDefaultAction DoDefault() { | 
 |   return internal::DoDefaultAction(); | 
 | } | 
 |  | 
 | // Creates an action that sets the variable pointed by the N-th | 
 | // (0-based) function argument to 'value'. | 
 | template <size_t N, typename T> | 
 | PolymorphicAction< | 
 |   internal::SetArgumentPointeeAction< | 
 |     N, T, internal::IsAProtocolMessage<T>::value> > | 
 | SetArgPointee(const T& x) { | 
 |   return MakePolymorphicAction(internal::SetArgumentPointeeAction< | 
 |       N, T, internal::IsAProtocolMessage<T>::value>(x)); | 
 | } | 
 |  | 
 | #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN) | 
 | // This overload allows SetArgPointee() to accept a string literal. | 
 | // GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish | 
 | // this overload from the templated version and emit a compile error. | 
 | template <size_t N> | 
 | PolymorphicAction< | 
 |   internal::SetArgumentPointeeAction<N, const char*, false> > | 
 | SetArgPointee(const char* p) { | 
 |   return MakePolymorphicAction(internal::SetArgumentPointeeAction< | 
 |       N, const char*, false>(p)); | 
 | } | 
 |  | 
 | template <size_t N> | 
 | PolymorphicAction< | 
 |   internal::SetArgumentPointeeAction<N, const wchar_t*, false> > | 
 | SetArgPointee(const wchar_t* p) { | 
 |   return MakePolymorphicAction(internal::SetArgumentPointeeAction< | 
 |       N, const wchar_t*, false>(p)); | 
 | } | 
 | #endif | 
 |  | 
 | // The following version is DEPRECATED. | 
 | template <size_t N, typename T> | 
 | PolymorphicAction< | 
 |   internal::SetArgumentPointeeAction< | 
 |     N, T, internal::IsAProtocolMessage<T>::value> > | 
 | SetArgumentPointee(const T& x) { | 
 |   return MakePolymorphicAction(internal::SetArgumentPointeeAction< | 
 |       N, T, internal::IsAProtocolMessage<T>::value>(x)); | 
 | } | 
 |  | 
 | // Creates an action that sets a pointer referent to a given value. | 
 | template <typename T1, typename T2> | 
 | PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { | 
 |   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); | 
 | } | 
 |  | 
 | #if !GTEST_OS_WINDOWS_MOBILE | 
 |  | 
 | // Creates an action that sets errno and returns the appropriate error. | 
 | template <typename T> | 
 | PolymorphicAction<internal::SetErrnoAndReturnAction<T> > | 
 | SetErrnoAndReturn(int errval, T result) { | 
 |   return MakePolymorphicAction( | 
 |       internal::SetErrnoAndReturnAction<T>(errval, result)); | 
 | } | 
 |  | 
 | #endif  // !GTEST_OS_WINDOWS_MOBILE | 
 |  | 
 | // Various overloads for InvokeWithoutArgs(). | 
 |  | 
 | // Creates an action that invokes 'function_impl' with no argument. | 
 | template <typename FunctionImpl> | 
 | PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> > | 
 | InvokeWithoutArgs(FunctionImpl function_impl) { | 
 |   return MakePolymorphicAction( | 
 |       internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl)); | 
 | } | 
 |  | 
 | // Creates an action that invokes the given method on the given object | 
 | // with no argument. | 
 | template <class Class, typename MethodPtr> | 
 | PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> > | 
 | InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) { | 
 |   return MakePolymorphicAction( | 
 |       internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>( | 
 |           obj_ptr, method_ptr)); | 
 | } | 
 |  | 
 | // Creates an action that performs an_action and throws away its | 
 | // result.  In other words, it changes the return type of an_action to | 
 | // void.  an_action MUST NOT return void, or the code won't compile. | 
 | template <typename A> | 
 | inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { | 
 |   return internal::IgnoreResultAction<A>(an_action); | 
 | } | 
 |  | 
 | // Creates a reference wrapper for the given L-value.  If necessary, | 
 | // you can explicitly specify the type of the reference.  For example, | 
 | // suppose 'derived' is an object of type Derived, ByRef(derived) | 
 | // would wrap a Derived&.  If you want to wrap a const Base& instead, | 
 | // where Base is a base class of Derived, just write: | 
 | // | 
 | //   ByRef<const Base>(derived) | 
 | template <typename T> | 
 | inline internal::ReferenceWrapper<T> ByRef(T& l_value) {  // NOLINT | 
 |   return internal::ReferenceWrapper<T>(l_value); | 
 | } | 
 |  | 
 | }  // namespace testing | 
 |  | 
 | #endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |