| // Copyright 2007, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: wan@google.com (Zhanyong Wan) | 
 |  | 
 | // Google Mock - a framework for writing C++ mock classes. | 
 | // | 
 | // This file implements some commonly used argument matchers.  More | 
 | // matchers can be defined by the user implementing the | 
 | // MatcherInterface<T> interface if necessary. | 
 |  | 
 | #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ | 
 | #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ | 
 |  | 
 | #include <math.h> | 
 | #include <algorithm> | 
 | #include <iterator> | 
 | #include <limits> | 
 | #include <ostream>  // NOLINT | 
 | #include <sstream> | 
 | #include <string> | 
 | #include <utility> | 
 | #include <vector> | 
 | #include "gtest/gtest.h" | 
 | #include "gmock/internal/gmock-internal-utils.h" | 
 | #include "gmock/internal/gmock-port.h" | 
 |  | 
 | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
 | # include <initializer_list>  // NOLINT -- must be after gtest.h | 
 | #endif | 
 |  | 
 | namespace testing { | 
 |  | 
 | // To implement a matcher Foo for type T, define: | 
 | //   1. a class FooMatcherImpl that implements the | 
 | //      MatcherInterface<T> interface, and | 
 | //   2. a factory function that creates a Matcher<T> object from a | 
 | //      FooMatcherImpl*. | 
 | // | 
 | // The two-level delegation design makes it possible to allow a user | 
 | // to write "v" instead of "Eq(v)" where a Matcher is expected, which | 
 | // is impossible if we pass matchers by pointers.  It also eases | 
 | // ownership management as Matcher objects can now be copied like | 
 | // plain values. | 
 |  | 
 | // MatchResultListener is an abstract class.  Its << operator can be | 
 | // used by a matcher to explain why a value matches or doesn't match. | 
 | // | 
 | // TODO(wan@google.com): add method | 
 | //   bool InterestedInWhy(bool result) const; | 
 | // to indicate whether the listener is interested in why the match | 
 | // result is 'result'. | 
 | class MatchResultListener { | 
 |  public: | 
 |   // Creates a listener object with the given underlying ostream.  The | 
 |   // listener does not own the ostream, and does not dereference it | 
 |   // in the constructor or destructor. | 
 |   explicit MatchResultListener(::std::ostream* os) : stream_(os) {} | 
 |   virtual ~MatchResultListener() = 0;  // Makes this class abstract. | 
 |  | 
 |   // Streams x to the underlying ostream; does nothing if the ostream | 
 |   // is NULL. | 
 |   template <typename T> | 
 |   MatchResultListener& operator<<(const T& x) { | 
 |     if (stream_ != NULL) | 
 |       *stream_ << x; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Returns the underlying ostream. | 
 |   ::std::ostream* stream() { return stream_; } | 
 |  | 
 |   // Returns true iff the listener is interested in an explanation of | 
 |   // the match result.  A matcher's MatchAndExplain() method can use | 
 |   // this information to avoid generating the explanation when no one | 
 |   // intends to hear it. | 
 |   bool IsInterested() const { return stream_ != NULL; } | 
 |  | 
 |  private: | 
 |   ::std::ostream* const stream_; | 
 |  | 
 |   GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener); | 
 | }; | 
 |  | 
 | inline MatchResultListener::~MatchResultListener() { | 
 | } | 
 |  | 
 | // An instance of a subclass of this knows how to describe itself as a | 
 | // matcher. | 
 | class MatcherDescriberInterface { | 
 |  public: | 
 |   virtual ~MatcherDescriberInterface() {} | 
 |  | 
 |   // Describes this matcher to an ostream.  The function should print | 
 |   // a verb phrase that describes the property a value matching this | 
 |   // matcher should have.  The subject of the verb phrase is the value | 
 |   // being matched.  For example, the DescribeTo() method of the Gt(7) | 
 |   // matcher prints "is greater than 7". | 
 |   virtual void DescribeTo(::std::ostream* os) const = 0; | 
 |  | 
 |   // Describes the negation of this matcher to an ostream.  For | 
 |   // example, if the description of this matcher is "is greater than | 
 |   // 7", the negated description could be "is not greater than 7". | 
 |   // You are not required to override this when implementing | 
 |   // MatcherInterface, but it is highly advised so that your matcher | 
 |   // can produce good error messages. | 
 |   virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "not ("; | 
 |     DescribeTo(os); | 
 |     *os << ")"; | 
 |   } | 
 | }; | 
 |  | 
 | // The implementation of a matcher. | 
 | template <typename T> | 
 | class MatcherInterface : public MatcherDescriberInterface { | 
 |  public: | 
 |   // Returns true iff the matcher matches x; also explains the match | 
 |   // result to 'listener' if necessary (see the next paragraph), in | 
 |   // the form of a non-restrictive relative clause ("which ...", | 
 |   // "whose ...", etc) that describes x.  For example, the | 
 |   // MatchAndExplain() method of the Pointee(...) matcher should | 
 |   // generate an explanation like "which points to ...". | 
 |   // | 
 |   // Implementations of MatchAndExplain() should add an explanation of | 
 |   // the match result *if and only if* they can provide additional | 
 |   // information that's not already present (or not obvious) in the | 
 |   // print-out of x and the matcher's description.  Whether the match | 
 |   // succeeds is not a factor in deciding whether an explanation is | 
 |   // needed, as sometimes the caller needs to print a failure message | 
 |   // when the match succeeds (e.g. when the matcher is used inside | 
 |   // Not()). | 
 |   // | 
 |   // For example, a "has at least 10 elements" matcher should explain | 
 |   // what the actual element count is, regardless of the match result, | 
 |   // as it is useful information to the reader; on the other hand, an | 
 |   // "is empty" matcher probably only needs to explain what the actual | 
 |   // size is when the match fails, as it's redundant to say that the | 
 |   // size is 0 when the value is already known to be empty. | 
 |   // | 
 |   // You should override this method when defining a new matcher. | 
 |   // | 
 |   // It's the responsibility of the caller (Google Mock) to guarantee | 
 |   // that 'listener' is not NULL.  This helps to simplify a matcher's | 
 |   // implementation when it doesn't care about the performance, as it | 
 |   // can talk to 'listener' without checking its validity first. | 
 |   // However, in order to implement dummy listeners efficiently, | 
 |   // listener->stream() may be NULL. | 
 |   virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0; | 
 |  | 
 |   // Inherits these methods from MatcherDescriberInterface: | 
 |   //   virtual void DescribeTo(::std::ostream* os) const = 0; | 
 |   //   virtual void DescribeNegationTo(::std::ostream* os) const; | 
 | }; | 
 |  | 
 | namespace internal { | 
 |  | 
 | // Converts a MatcherInterface<T> to a MatcherInterface<const T&>. | 
 | template <typename T> | 
 | class MatcherInterfaceAdapter : public MatcherInterface<const T&> { | 
 |  public: | 
 |   explicit MatcherInterfaceAdapter(const MatcherInterface<T>* impl) | 
 |       : impl_(impl) {} | 
 |   virtual ~MatcherInterfaceAdapter() { delete impl_; } | 
 |  | 
 |   virtual void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } | 
 |  | 
 |   virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |     impl_->DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |   virtual bool MatchAndExplain(const T& x, | 
 |                                MatchResultListener* listener) const { | 
 |     return impl_->MatchAndExplain(x, listener); | 
 |   } | 
 |  | 
 |  private: | 
 |   const MatcherInterface<T>* const impl_; | 
 |  | 
 |   GTEST_DISALLOW_COPY_AND_ASSIGN_(MatcherInterfaceAdapter); | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // A match result listener that stores the explanation in a string. | 
 | class StringMatchResultListener : public MatchResultListener { | 
 |  public: | 
 |   StringMatchResultListener() : MatchResultListener(&ss_) {} | 
 |  | 
 |   // Returns the explanation accumulated so far. | 
 |   std::string str() const { return ss_.str(); } | 
 |  | 
 |   // Clears the explanation accumulated so far. | 
 |   void Clear() { ss_.str(""); } | 
 |  | 
 |  private: | 
 |   ::std::stringstream ss_; | 
 |  | 
 |   GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); | 
 | }; | 
 |  | 
 | namespace internal { | 
 |  | 
 | struct AnyEq { | 
 |   template <typename A, typename B> | 
 |   bool operator()(const A& a, const B& b) const { return a == b; } | 
 | }; | 
 | struct AnyNe { | 
 |   template <typename A, typename B> | 
 |   bool operator()(const A& a, const B& b) const { return a != b; } | 
 | }; | 
 | struct AnyLt { | 
 |   template <typename A, typename B> | 
 |   bool operator()(const A& a, const B& b) const { return a < b; } | 
 | }; | 
 | struct AnyGt { | 
 |   template <typename A, typename B> | 
 |   bool operator()(const A& a, const B& b) const { return a > b; } | 
 | }; | 
 | struct AnyLe { | 
 |   template <typename A, typename B> | 
 |   bool operator()(const A& a, const B& b) const { return a <= b; } | 
 | }; | 
 | struct AnyGe { | 
 |   template <typename A, typename B> | 
 |   bool operator()(const A& a, const B& b) const { return a >= b; } | 
 | }; | 
 |  | 
 | // A match result listener that ignores the explanation. | 
 | class DummyMatchResultListener : public MatchResultListener { | 
 |  public: | 
 |   DummyMatchResultListener() : MatchResultListener(NULL) {} | 
 |  | 
 |  private: | 
 |   GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener); | 
 | }; | 
 |  | 
 | // A match result listener that forwards the explanation to a given | 
 | // ostream.  The difference between this and MatchResultListener is | 
 | // that the former is concrete. | 
 | class StreamMatchResultListener : public MatchResultListener { | 
 |  public: | 
 |   explicit StreamMatchResultListener(::std::ostream* os) | 
 |       : MatchResultListener(os) {} | 
 |  | 
 |  private: | 
 |   GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener); | 
 | }; | 
 |  | 
 | // An internal class for implementing Matcher<T>, which will derive | 
 | // from it.  We put functionalities common to all Matcher<T> | 
 | // specializations here to avoid code duplication. | 
 | template <typename T> | 
 | class MatcherBase { | 
 |  public: | 
 |   // Returns true iff the matcher matches x; also explains the match | 
 |   // result to 'listener'. | 
 |   bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, | 
 |                        MatchResultListener* listener) const { | 
 |     return impl_->MatchAndExplain(x, listener); | 
 |   } | 
 |  | 
 |   // Returns true iff this matcher matches x. | 
 |   bool Matches(GTEST_REFERENCE_TO_CONST_(T) x) const { | 
 |     DummyMatchResultListener dummy; | 
 |     return MatchAndExplain(x, &dummy); | 
 |   } | 
 |  | 
 |   // Describes this matcher to an ostream. | 
 |   void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } | 
 |  | 
 |   // Describes the negation of this matcher to an ostream. | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     impl_->DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |   // Explains why x matches, or doesn't match, the matcher. | 
 |   void ExplainMatchResultTo(GTEST_REFERENCE_TO_CONST_(T) x, | 
 |                             ::std::ostream* os) const { | 
 |     StreamMatchResultListener listener(os); | 
 |     MatchAndExplain(x, &listener); | 
 |   } | 
 |  | 
 |   // Returns the describer for this matcher object; retains ownership | 
 |   // of the describer, which is only guaranteed to be alive when | 
 |   // this matcher object is alive. | 
 |   const MatcherDescriberInterface* GetDescriber() const { | 
 |     return impl_.get(); | 
 |   } | 
 |  | 
 |  protected: | 
 |   MatcherBase() {} | 
 |  | 
 |   // Constructs a matcher from its implementation. | 
 |   explicit MatcherBase( | 
 |       const MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)>* impl) | 
 |       : impl_(impl) {} | 
 |  | 
 |   template <typename U> | 
 |   explicit MatcherBase( | 
 |       const MatcherInterface<U>* impl, | 
 |       typename internal::EnableIf< | 
 |           !internal::IsSame<U, GTEST_REFERENCE_TO_CONST_(U)>::value>::type* = | 
 |           NULL) | 
 |       : impl_(new internal::MatcherInterfaceAdapter<U>(impl)) {} | 
 |  | 
 |   virtual ~MatcherBase() {} | 
 |  | 
 |  private: | 
 |   // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar | 
 |   // interfaces.  The former dynamically allocates a chunk of memory | 
 |   // to hold the reference count, while the latter tracks all | 
 |   // references using a circular linked list without allocating | 
 |   // memory.  It has been observed that linked_ptr performs better in | 
 |   // typical scenarios.  However, shared_ptr can out-perform | 
 |   // linked_ptr when there are many more uses of the copy constructor | 
 |   // than the default constructor. | 
 |   // | 
 |   // If performance becomes a problem, we should see if using | 
 |   // shared_ptr helps. | 
 |   ::testing::internal::linked_ptr< | 
 |       const MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> > | 
 |       impl_; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // A Matcher<T> is a copyable and IMMUTABLE (except by assignment) | 
 | // object that can check whether a value of type T matches.  The | 
 | // implementation of Matcher<T> is just a linked_ptr to const | 
 | // MatcherInterface<T>, so copying is fairly cheap.  Don't inherit | 
 | // from Matcher! | 
 | template <typename T> | 
 | class Matcher : public internal::MatcherBase<T> { | 
 |  public: | 
 |   // Constructs a null matcher.  Needed for storing Matcher objects in STL | 
 |   // containers.  A default-constructed matcher is not yet initialized.  You | 
 |   // cannot use it until a valid value has been assigned to it. | 
 |   explicit Matcher() {}  // NOLINT | 
 |  | 
 |   // Constructs a matcher from its implementation. | 
 |   explicit Matcher(const MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)>* impl) | 
 |       : internal::MatcherBase<T>(impl) {} | 
 |  | 
 |   template <typename U> | 
 |   explicit Matcher(const MatcherInterface<U>* impl, | 
 |                    typename internal::EnableIf<!internal::IsSame< | 
 |                        U, GTEST_REFERENCE_TO_CONST_(U)>::value>::type* = NULL) | 
 |       : internal::MatcherBase<T>(impl) {} | 
 |  | 
 |   // Implicit constructor here allows people to write | 
 |   // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes | 
 |   Matcher(T value);  // NOLINT | 
 | }; | 
 |  | 
 | // The following two specializations allow the user to write str | 
 | // instead of Eq(str) and "foo" instead of Eq("foo") when a std::string | 
 | // matcher is expected. | 
 | template <> | 
 | class GTEST_API_ Matcher<const std::string&> | 
 |     : public internal::MatcherBase<const std::string&> { | 
 |  public: | 
 |   Matcher() {} | 
 |  | 
 |   explicit Matcher(const MatcherInterface<const std::string&>* impl) | 
 |       : internal::MatcherBase<const std::string&>(impl) {} | 
 |  | 
 |   // Allows the user to write str instead of Eq(str) sometimes, where | 
 |   // str is a std::string object. | 
 |   Matcher(const std::string& s);  // NOLINT | 
 |  | 
 | #if GTEST_HAS_GLOBAL_STRING | 
 |   // Allows the user to write str instead of Eq(str) sometimes, where | 
 |   // str is a ::string object. | 
 |   Matcher(const ::string& s);  // NOLINT | 
 | #endif                         // GTEST_HAS_GLOBAL_STRING | 
 |  | 
 |   // Allows the user to write "foo" instead of Eq("foo") sometimes. | 
 |   Matcher(const char* s);  // NOLINT | 
 | }; | 
 |  | 
 | template <> | 
 | class GTEST_API_ Matcher<std::string> | 
 |     : public internal::MatcherBase<std::string> { | 
 |  public: | 
 |   Matcher() {} | 
 |  | 
 |   explicit Matcher(const MatcherInterface<const std::string&>* impl) | 
 |       : internal::MatcherBase<std::string>(impl) {} | 
 |   explicit Matcher(const MatcherInterface<std::string>* impl) | 
 |       : internal::MatcherBase<std::string>(impl) {} | 
 |  | 
 |   // Allows the user to write str instead of Eq(str) sometimes, where | 
 |   // str is a string object. | 
 |   Matcher(const std::string& s);  // NOLINT | 
 |  | 
 | #if GTEST_HAS_GLOBAL_STRING | 
 |   // Allows the user to write str instead of Eq(str) sometimes, where | 
 |   // str is a ::string object. | 
 |   Matcher(const ::string& s);  // NOLINT | 
 | #endif                         // GTEST_HAS_GLOBAL_STRING | 
 |  | 
 |   // Allows the user to write "foo" instead of Eq("foo") sometimes. | 
 |   Matcher(const char* s);  // NOLINT | 
 | }; | 
 |  | 
 | #if GTEST_HAS_GLOBAL_STRING | 
 | // The following two specializations allow the user to write str | 
 | // instead of Eq(str) and "foo" instead of Eq("foo") when a ::string | 
 | // matcher is expected. | 
 | template <> | 
 | class GTEST_API_ Matcher<const ::string&> | 
 |     : public internal::MatcherBase<const ::string&> { | 
 |  public: | 
 |   Matcher() {} | 
 |  | 
 |   explicit Matcher(const MatcherInterface<const ::string&>* impl) | 
 |       : internal::MatcherBase<const ::string&>(impl) {} | 
 |  | 
 |   // Allows the user to write str instead of Eq(str) sometimes, where | 
 |   // str is a std::string object. | 
 |   Matcher(const std::string& s);  // NOLINT | 
 |  | 
 |   // Allows the user to write str instead of Eq(str) sometimes, where | 
 |   // str is a ::string object. | 
 |   Matcher(const ::string& s);  // NOLINT | 
 |  | 
 |   // Allows the user to write "foo" instead of Eq("foo") sometimes. | 
 |   Matcher(const char* s);  // NOLINT | 
 | }; | 
 |  | 
 | template <> | 
 | class GTEST_API_ Matcher< ::string> | 
 |     : public internal::MatcherBase< ::string> { | 
 |  public: | 
 |   Matcher() {} | 
 |  | 
 |   explicit Matcher(const MatcherInterface<const ::string&>* impl) | 
 |       : internal::MatcherBase< ::string>(impl) {} | 
 |   explicit Matcher(const MatcherInterface< ::string>* impl) | 
 |       : internal::MatcherBase< ::string>(impl) {} | 
 |  | 
 |   // Allows the user to write str instead of Eq(str) sometimes, where | 
 |   // str is a std::string object. | 
 |   Matcher(const std::string& s);  // NOLINT | 
 |  | 
 |   // Allows the user to write str instead of Eq(str) sometimes, where | 
 |   // str is a ::string object. | 
 |   Matcher(const ::string& s);  // NOLINT | 
 |  | 
 |   // Allows the user to write "foo" instead of Eq("foo") sometimes. | 
 |   Matcher(const char* s);  // NOLINT | 
 | }; | 
 | #endif  // GTEST_HAS_GLOBAL_STRING | 
 |  | 
 | #if GTEST_HAS_ABSL | 
 | // The following two specializations allow the user to write str | 
 | // instead of Eq(str) and "foo" instead of Eq("foo") when a absl::string_view | 
 | // matcher is expected. | 
 | template <> | 
 | class GTEST_API_ Matcher<const absl::string_view&> | 
 |     : public internal::MatcherBase<const absl::string_view&> { | 
 |  public: | 
 |   Matcher() {} | 
 |  | 
 |   explicit Matcher(const MatcherInterface<const absl::string_view&>* impl) | 
 |       : internal::MatcherBase<const absl::string_view&>(impl) {} | 
 |  | 
 |   // Allows the user to write str instead of Eq(str) sometimes, where | 
 |   // str is a std::string object. | 
 |   Matcher(const std::string& s);  // NOLINT | 
 |  | 
 | #if GTEST_HAS_GLOBAL_STRING | 
 |   // Allows the user to write str instead of Eq(str) sometimes, where | 
 |   // str is a ::string object. | 
 |   Matcher(const ::string& s);  // NOLINT | 
 | #endif                         // GTEST_HAS_GLOBAL_STRING | 
 |  | 
 |   // Allows the user to write "foo" instead of Eq("foo") sometimes. | 
 |   Matcher(const char* s);  // NOLINT | 
 |  | 
 |   // Allows the user to pass absl::string_views directly. | 
 |   Matcher(absl::string_view s);  // NOLINT | 
 | }; | 
 |  | 
 | template <> | 
 | class GTEST_API_ Matcher<absl::string_view> | 
 |     : public internal::MatcherBase<absl::string_view> { | 
 |  public: | 
 |   Matcher() {} | 
 |  | 
 |   explicit Matcher(const MatcherInterface<const absl::string_view&>* impl) | 
 |       : internal::MatcherBase<absl::string_view>(impl) {} | 
 |   explicit Matcher(const MatcherInterface<absl::string_view>* impl) | 
 |       : internal::MatcherBase<absl::string_view>(impl) {} | 
 |  | 
 |   // Allows the user to write str instead of Eq(str) sometimes, where | 
 |   // str is a std::string object. | 
 |   Matcher(const std::string& s);  // NOLINT | 
 |  | 
 | #if GTEST_HAS_GLOBAL_STRING | 
 |   // Allows the user to write str instead of Eq(str) sometimes, where | 
 |   // str is a ::string object. | 
 |   Matcher(const ::string& s);  // NOLINT | 
 | #endif                         // GTEST_HAS_GLOBAL_STRING | 
 |  | 
 |   // Allows the user to write "foo" instead of Eq("foo") sometimes. | 
 |   Matcher(const char* s);  // NOLINT | 
 |  | 
 |   // Allows the user to pass absl::string_views directly. | 
 |   Matcher(absl::string_view s);  // NOLINT | 
 | }; | 
 | #endif  // GTEST_HAS_ABSL | 
 |  | 
 | // Prints a matcher in a human-readable format. | 
 | template <typename T> | 
 | std::ostream& operator<<(std::ostream& os, const Matcher<T>& matcher) { | 
 |   matcher.DescribeTo(&os); | 
 |   return os; | 
 | } | 
 |  | 
 | // The PolymorphicMatcher class template makes it easy to implement a | 
 | // polymorphic matcher (i.e. a matcher that can match values of more | 
 | // than one type, e.g. Eq(n) and NotNull()). | 
 | // | 
 | // To define a polymorphic matcher, a user should provide an Impl | 
 | // class that has a DescribeTo() method and a DescribeNegationTo() | 
 | // method, and define a member function (or member function template) | 
 | // | 
 | //   bool MatchAndExplain(const Value& value, | 
 | //                        MatchResultListener* listener) const; | 
 | // | 
 | // See the definition of NotNull() for a complete example. | 
 | template <class Impl> | 
 | class PolymorphicMatcher { | 
 |  public: | 
 |   explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {} | 
 |  | 
 |   // Returns a mutable reference to the underlying matcher | 
 |   // implementation object. | 
 |   Impl& mutable_impl() { return impl_; } | 
 |  | 
 |   // Returns an immutable reference to the underlying matcher | 
 |   // implementation object. | 
 |   const Impl& impl() const { return impl_; } | 
 |  | 
 |   template <typename T> | 
 |   operator Matcher<T>() const { | 
 |     return Matcher<T>(new MonomorphicImpl<GTEST_REFERENCE_TO_CONST_(T)>(impl_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename T> | 
 |   class MonomorphicImpl : public MatcherInterface<T> { | 
 |    public: | 
 |     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} | 
 |  | 
 |     virtual void DescribeTo(::std::ostream* os) const { | 
 |       impl_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |       impl_.DescribeNegationTo(os); | 
 |     } | 
 |  | 
 |     virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { | 
 |       return impl_.MatchAndExplain(x, listener); | 
 |     } | 
 |  | 
 |    private: | 
 |     const Impl impl_; | 
 |  | 
 |     GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); | 
 |   }; | 
 |  | 
 |   Impl impl_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher); | 
 | }; | 
 |  | 
 | // Creates a matcher from its implementation.  This is easier to use | 
 | // than the Matcher<T> constructor as it doesn't require you to | 
 | // explicitly write the template argument, e.g. | 
 | // | 
 | //   MakeMatcher(foo); | 
 | // vs | 
 | //   Matcher<const string&>(foo); | 
 | template <typename T> | 
 | inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) { | 
 |   return Matcher<T>(impl); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher from its implementation.  This is | 
 | // easier to use than the PolymorphicMatcher<Impl> constructor as it | 
 | // doesn't require you to explicitly write the template argument, e.g. | 
 | // | 
 | //   MakePolymorphicMatcher(foo); | 
 | // vs | 
 | //   PolymorphicMatcher<TypeOfFoo>(foo); | 
 | template <class Impl> | 
 | inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) { | 
 |   return PolymorphicMatcher<Impl>(impl); | 
 | } | 
 |  | 
 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION | 
 | // and MUST NOT BE USED IN USER CODE!!! | 
 | namespace internal { | 
 |  | 
 | // The MatcherCastImpl class template is a helper for implementing | 
 | // MatcherCast().  We need this helper in order to partially | 
 | // specialize the implementation of MatcherCast() (C++ allows | 
 | // class/struct templates to be partially specialized, but not | 
 | // function templates.). | 
 |  | 
 | // This general version is used when MatcherCast()'s argument is a | 
 | // polymorphic matcher (i.e. something that can be converted to a | 
 | // Matcher but is not one yet; for example, Eq(value)) or a value (for | 
 | // example, "hello"). | 
 | template <typename T, typename M> | 
 | class MatcherCastImpl { | 
 |  public: | 
 |   static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { | 
 |     // M can be a polymorphic matcher, in which case we want to use | 
 |     // its conversion operator to create Matcher<T>.  Or it can be a value | 
 |     // that should be passed to the Matcher<T>'s constructor. | 
 |     // | 
 |     // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a | 
 |     // polymorphic matcher because it'll be ambiguous if T has an implicit | 
 |     // constructor from M (this usually happens when T has an implicit | 
 |     // constructor from any type). | 
 |     // | 
 |     // It won't work to unconditionally implict_cast | 
 |     // polymorphic_matcher_or_value to Matcher<T> because it won't trigger | 
 |     // a user-defined conversion from M to T if one exists (assuming M is | 
 |     // a value). | 
 |     return CastImpl( | 
 |         polymorphic_matcher_or_value, | 
 |         BooleanConstant< | 
 |             internal::ImplicitlyConvertible<M, Matcher<T> >::value>(), | 
 |         BooleanConstant< | 
 |             internal::ImplicitlyConvertible<M, T>::value>()); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <bool Ignore> | 
 |   static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, | 
 |                              BooleanConstant<true> /* convertible_to_matcher */, | 
 |                              BooleanConstant<Ignore>) { | 
 |     // M is implicitly convertible to Matcher<T>, which means that either | 
 |     // M is a polymorphic matcher or Matcher<T> has an implicit constructor | 
 |     // from M.  In both cases using the implicit conversion will produce a | 
 |     // matcher. | 
 |     // | 
 |     // Even if T has an implicit constructor from M, it won't be called because | 
 |     // creating Matcher<T> would require a chain of two user-defined conversions | 
 |     // (first to create T from M and then to create Matcher<T> from T). | 
 |     return polymorphic_matcher_or_value; | 
 |   } | 
 |  | 
 |   // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic | 
 |   // matcher. It's a value of a type implicitly convertible to T. Use direct | 
 |   // initialization to create a matcher. | 
 |   static Matcher<T> CastImpl( | 
 |       const M& value, BooleanConstant<false> /* convertible_to_matcher */, | 
 |       BooleanConstant<true> /* convertible_to_T */) { | 
 |     return Matcher<T>(ImplicitCast_<T>(value)); | 
 |   } | 
 |  | 
 |   // M can't be implicitly converted to either Matcher<T> or T. Attempt to use | 
 |   // polymorphic matcher Eq(value) in this case. | 
 |   // | 
 |   // Note that we first attempt to perform an implicit cast on the value and | 
 |   // only fall back to the polymorphic Eq() matcher afterwards because the | 
 |   // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end | 
 |   // which might be undefined even when Rhs is implicitly convertible to Lhs | 
 |   // (e.g. std::pair<const int, int> vs. std::pair<int, int>). | 
 |   // | 
 |   // We don't define this method inline as we need the declaration of Eq(). | 
 |   static Matcher<T> CastImpl( | 
 |       const M& value, BooleanConstant<false> /* convertible_to_matcher */, | 
 |       BooleanConstant<false> /* convertible_to_T */); | 
 | }; | 
 |  | 
 | // This more specialized version is used when MatcherCast()'s argument | 
 | // is already a Matcher.  This only compiles when type T can be | 
 | // statically converted to type U. | 
 | template <typename T, typename U> | 
 | class MatcherCastImpl<T, Matcher<U> > { | 
 |  public: | 
 |   static Matcher<T> Cast(const Matcher<U>& source_matcher) { | 
 |     return Matcher<T>(new Impl(source_matcher)); | 
 |   } | 
 |  | 
 |  private: | 
 |   class Impl : public MatcherInterface<T> { | 
 |    public: | 
 |     explicit Impl(const Matcher<U>& source_matcher) | 
 |         : source_matcher_(source_matcher) {} | 
 |  | 
 |     // We delegate the matching logic to the source matcher. | 
 |     virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { | 
 | #if GTEST_LANG_CXX11 | 
 |       using FromType = typename std::remove_cv<typename std::remove_pointer< | 
 |           typename std::remove_reference<T>::type>::type>::type; | 
 |       using ToType = typename std::remove_cv<typename std::remove_pointer< | 
 |           typename std::remove_reference<U>::type>::type>::type; | 
 |       // Do not allow implicitly converting base*/& to derived*/&. | 
 |       static_assert( | 
 |           // Do not trigger if only one of them is a pointer. That implies a | 
 |           // regular conversion and not a down_cast. | 
 |           (std::is_pointer<typename std::remove_reference<T>::type>::value != | 
 |            std::is_pointer<typename std::remove_reference<U>::type>::value) || | 
 |               std::is_same<FromType, ToType>::value || | 
 |               !std::is_base_of<FromType, ToType>::value, | 
 |           "Can't implicitly convert from <base> to <derived>"); | 
 | #endif  // GTEST_LANG_CXX11 | 
 |  | 
 |       return source_matcher_.MatchAndExplain(static_cast<U>(x), listener); | 
 |     } | 
 |  | 
 |     virtual void DescribeTo(::std::ostream* os) const { | 
 |       source_matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |       source_matcher_.DescribeNegationTo(os); | 
 |     } | 
 |  | 
 |    private: | 
 |     const Matcher<U> source_matcher_; | 
 |  | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   }; | 
 | }; | 
 |  | 
 | // This even more specialized version is used for efficiently casting | 
 | // a matcher to its own type. | 
 | template <typename T> | 
 | class MatcherCastImpl<T, Matcher<T> > { | 
 |  public: | 
 |   static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // In order to be safe and clear, casting between different matcher | 
 | // types is done explicitly via MatcherCast<T>(m), which takes a | 
 | // matcher m and returns a Matcher<T>.  It compiles only when T can be | 
 | // statically converted to the argument type of m. | 
 | template <typename T, typename M> | 
 | inline Matcher<T> MatcherCast(const M& matcher) { | 
 |   return internal::MatcherCastImpl<T, M>::Cast(matcher); | 
 | } | 
 |  | 
 | // Implements SafeMatcherCast(). | 
 | // | 
 | // We use an intermediate class to do the actual safe casting as Nokia's | 
 | // Symbian compiler cannot decide between | 
 | // template <T, M> ... (M) and | 
 | // template <T, U> ... (const Matcher<U>&) | 
 | // for function templates but can for member function templates. | 
 | template <typename T> | 
 | class SafeMatcherCastImpl { | 
 |  public: | 
 |   // This overload handles polymorphic matchers and values only since | 
 |   // monomorphic matchers are handled by the next one. | 
 |   template <typename M> | 
 |   static inline Matcher<T> Cast(const M& polymorphic_matcher_or_value) { | 
 |     return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value); | 
 |   } | 
 |  | 
 |   // This overload handles monomorphic matchers. | 
 |   // | 
 |   // In general, if type T can be implicitly converted to type U, we can | 
 |   // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is | 
 |   // contravariant): just keep a copy of the original Matcher<U>, convert the | 
 |   // argument from type T to U, and then pass it to the underlying Matcher<U>. | 
 |   // The only exception is when U is a reference and T is not, as the | 
 |   // underlying Matcher<U> may be interested in the argument's address, which | 
 |   // is not preserved in the conversion from T to U. | 
 |   template <typename U> | 
 |   static inline Matcher<T> Cast(const Matcher<U>& matcher) { | 
 |     // Enforce that T can be implicitly converted to U. | 
 |     GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value), | 
 |                           T_must_be_implicitly_convertible_to_U); | 
 |     // Enforce that we are not converting a non-reference type T to a reference | 
 |     // type U. | 
 |     GTEST_COMPILE_ASSERT_( | 
 |         internal::is_reference<T>::value || !internal::is_reference<U>::value, | 
 |         cannot_convert_non_reference_arg_to_reference); | 
 |     // In case both T and U are arithmetic types, enforce that the | 
 |     // conversion is not lossy. | 
 |     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; | 
 |     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; | 
 |     const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; | 
 |     const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; | 
 |     GTEST_COMPILE_ASSERT_( | 
 |         kTIsOther || kUIsOther || | 
 |         (internal::LosslessArithmeticConvertible<RawT, RawU>::value), | 
 |         conversion_of_arithmetic_types_must_be_lossless); | 
 |     return MatcherCast<T>(matcher); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T, typename M> | 
 | inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) { | 
 |   return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher); | 
 | } | 
 |  | 
 | // A<T>() returns a matcher that matches any value of type T. | 
 | template <typename T> | 
 | Matcher<T> A(); | 
 |  | 
 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION | 
 | // and MUST NOT BE USED IN USER CODE!!! | 
 | namespace internal { | 
 |  | 
 | // If the explanation is not empty, prints it to the ostream. | 
 | inline void PrintIfNotEmpty(const std::string& explanation, | 
 |                             ::std::ostream* os) { | 
 |   if (explanation != "" && os != NULL) { | 
 |     *os << ", " << explanation; | 
 |   } | 
 | } | 
 |  | 
 | // Returns true if the given type name is easy to read by a human. | 
 | // This is used to decide whether printing the type of a value might | 
 | // be helpful. | 
 | inline bool IsReadableTypeName(const std::string& type_name) { | 
 |   // We consider a type name readable if it's short or doesn't contain | 
 |   // a template or function type. | 
 |   return (type_name.length() <= 20 || | 
 |           type_name.find_first_of("<(") == std::string::npos); | 
 | } | 
 |  | 
 | // Matches the value against the given matcher, prints the value and explains | 
 | // the match result to the listener. Returns the match result. | 
 | // 'listener' must not be NULL. | 
 | // Value cannot be passed by const reference, because some matchers take a | 
 | // non-const argument. | 
 | template <typename Value, typename T> | 
 | bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, | 
 |                           MatchResultListener* listener) { | 
 |   if (!listener->IsInterested()) { | 
 |     // If the listener is not interested, we do not need to construct the | 
 |     // inner explanation. | 
 |     return matcher.Matches(value); | 
 |   } | 
 |  | 
 |   StringMatchResultListener inner_listener; | 
 |   const bool match = matcher.MatchAndExplain(value, &inner_listener); | 
 |  | 
 |   UniversalPrint(value, listener->stream()); | 
 | #if GTEST_HAS_RTTI | 
 |   const std::string& type_name = GetTypeName<Value>(); | 
 |   if (IsReadableTypeName(type_name)) | 
 |     *listener->stream() << " (of type " << type_name << ")"; | 
 | #endif | 
 |   PrintIfNotEmpty(inner_listener.str(), listener->stream()); | 
 |  | 
 |   return match; | 
 | } | 
 |  | 
 | // An internal helper class for doing compile-time loop on a tuple's | 
 | // fields. | 
 | template <size_t N> | 
 | class TuplePrefix { | 
 |  public: | 
 |   // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true | 
 |   // iff the first N fields of matcher_tuple matches the first N | 
 |   // fields of value_tuple, respectively. | 
 |   template <typename MatcherTuple, typename ValueTuple> | 
 |   static bool Matches(const MatcherTuple& matcher_tuple, | 
 |                       const ValueTuple& value_tuple) { | 
 |     return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) | 
 |         && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple)); | 
 |   } | 
 |  | 
 |   // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) | 
 |   // describes failures in matching the first N fields of matchers | 
 |   // against the first N fields of values.  If there is no failure, | 
 |   // nothing will be streamed to os. | 
 |   template <typename MatcherTuple, typename ValueTuple> | 
 |   static void ExplainMatchFailuresTo(const MatcherTuple& matchers, | 
 |                                      const ValueTuple& values, | 
 |                                      ::std::ostream* os) { | 
 |     // First, describes failures in the first N - 1 fields. | 
 |     TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); | 
 |  | 
 |     // Then describes the failure (if any) in the (N - 1)-th (0-based) | 
 |     // field. | 
 |     typename tuple_element<N - 1, MatcherTuple>::type matcher = | 
 |         get<N - 1>(matchers); | 
 |     typedef typename tuple_element<N - 1, ValueTuple>::type Value; | 
 |     GTEST_REFERENCE_TO_CONST_(Value) value = get<N - 1>(values); | 
 |     StringMatchResultListener listener; | 
 |     if (!matcher.MatchAndExplain(value, &listener)) { | 
 |       // TODO(wan): include in the message the name of the parameter | 
 |       // as used in MOCK_METHOD*() when possible. | 
 |       *os << "  Expected arg #" << N - 1 << ": "; | 
 |       get<N - 1>(matchers).DescribeTo(os); | 
 |       *os << "\n           Actual: "; | 
 |       // We remove the reference in type Value to prevent the | 
 |       // universal printer from printing the address of value, which | 
 |       // isn't interesting to the user most of the time.  The | 
 |       // matcher's MatchAndExplain() method handles the case when | 
 |       // the address is interesting. | 
 |       internal::UniversalPrint(value, os); | 
 |       PrintIfNotEmpty(listener.str(), os); | 
 |       *os << "\n"; | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | // The base case. | 
 | template <> | 
 | class TuplePrefix<0> { | 
 |  public: | 
 |   template <typename MatcherTuple, typename ValueTuple> | 
 |   static bool Matches(const MatcherTuple& /* matcher_tuple */, | 
 |                       const ValueTuple& /* value_tuple */) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   template <typename MatcherTuple, typename ValueTuple> | 
 |   static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, | 
 |                                      const ValueTuple& /* values */, | 
 |                                      ::std::ostream* /* os */) {} | 
 | }; | 
 |  | 
 | // TupleMatches(matcher_tuple, value_tuple) returns true iff all | 
 | // matchers in matcher_tuple match the corresponding fields in | 
 | // value_tuple.  It is a compiler error if matcher_tuple and | 
 | // value_tuple have different number of fields or incompatible field | 
 | // types. | 
 | template <typename MatcherTuple, typename ValueTuple> | 
 | bool TupleMatches(const MatcherTuple& matcher_tuple, | 
 |                   const ValueTuple& value_tuple) { | 
 |   // Makes sure that matcher_tuple and value_tuple have the same | 
 |   // number of fields. | 
 |   GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value == | 
 |                         tuple_size<ValueTuple>::value, | 
 |                         matcher_and_value_have_different_numbers_of_fields); | 
 |   return TuplePrefix<tuple_size<ValueTuple>::value>:: | 
 |       Matches(matcher_tuple, value_tuple); | 
 | } | 
 |  | 
 | // Describes failures in matching matchers against values.  If there | 
 | // is no failure, nothing will be streamed to os. | 
 | template <typename MatcherTuple, typename ValueTuple> | 
 | void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, | 
 |                                 const ValueTuple& values, | 
 |                                 ::std::ostream* os) { | 
 |   TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( | 
 |       matchers, values, os); | 
 | } | 
 |  | 
 | // TransformTupleValues and its helper. | 
 | // | 
 | // TransformTupleValuesHelper hides the internal machinery that | 
 | // TransformTupleValues uses to implement a tuple traversal. | 
 | template <typename Tuple, typename Func, typename OutIter> | 
 | class TransformTupleValuesHelper { | 
 |  private: | 
 |   typedef ::testing::tuple_size<Tuple> TupleSize; | 
 |  | 
 |  public: | 
 |   // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. | 
 |   // Returns the final value of 'out' in case the caller needs it. | 
 |   static OutIter Run(Func f, const Tuple& t, OutIter out) { | 
 |     return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename Tup, size_t kRemainingSize> | 
 |   struct IterateOverTuple { | 
 |     OutIter operator() (Func f, const Tup& t, OutIter out) const { | 
 |       *out++ = f(::testing::get<TupleSize::value - kRemainingSize>(t)); | 
 |       return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); | 
 |     } | 
 |   }; | 
 |   template <typename Tup> | 
 |   struct IterateOverTuple<Tup, 0> { | 
 |     OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { | 
 |       return out; | 
 |     } | 
 |   }; | 
 | }; | 
 |  | 
 | // Successively invokes 'f(element)' on each element of the tuple 't', | 
 | // appending each result to the 'out' iterator. Returns the final value | 
 | // of 'out'. | 
 | template <typename Tuple, typename Func, typename OutIter> | 
 | OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { | 
 |   return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); | 
 | } | 
 |  | 
 | // Implements A<T>(). | 
 | template <typename T> | 
 | class AnyMatcherImpl : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { | 
 |  public: | 
 |   virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) /* x */, | 
 |                                MatchResultListener* /* listener */) const { | 
 |     return true; | 
 |   } | 
 |   virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; } | 
 |   virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |     // This is mostly for completeness' safe, as it's not very useful | 
 |     // to write Not(A<bool>()).  However we cannot completely rule out | 
 |     // such a possibility, and it doesn't hurt to be prepared. | 
 |     *os << "never matches"; | 
 |   } | 
 | }; | 
 |  | 
 | // Implements _, a matcher that matches any value of any | 
 | // type.  This is a polymorphic matcher, so we need a template type | 
 | // conversion operator to make it appearing as a Matcher<T> for any | 
 | // type T. | 
 | class AnythingMatcher { | 
 |  public: | 
 |   template <typename T> | 
 |   operator Matcher<T>() const { return A<T>(); } | 
 | }; | 
 |  | 
 | // Implements a matcher that compares a given value with a | 
 | // pre-supplied value using one of the ==, <=, <, etc, operators.  The | 
 | // two values being compared don't have to have the same type. | 
 | // | 
 | // The matcher defined here is polymorphic (for example, Eq(5) can be | 
 | // used to match an int, a short, a double, etc).  Therefore we use | 
 | // a template type conversion operator in the implementation. | 
 | // | 
 | // The following template definition assumes that the Rhs parameter is | 
 | // a "bare" type (i.e. neither 'const T' nor 'T&'). | 
 | template <typename D, typename Rhs, typename Op> | 
 | class ComparisonBase { | 
 |  public: | 
 |   explicit ComparisonBase(const Rhs& rhs) : rhs_(rhs) {} | 
 |   template <typename Lhs> | 
 |   operator Matcher<Lhs>() const { | 
 |     return MakeMatcher(new Impl<Lhs>(rhs_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename Lhs> | 
 |   class Impl : public MatcherInterface<Lhs> { | 
 |    public: | 
 |     explicit Impl(const Rhs& rhs) : rhs_(rhs) {} | 
 |     virtual bool MatchAndExplain( | 
 |         Lhs lhs, MatchResultListener* /* listener */) const { | 
 |       return Op()(lhs, rhs_); | 
 |     } | 
 |     virtual void DescribeTo(::std::ostream* os) const { | 
 |       *os << D::Desc() << " "; | 
 |       UniversalPrint(rhs_, os); | 
 |     } | 
 |     virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |       *os << D::NegatedDesc() <<  " "; | 
 |       UniversalPrint(rhs_, os); | 
 |     } | 
 |    private: | 
 |     Rhs rhs_; | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   }; | 
 |   Rhs rhs_; | 
 |   GTEST_DISALLOW_ASSIGN_(ComparisonBase); | 
 | }; | 
 |  | 
 | template <typename Rhs> | 
 | class EqMatcher : public ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq> { | 
 |  public: | 
 |   explicit EqMatcher(const Rhs& rhs) | 
 |       : ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq>(rhs) { } | 
 |   static const char* Desc() { return "is equal to"; } | 
 |   static const char* NegatedDesc() { return "isn't equal to"; } | 
 | }; | 
 | template <typename Rhs> | 
 | class NeMatcher : public ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe> { | 
 |  public: | 
 |   explicit NeMatcher(const Rhs& rhs) | 
 |       : ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe>(rhs) { } | 
 |   static const char* Desc() { return "isn't equal to"; } | 
 |   static const char* NegatedDesc() { return "is equal to"; } | 
 | }; | 
 | template <typename Rhs> | 
 | class LtMatcher : public ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt> { | 
 |  public: | 
 |   explicit LtMatcher(const Rhs& rhs) | 
 |       : ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt>(rhs) { } | 
 |   static const char* Desc() { return "is <"; } | 
 |   static const char* NegatedDesc() { return "isn't <"; } | 
 | }; | 
 | template <typename Rhs> | 
 | class GtMatcher : public ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt> { | 
 |  public: | 
 |   explicit GtMatcher(const Rhs& rhs) | 
 |       : ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt>(rhs) { } | 
 |   static const char* Desc() { return "is >"; } | 
 |   static const char* NegatedDesc() { return "isn't >"; } | 
 | }; | 
 | template <typename Rhs> | 
 | class LeMatcher : public ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe> { | 
 |  public: | 
 |   explicit LeMatcher(const Rhs& rhs) | 
 |       : ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe>(rhs) { } | 
 |   static const char* Desc() { return "is <="; } | 
 |   static const char* NegatedDesc() { return "isn't <="; } | 
 | }; | 
 | template <typename Rhs> | 
 | class GeMatcher : public ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe> { | 
 |  public: | 
 |   explicit GeMatcher(const Rhs& rhs) | 
 |       : ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe>(rhs) { } | 
 |   static const char* Desc() { return "is >="; } | 
 |   static const char* NegatedDesc() { return "isn't >="; } | 
 | }; | 
 |  | 
 | // Implements the polymorphic IsNull() matcher, which matches any raw or smart | 
 | // pointer that is NULL. | 
 | class IsNullMatcher { | 
 |  public: | 
 |   template <typename Pointer> | 
 |   bool MatchAndExplain(const Pointer& p, | 
 |                        MatchResultListener* /* listener */) const { | 
 | #if GTEST_LANG_CXX11 | 
 |     return p == nullptr; | 
 | #else  // GTEST_LANG_CXX11 | 
 |     return GetRawPointer(p) == NULL; | 
 | #endif  // GTEST_LANG_CXX11 | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "isn't NULL"; | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the polymorphic NotNull() matcher, which matches any raw or smart | 
 | // pointer that is not NULL. | 
 | class NotNullMatcher { | 
 |  public: | 
 |   template <typename Pointer> | 
 |   bool MatchAndExplain(const Pointer& p, | 
 |                        MatchResultListener* /* listener */) const { | 
 | #if GTEST_LANG_CXX11 | 
 |     return p != nullptr; | 
 | #else  // GTEST_LANG_CXX11 | 
 |     return GetRawPointer(p) != NULL; | 
 | #endif  // GTEST_LANG_CXX11 | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "is NULL"; | 
 |   } | 
 | }; | 
 |  | 
 | // Ref(variable) matches any argument that is a reference to | 
 | // 'variable'.  This matcher is polymorphic as it can match any | 
 | // super type of the type of 'variable'. | 
 | // | 
 | // The RefMatcher template class implements Ref(variable).  It can | 
 | // only be instantiated with a reference type.  This prevents a user | 
 | // from mistakenly using Ref(x) to match a non-reference function | 
 | // argument.  For example, the following will righteously cause a | 
 | // compiler error: | 
 | // | 
 | //   int n; | 
 | //   Matcher<int> m1 = Ref(n);   // This won't compile. | 
 | //   Matcher<int&> m2 = Ref(n);  // This will compile. | 
 | template <typename T> | 
 | class RefMatcher; | 
 |  | 
 | template <typename T> | 
 | class RefMatcher<T&> { | 
 |   // Google Mock is a generic framework and thus needs to support | 
 |   // mocking any function types, including those that take non-const | 
 |   // reference arguments.  Therefore the template parameter T (and | 
 |   // Super below) can be instantiated to either a const type or a | 
 |   // non-const type. | 
 |  public: | 
 |   // RefMatcher() takes a T& instead of const T&, as we want the | 
 |   // compiler to catch using Ref(const_value) as a matcher for a | 
 |   // non-const reference. | 
 |   explicit RefMatcher(T& x) : object_(x) {}  // NOLINT | 
 |  | 
 |   template <typename Super> | 
 |   operator Matcher<Super&>() const { | 
 |     // By passing object_ (type T&) to Impl(), which expects a Super&, | 
 |     // we make sure that Super is a super type of T.  In particular, | 
 |     // this catches using Ref(const_value) as a matcher for a | 
 |     // non-const reference, as you cannot implicitly convert a const | 
 |     // reference to a non-const reference. | 
 |     return MakeMatcher(new Impl<Super>(object_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename Super> | 
 |   class Impl : public MatcherInterface<Super&> { | 
 |    public: | 
 |     explicit Impl(Super& x) : object_(x) {}  // NOLINT | 
 |  | 
 |     // MatchAndExplain() takes a Super& (as opposed to const Super&) | 
 |     // in order to match the interface MatcherInterface<Super&>. | 
 |     virtual bool MatchAndExplain( | 
 |         Super& x, MatchResultListener* listener) const { | 
 |       *listener << "which is located @" << static_cast<const void*>(&x); | 
 |       return &x == &object_; | 
 |     } | 
 |  | 
 |     virtual void DescribeTo(::std::ostream* os) const { | 
 |       *os << "references the variable "; | 
 |       UniversalPrinter<Super&>::Print(object_, os); | 
 |     } | 
 |  | 
 |     virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |       *os << "does not reference the variable "; | 
 |       UniversalPrinter<Super&>::Print(object_, os); | 
 |     } | 
 |  | 
 |    private: | 
 |     const Super& object_; | 
 |  | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |   T& object_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(RefMatcher); | 
 | }; | 
 |  | 
 | // Polymorphic helper functions for narrow and wide string matchers. | 
 | inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { | 
 |   return String::CaseInsensitiveCStringEquals(lhs, rhs); | 
 | } | 
 |  | 
 | inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, | 
 |                                          const wchar_t* rhs) { | 
 |   return String::CaseInsensitiveWideCStringEquals(lhs, rhs); | 
 | } | 
 |  | 
 | // String comparison for narrow or wide strings that can have embedded NUL | 
 | // characters. | 
 | template <typename StringType> | 
 | bool CaseInsensitiveStringEquals(const StringType& s1, | 
 |                                  const StringType& s2) { | 
 |   // Are the heads equal? | 
 |   if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Skip the equal heads. | 
 |   const typename StringType::value_type nul = 0; | 
 |   const size_t i1 = s1.find(nul), i2 = s2.find(nul); | 
 |  | 
 |   // Are we at the end of either s1 or s2? | 
 |   if (i1 == StringType::npos || i2 == StringType::npos) { | 
 |     return i1 == i2; | 
 |   } | 
 |  | 
 |   // Are the tails equal? | 
 |   return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); | 
 | } | 
 |  | 
 | // String matchers. | 
 |  | 
 | // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. | 
 | template <typename StringType> | 
 | class StrEqualityMatcher { | 
 |  public: | 
 |   StrEqualityMatcher(const StringType& str, bool expect_eq, | 
 |                      bool case_sensitive) | 
 |       : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} | 
 |  | 
 | #if GTEST_HAS_ABSL | 
 |   bool MatchAndExplain(const absl::string_view& s, | 
 |                        MatchResultListener* listener) const { | 
 |     if (s.data() == NULL) { | 
 |       return !expect_eq_; | 
 |     } | 
 |     // This should fail to compile if absl::string_view is used with wide | 
 |     // strings. | 
 |     const StringType& str = string(s); | 
 |     return MatchAndExplain(str, listener); | 
 |   } | 
 | #endif  // GTEST_HAS_ABSL | 
 |  | 
 |   // Accepts pointer types, particularly: | 
 |   //   const char* | 
 |   //   char* | 
 |   //   const wchar_t* | 
 |   //   wchar_t* | 
 |   template <typename CharType> | 
 |   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | 
 |     if (s == NULL) { | 
 |       return !expect_eq_; | 
 |     } | 
 |     return MatchAndExplain(StringType(s), listener); | 
 |   } | 
 |  | 
 |   // Matches anything that can convert to StringType. | 
 |   // | 
 |   // This is a template, not just a plain function with const StringType&, | 
 |   // because absl::string_view has some interfering non-explicit constructors. | 
 |   template <typename MatcheeStringType> | 
 |   bool MatchAndExplain(const MatcheeStringType& s, | 
 |                        MatchResultListener* /* listener */) const { | 
 |     const StringType& s2(s); | 
 |     const bool eq = case_sensitive_ ? s2 == string_ : | 
 |         CaseInsensitiveStringEquals(s2, string_); | 
 |     return expect_eq_ == eq; | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     DescribeToHelper(expect_eq_, os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     DescribeToHelper(!expect_eq_, os); | 
 |   } | 
 |  | 
 |  private: | 
 |   void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { | 
 |     *os << (expect_eq ? "is " : "isn't "); | 
 |     *os << "equal to "; | 
 |     if (!case_sensitive_) { | 
 |       *os << "(ignoring case) "; | 
 |     } | 
 |     UniversalPrint(string_, os); | 
 |   } | 
 |  | 
 |   const StringType string_; | 
 |   const bool expect_eq_; | 
 |   const bool case_sensitive_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher); | 
 | }; | 
 |  | 
 | // Implements the polymorphic HasSubstr(substring) matcher, which | 
 | // can be used as a Matcher<T> as long as T can be converted to a | 
 | // string. | 
 | template <typename StringType> | 
 | class HasSubstrMatcher { | 
 |  public: | 
 |   explicit HasSubstrMatcher(const StringType& substring) | 
 |       : substring_(substring) {} | 
 |  | 
 | #if GTEST_HAS_ABSL | 
 |   bool MatchAndExplain(const absl::string_view& s, | 
 |                        MatchResultListener* listener) const { | 
 |     if (s.data() == NULL) { | 
 |       return false; | 
 |     } | 
 |     // This should fail to compile if absl::string_view is used with wide | 
 |     // strings. | 
 |     const StringType& str = string(s); | 
 |     return MatchAndExplain(str, listener); | 
 |   } | 
 | #endif  // GTEST_HAS_ABSL | 
 |  | 
 |   // Accepts pointer types, particularly: | 
 |   //   const char* | 
 |   //   char* | 
 |   //   const wchar_t* | 
 |   //   wchar_t* | 
 |   template <typename CharType> | 
 |   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | 
 |     return s != NULL && MatchAndExplain(StringType(s), listener); | 
 |   } | 
 |  | 
 |   // Matches anything that can convert to StringType. | 
 |   // | 
 |   // This is a template, not just a plain function with const StringType&, | 
 |   // because absl::string_view has some interfering non-explicit constructors. | 
 |   template <typename MatcheeStringType> | 
 |   bool MatchAndExplain(const MatcheeStringType& s, | 
 |                        MatchResultListener* /* listener */) const { | 
 |     const StringType& s2(s); | 
 |     return s2.find(substring_) != StringType::npos; | 
 |   } | 
 |  | 
 |   // Describes what this matcher matches. | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     *os << "has substring "; | 
 |     UniversalPrint(substring_, os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "has no substring "; | 
 |     UniversalPrint(substring_, os); | 
 |   } | 
 |  | 
 |  private: | 
 |   const StringType substring_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher); | 
 | }; | 
 |  | 
 | // Implements the polymorphic StartsWith(substring) matcher, which | 
 | // can be used as a Matcher<T> as long as T can be converted to a | 
 | // string. | 
 | template <typename StringType> | 
 | class StartsWithMatcher { | 
 |  public: | 
 |   explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { | 
 |   } | 
 |  | 
 | #if GTEST_HAS_ABSL | 
 |   bool MatchAndExplain(const absl::string_view& s, | 
 |                        MatchResultListener* listener) const { | 
 |     if (s.data() == NULL) { | 
 |       return false; | 
 |     } | 
 |     // This should fail to compile if absl::string_view is used with wide | 
 |     // strings. | 
 |     const StringType& str = string(s); | 
 |     return MatchAndExplain(str, listener); | 
 |   } | 
 | #endif  // GTEST_HAS_ABSL | 
 |  | 
 |   // Accepts pointer types, particularly: | 
 |   //   const char* | 
 |   //   char* | 
 |   //   const wchar_t* | 
 |   //   wchar_t* | 
 |   template <typename CharType> | 
 |   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | 
 |     return s != NULL && MatchAndExplain(StringType(s), listener); | 
 |   } | 
 |  | 
 |   // Matches anything that can convert to StringType. | 
 |   // | 
 |   // This is a template, not just a plain function with const StringType&, | 
 |   // because absl::string_view has some interfering non-explicit constructors. | 
 |   template <typename MatcheeStringType> | 
 |   bool MatchAndExplain(const MatcheeStringType& s, | 
 |                        MatchResultListener* /* listener */) const { | 
 |     const StringType& s2(s); | 
 |     return s2.length() >= prefix_.length() && | 
 |         s2.substr(0, prefix_.length()) == prefix_; | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     *os << "starts with "; | 
 |     UniversalPrint(prefix_, os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "doesn't start with "; | 
 |     UniversalPrint(prefix_, os); | 
 |   } | 
 |  | 
 |  private: | 
 |   const StringType prefix_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(StartsWithMatcher); | 
 | }; | 
 |  | 
 | // Implements the polymorphic EndsWith(substring) matcher, which | 
 | // can be used as a Matcher<T> as long as T can be converted to a | 
 | // string. | 
 | template <typename StringType> | 
 | class EndsWithMatcher { | 
 |  public: | 
 |   explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} | 
 |  | 
 | #if GTEST_HAS_ABSL | 
 |   bool MatchAndExplain(const absl::string_view& s, | 
 |                        MatchResultListener* listener) const { | 
 |     if (s.data() == NULL) { | 
 |       return false; | 
 |     } | 
 |     // This should fail to compile if absl::string_view is used with wide | 
 |     // strings. | 
 |     const StringType& str = string(s); | 
 |     return MatchAndExplain(str, listener); | 
 |   } | 
 | #endif  // GTEST_HAS_ABSL | 
 |  | 
 |   // Accepts pointer types, particularly: | 
 |   //   const char* | 
 |   //   char* | 
 |   //   const wchar_t* | 
 |   //   wchar_t* | 
 |   template <typename CharType> | 
 |   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | 
 |     return s != NULL && MatchAndExplain(StringType(s), listener); | 
 |   } | 
 |  | 
 |   // Matches anything that can convert to StringType. | 
 |   // | 
 |   // This is a template, not just a plain function with const StringType&, | 
 |   // because absl::string_view has some interfering non-explicit constructors. | 
 |   template <typename MatcheeStringType> | 
 |   bool MatchAndExplain(const MatcheeStringType& s, | 
 |                        MatchResultListener* /* listener */) const { | 
 |     const StringType& s2(s); | 
 |     return s2.length() >= suffix_.length() && | 
 |         s2.substr(s2.length() - suffix_.length()) == suffix_; | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     *os << "ends with "; | 
 |     UniversalPrint(suffix_, os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "doesn't end with "; | 
 |     UniversalPrint(suffix_, os); | 
 |   } | 
 |  | 
 |  private: | 
 |   const StringType suffix_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(EndsWithMatcher); | 
 | }; | 
 |  | 
 | // Implements polymorphic matchers MatchesRegex(regex) and | 
 | // ContainsRegex(regex), which can be used as a Matcher<T> as long as | 
 | // T can be converted to a string. | 
 | class MatchesRegexMatcher { | 
 |  public: | 
 |   MatchesRegexMatcher(const RE* regex, bool full_match) | 
 |       : regex_(regex), full_match_(full_match) {} | 
 |  | 
 | #if GTEST_HAS_ABSL | 
 |   bool MatchAndExplain(const absl::string_view& s, | 
 |                        MatchResultListener* listener) const { | 
 |     return s.data() && MatchAndExplain(string(s), listener); | 
 |   } | 
 | #endif  // GTEST_HAS_ABSL | 
 |  | 
 |   // Accepts pointer types, particularly: | 
 |   //   const char* | 
 |   //   char* | 
 |   //   const wchar_t* | 
 |   //   wchar_t* | 
 |   template <typename CharType> | 
 |   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | 
 |     return s != NULL && MatchAndExplain(std::string(s), listener); | 
 |   } | 
 |  | 
 |   // Matches anything that can convert to std::string. | 
 |   // | 
 |   // This is a template, not just a plain function with const std::string&, | 
 |   // because absl::string_view has some interfering non-explicit constructors. | 
 |   template <class MatcheeStringType> | 
 |   bool MatchAndExplain(const MatcheeStringType& s, | 
 |                        MatchResultListener* /* listener */) const { | 
 |     const std::string& s2(s); | 
 |     return full_match_ ? RE::FullMatch(s2, *regex_) : | 
 |         RE::PartialMatch(s2, *regex_); | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     *os << (full_match_ ? "matches" : "contains") | 
 |         << " regular expression "; | 
 |     UniversalPrinter<std::string>::Print(regex_->pattern(), os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "doesn't " << (full_match_ ? "match" : "contain") | 
 |         << " regular expression "; | 
 |     UniversalPrinter<std::string>::Print(regex_->pattern(), os); | 
 |   } | 
 |  | 
 |  private: | 
 |   const internal::linked_ptr<const RE> regex_; | 
 |   const bool full_match_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher); | 
 | }; | 
 |  | 
 | // Implements a matcher that compares the two fields of a 2-tuple | 
 | // using one of the ==, <=, <, etc, operators.  The two fields being | 
 | // compared don't have to have the same type. | 
 | // | 
 | // The matcher defined here is polymorphic (for example, Eq() can be | 
 | // used to match a tuple<int, short>, a tuple<const long&, double>, | 
 | // etc).  Therefore we use a template type conversion operator in the | 
 | // implementation. | 
 | template <typename D, typename Op> | 
 | class PairMatchBase { | 
 |  public: | 
 |   template <typename T1, typename T2> | 
 |   operator Matcher< ::testing::tuple<T1, T2> >() const { | 
 |     return MakeMatcher(new Impl< ::testing::tuple<T1, T2> >); | 
 |   } | 
 |   template <typename T1, typename T2> | 
 |   operator Matcher<const ::testing::tuple<T1, T2>&>() const { | 
 |     return MakeMatcher(new Impl<const ::testing::tuple<T1, T2>&>); | 
 |   } | 
 |  | 
 |  private: | 
 |   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT | 
 |     return os << D::Desc(); | 
 |   } | 
 |  | 
 |   template <typename Tuple> | 
 |   class Impl : public MatcherInterface<Tuple> { | 
 |    public: | 
 |     virtual bool MatchAndExplain( | 
 |         Tuple args, | 
 |         MatchResultListener* /* listener */) const { | 
 |       return Op()(::testing::get<0>(args), ::testing::get<1>(args)); | 
 |     } | 
 |     virtual void DescribeTo(::std::ostream* os) const { | 
 |       *os << "are " << GetDesc; | 
 |     } | 
 |     virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |       *os << "aren't " << GetDesc; | 
 |     } | 
 |   }; | 
 | }; | 
 |  | 
 | class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { | 
 |  public: | 
 |   static const char* Desc() { return "an equal pair"; } | 
 | }; | 
 | class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { | 
 |  public: | 
 |   static const char* Desc() { return "an unequal pair"; } | 
 | }; | 
 | class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { | 
 |  public: | 
 |   static const char* Desc() { return "a pair where the first < the second"; } | 
 | }; | 
 | class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { | 
 |  public: | 
 |   static const char* Desc() { return "a pair where the first > the second"; } | 
 | }; | 
 | class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { | 
 |  public: | 
 |   static const char* Desc() { return "a pair where the first <= the second"; } | 
 | }; | 
 | class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { | 
 |  public: | 
 |   static const char* Desc() { return "a pair where the first >= the second"; } | 
 | }; | 
 |  | 
 | // Implements the Not(...) matcher for a particular argument type T. | 
 | // We do not nest it inside the NotMatcher class template, as that | 
 | // will prevent different instantiations of NotMatcher from sharing | 
 | // the same NotMatcherImpl<T> class. | 
 | template <typename T> | 
 | class NotMatcherImpl : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { | 
 |  public: | 
 |   explicit NotMatcherImpl(const Matcher<T>& matcher) | 
 |       : matcher_(matcher) {} | 
 |  | 
 |   virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, | 
 |                                MatchResultListener* listener) const { | 
 |     return !matcher_.MatchAndExplain(x, listener); | 
 |   } | 
 |  | 
 |   virtual void DescribeTo(::std::ostream* os) const { | 
 |     matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |   virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |     matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |  private: | 
 |   const Matcher<T> matcher_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(NotMatcherImpl); | 
 | }; | 
 |  | 
 | // Implements the Not(m) matcher, which matches a value that doesn't | 
 | // match matcher m. | 
 | template <typename InnerMatcher> | 
 | class NotMatcher { | 
 |  public: | 
 |   explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} | 
 |  | 
 |   // This template type conversion operator allows Not(m) to be used | 
 |   // to match any type m can match. | 
 |   template <typename T> | 
 |   operator Matcher<T>() const { | 
 |     return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); | 
 |   } | 
 |  | 
 |  private: | 
 |   InnerMatcher matcher_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(NotMatcher); | 
 | }; | 
 |  | 
 | // Implements the AllOf(m1, m2) matcher for a particular argument type | 
 | // T. We do not nest it inside the BothOfMatcher class template, as | 
 | // that will prevent different instantiations of BothOfMatcher from | 
 | // sharing the same BothOfMatcherImpl<T> class. | 
 | template <typename T> | 
 | class AllOfMatcherImpl | 
 |     : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { | 
 |  public: | 
 |   explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers) | 
 |       : matchers_(internal::move(matchers)) {} | 
 |  | 
 |   virtual void DescribeTo(::std::ostream* os) const { | 
 |     *os << "("; | 
 |     for (size_t i = 0; i < matchers_.size(); ++i) { | 
 |       if (i != 0) *os << ") and ("; | 
 |       matchers_[i].DescribeTo(os); | 
 |     } | 
 |     *os << ")"; | 
 |   } | 
 |  | 
 |   virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "("; | 
 |     for (size_t i = 0; i < matchers_.size(); ++i) { | 
 |       if (i != 0) *os << ") or ("; | 
 |       matchers_[i].DescribeNegationTo(os); | 
 |     } | 
 |     *os << ")"; | 
 |   } | 
 |  | 
 |   virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, | 
 |                                MatchResultListener* listener) const { | 
 |     // If either matcher1_ or matcher2_ doesn't match x, we only need | 
 |     // to explain why one of them fails. | 
 |     std::string all_match_result; | 
 |  | 
 |     for (size_t i = 0; i < matchers_.size(); ++i) { | 
 |       StringMatchResultListener slistener; | 
 |       if (matchers_[i].MatchAndExplain(x, &slistener)) { | 
 |         if (all_match_result.empty()) { | 
 |           all_match_result = slistener.str(); | 
 |         } else { | 
 |           std::string result = slistener.str(); | 
 |           if (!result.empty()) { | 
 |             all_match_result += ", and "; | 
 |             all_match_result += result; | 
 |           } | 
 |         } | 
 |       } else { | 
 |         *listener << slistener.str(); | 
 |         return false; | 
 |       } | 
 |     } | 
 |  | 
 |     // Otherwise we need to explain why *both* of them match. | 
 |     *listener << all_match_result; | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   const std::vector<Matcher<T> > matchers_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(AllOfMatcherImpl); | 
 | }; | 
 |  | 
 | #if GTEST_LANG_CXX11 | 
 | // VariadicMatcher is used for the variadic implementation of | 
 | // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). | 
 | // CombiningMatcher<T> is used to recursively combine the provided matchers | 
 | // (of type Args...). | 
 | template <template <typename T> class CombiningMatcher, typename... Args> | 
 | class VariadicMatcher { | 
 |  public: | 
 |   VariadicMatcher(const Args&... matchers)  // NOLINT | 
 |       : matchers_(matchers...) { | 
 |     static_assert(sizeof...(Args) > 0, "Must have at least one matcher."); | 
 |   } | 
 |  | 
 |   // This template type conversion operator allows an | 
 |   // VariadicMatcher<Matcher1, Matcher2...> object to match any type that | 
 |   // all of the provided matchers (Matcher1, Matcher2, ...) can match. | 
 |   template <typename T> | 
 |   operator Matcher<T>() const { | 
 |     std::vector<Matcher<T> > values; | 
 |     CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); | 
 |     return Matcher<T>(new CombiningMatcher<T>(internal::move(values))); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename T, size_t I> | 
 |   void CreateVariadicMatcher(std::vector<Matcher<T> >* values, | 
 |                              std::integral_constant<size_t, I>) const { | 
 |     values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); | 
 |     CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); | 
 |   } | 
 |  | 
 |   template <typename T> | 
 |   void CreateVariadicMatcher( | 
 |       std::vector<Matcher<T> >*, | 
 |       std::integral_constant<size_t, sizeof...(Args)>) const {} | 
 |  | 
 |   tuple<Args...> matchers_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(VariadicMatcher); | 
 | }; | 
 |  | 
 | template <typename... Args> | 
 | using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; | 
 |  | 
 | #endif  // GTEST_LANG_CXX11 | 
 |  | 
 | // Used for implementing the AllOf(m_1, ..., m_n) matcher, which | 
 | // matches a value that matches all of the matchers m_1, ..., and m_n. | 
 | template <typename Matcher1, typename Matcher2> | 
 | class BothOfMatcher { | 
 |  public: | 
 |   BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2) | 
 |       : matcher1_(matcher1), matcher2_(matcher2) {} | 
 |  | 
 |   // This template type conversion operator allows a | 
 |   // BothOfMatcher<Matcher1, Matcher2> object to match any type that | 
 |   // both Matcher1 and Matcher2 can match. | 
 |   template <typename T> | 
 |   operator Matcher<T>() const { | 
 |     std::vector<Matcher<T> > values; | 
 |     values.push_back(SafeMatcherCast<T>(matcher1_)); | 
 |     values.push_back(SafeMatcherCast<T>(matcher2_)); | 
 |     return Matcher<T>(new AllOfMatcherImpl<T>(internal::move(values))); | 
 |   } | 
 |  | 
 |  private: | 
 |   Matcher1 matcher1_; | 
 |   Matcher2 matcher2_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(BothOfMatcher); | 
 | }; | 
 |  | 
 | // Implements the AnyOf(m1, m2) matcher for a particular argument type | 
 | // T.  We do not nest it inside the AnyOfMatcher class template, as | 
 | // that will prevent different instantiations of AnyOfMatcher from | 
 | // sharing the same EitherOfMatcherImpl<T> class. | 
 | template <typename T> | 
 | class AnyOfMatcherImpl | 
 |     : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { | 
 |  public: | 
 |   explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers) | 
 |       : matchers_(internal::move(matchers)) {} | 
 |  | 
 |   virtual void DescribeTo(::std::ostream* os) const { | 
 |     *os << "("; | 
 |     for (size_t i = 0; i < matchers_.size(); ++i) { | 
 |       if (i != 0) *os << ") or ("; | 
 |       matchers_[i].DescribeTo(os); | 
 |     } | 
 |     *os << ")"; | 
 |   } | 
 |  | 
 |   virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "("; | 
 |     for (size_t i = 0; i < matchers_.size(); ++i) { | 
 |       if (i != 0) *os << ") and ("; | 
 |       matchers_[i].DescribeNegationTo(os); | 
 |     } | 
 |     *os << ")"; | 
 |   } | 
 |  | 
 |   virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, | 
 |                                MatchResultListener* listener) const { | 
 |     std::string no_match_result; | 
 |  | 
 |     // If either matcher1_ or matcher2_ matches x, we just need to | 
 |     // explain why *one* of them matches. | 
 |     for (size_t i = 0; i < matchers_.size(); ++i) { | 
 |       StringMatchResultListener slistener; | 
 |       if (matchers_[i].MatchAndExplain(x, &slistener)) { | 
 |         *listener << slistener.str(); | 
 |         return true; | 
 |       } else { | 
 |         if (no_match_result.empty()) { | 
 |           no_match_result = slistener.str(); | 
 |         } else { | 
 |           std::string result = slistener.str(); | 
 |           if (!result.empty()) { | 
 |             no_match_result += ", and "; | 
 |             no_match_result += result; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Otherwise we need to explain why *both* of them fail. | 
 |     *listener << no_match_result; | 
 |     return false; | 
 |   } | 
 |  | 
 |  private: | 
 |   const std::vector<Matcher<T> > matchers_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(AnyOfMatcherImpl); | 
 | }; | 
 |  | 
 | #if GTEST_LANG_CXX11 | 
 | // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). | 
 | template <typename... Args> | 
 | using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; | 
 |  | 
 | #endif  // GTEST_LANG_CXX11 | 
 |  | 
 | // Used for implementing the AnyOf(m_1, ..., m_n) matcher, which | 
 | // matches a value that matches at least one of the matchers m_1, ..., | 
 | // and m_n. | 
 | template <typename Matcher1, typename Matcher2> | 
 | class EitherOfMatcher { | 
 |  public: | 
 |   EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2) | 
 |       : matcher1_(matcher1), matcher2_(matcher2) {} | 
 |  | 
 |   // This template type conversion operator allows a | 
 |   // EitherOfMatcher<Matcher1, Matcher2> object to match any type that | 
 |   // both Matcher1 and Matcher2 can match. | 
 |   template <typename T> | 
 |   operator Matcher<T>() const { | 
 |     std::vector<Matcher<T> > values; | 
 |     values.push_back(SafeMatcherCast<T>(matcher1_)); | 
 |     values.push_back(SafeMatcherCast<T>(matcher2_)); | 
 |     return Matcher<T>(new AnyOfMatcherImpl<T>(internal::move(values))); | 
 |   } | 
 |  | 
 |  private: | 
 |   Matcher1 matcher1_; | 
 |   Matcher2 matcher2_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(EitherOfMatcher); | 
 | }; | 
 |  | 
 | // Used for implementing Truly(pred), which turns a predicate into a | 
 | // matcher. | 
 | template <typename Predicate> | 
 | class TrulyMatcher { | 
 |  public: | 
 |   explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} | 
 |  | 
 |   // This method template allows Truly(pred) to be used as a matcher | 
 |   // for type T where T is the argument type of predicate 'pred'.  The | 
 |   // argument is passed by reference as the predicate may be | 
 |   // interested in the address of the argument. | 
 |   template <typename T> | 
 |   bool MatchAndExplain(T& x,  // NOLINT | 
 |                        MatchResultListener* /* listener */) const { | 
 |     // Without the if-statement, MSVC sometimes warns about converting | 
 |     // a value to bool (warning 4800). | 
 |     // | 
 |     // We cannot write 'return !!predicate_(x);' as that doesn't work | 
 |     // when predicate_(x) returns a class convertible to bool but | 
 |     // having no operator!(). | 
 |     if (predicate_(x)) | 
 |       return true; | 
 |     return false; | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     *os << "satisfies the given predicate"; | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "doesn't satisfy the given predicate"; | 
 |   } | 
 |  | 
 |  private: | 
 |   Predicate predicate_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(TrulyMatcher); | 
 | }; | 
 |  | 
 | // Used for implementing Matches(matcher), which turns a matcher into | 
 | // a predicate. | 
 | template <typename M> | 
 | class MatcherAsPredicate { | 
 |  public: | 
 |   explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} | 
 |  | 
 |   // This template operator() allows Matches(m) to be used as a | 
 |   // predicate on type T where m is a matcher on type T. | 
 |   // | 
 |   // The argument x is passed by reference instead of by value, as | 
 |   // some matcher may be interested in its address (e.g. as in | 
 |   // Matches(Ref(n))(x)). | 
 |   template <typename T> | 
 |   bool operator()(const T& x) const { | 
 |     // We let matcher_ commit to a particular type here instead of | 
 |     // when the MatcherAsPredicate object was constructed.  This | 
 |     // allows us to write Matches(m) where m is a polymorphic matcher | 
 |     // (e.g. Eq(5)). | 
 |     // | 
 |     // If we write Matcher<T>(matcher_).Matches(x) here, it won't | 
 |     // compile when matcher_ has type Matcher<const T&>; if we write | 
 |     // Matcher<const T&>(matcher_).Matches(x) here, it won't compile | 
 |     // when matcher_ has type Matcher<T>; if we just write | 
 |     // matcher_.Matches(x), it won't compile when matcher_ is | 
 |     // polymorphic, e.g. Eq(5). | 
 |     // | 
 |     // MatcherCast<const T&>() is necessary for making the code work | 
 |     // in all of the above situations. | 
 |     return MatcherCast<const T&>(matcher_).Matches(x); | 
 |   } | 
 |  | 
 |  private: | 
 |   M matcher_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate); | 
 | }; | 
 |  | 
 | // For implementing ASSERT_THAT() and EXPECT_THAT().  The template | 
 | // argument M must be a type that can be converted to a matcher. | 
 | template <typename M> | 
 | class PredicateFormatterFromMatcher { | 
 |  public: | 
 |   explicit PredicateFormatterFromMatcher(M m) : matcher_(internal::move(m)) {} | 
 |  | 
 |   // This template () operator allows a PredicateFormatterFromMatcher | 
 |   // object to act as a predicate-formatter suitable for using with | 
 |   // Google Test's EXPECT_PRED_FORMAT1() macro. | 
 |   template <typename T> | 
 |   AssertionResult operator()(const char* value_text, const T& x) const { | 
 |     // We convert matcher_ to a Matcher<const T&> *now* instead of | 
 |     // when the PredicateFormatterFromMatcher object was constructed, | 
 |     // as matcher_ may be polymorphic (e.g. NotNull()) and we won't | 
 |     // know which type to instantiate it to until we actually see the | 
 |     // type of x here. | 
 |     // | 
 |     // We write SafeMatcherCast<const T&>(matcher_) instead of | 
 |     // Matcher<const T&>(matcher_), as the latter won't compile when | 
 |     // matcher_ has type Matcher<T> (e.g. An<int>()). | 
 |     // We don't write MatcherCast<const T&> either, as that allows | 
 |     // potentially unsafe downcasting of the matcher argument. | 
 |     const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); | 
 |     StringMatchResultListener listener; | 
 |     if (MatchPrintAndExplain(x, matcher, &listener)) | 
 |       return AssertionSuccess(); | 
 |  | 
 |     ::std::stringstream ss; | 
 |     ss << "Value of: " << value_text << "\n" | 
 |        << "Expected: "; | 
 |     matcher.DescribeTo(&ss); | 
 |     ss << "\n  Actual: " << listener.str(); | 
 |     return AssertionFailure() << ss.str(); | 
 |   } | 
 |  | 
 |  private: | 
 |   const M matcher_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher); | 
 | }; | 
 |  | 
 | // A helper function for converting a matcher to a predicate-formatter | 
 | // without the user needing to explicitly write the type.  This is | 
 | // used for implementing ASSERT_THAT() and EXPECT_THAT(). | 
 | // Implementation detail: 'matcher' is received by-value to force decaying. | 
 | template <typename M> | 
 | inline PredicateFormatterFromMatcher<M> | 
 | MakePredicateFormatterFromMatcher(M matcher) { | 
 |   return PredicateFormatterFromMatcher<M>(internal::move(matcher)); | 
 | } | 
 |  | 
 | // Implements the polymorphic floating point equality matcher, which matches | 
 | // two float values using ULP-based approximation or, optionally, a | 
 | // user-specified epsilon.  The template is meant to be instantiated with | 
 | // FloatType being either float or double. | 
 | template <typename FloatType> | 
 | class FloatingEqMatcher { | 
 |  public: | 
 |   // Constructor for FloatingEqMatcher. | 
 |   // The matcher's input will be compared with expected.  The matcher treats two | 
 |   // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards, | 
 |   // equality comparisons between NANs will always return false.  We specify a | 
 |   // negative max_abs_error_ term to indicate that ULP-based approximation will | 
 |   // be used for comparison. | 
 |   FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : | 
 |     expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { | 
 |   } | 
 |  | 
 |   // Constructor that supports a user-specified max_abs_error that will be used | 
 |   // for comparison instead of ULP-based approximation.  The max absolute | 
 |   // should be non-negative. | 
 |   FloatingEqMatcher(FloatType expected, bool nan_eq_nan, | 
 |                     FloatType max_abs_error) | 
 |       : expected_(expected), | 
 |         nan_eq_nan_(nan_eq_nan), | 
 |         max_abs_error_(max_abs_error) { | 
 |     GTEST_CHECK_(max_abs_error >= 0) | 
 |         << ", where max_abs_error is" << max_abs_error; | 
 |   } | 
 |  | 
 |   // Implements floating point equality matcher as a Matcher<T>. | 
 |   template <typename T> | 
 |   class Impl : public MatcherInterface<T> { | 
 |    public: | 
 |     Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) | 
 |         : expected_(expected), | 
 |           nan_eq_nan_(nan_eq_nan), | 
 |           max_abs_error_(max_abs_error) {} | 
 |  | 
 |     virtual bool MatchAndExplain(T value, | 
 |                                  MatchResultListener* listener) const { | 
 |       const FloatingPoint<FloatType> actual(value), expected(expected_); | 
 |  | 
 |       // Compares NaNs first, if nan_eq_nan_ is true. | 
 |       if (actual.is_nan() || expected.is_nan()) { | 
 |         if (actual.is_nan() && expected.is_nan()) { | 
 |           return nan_eq_nan_; | 
 |         } | 
 |         // One is nan; the other is not nan. | 
 |         return false; | 
 |       } | 
 |       if (HasMaxAbsError()) { | 
 |         // We perform an equality check so that inf will match inf, regardless | 
 |         // of error bounds.  If the result of value - expected_ would result in | 
 |         // overflow or if either value is inf, the default result is infinity, | 
 |         // which should only match if max_abs_error_ is also infinity. | 
 |         if (value == expected_) { | 
 |           return true; | 
 |         } | 
 |  | 
 |         const FloatType diff = value - expected_; | 
 |         if (fabs(diff) <= max_abs_error_) { | 
 |           return true; | 
 |         } | 
 |  | 
 |         if (listener->IsInterested()) { | 
 |           *listener << "which is " << diff << " from " << expected_; | 
 |         } | 
 |         return false; | 
 |       } else { | 
 |         return actual.AlmostEquals(expected); | 
 |       } | 
 |     } | 
 |  | 
 |     virtual void DescribeTo(::std::ostream* os) const { | 
 |       // os->precision() returns the previously set precision, which we | 
 |       // store to restore the ostream to its original configuration | 
 |       // after outputting. | 
 |       const ::std::streamsize old_precision = os->precision( | 
 |           ::std::numeric_limits<FloatType>::digits10 + 2); | 
 |       if (FloatingPoint<FloatType>(expected_).is_nan()) { | 
 |         if (nan_eq_nan_) { | 
 |           *os << "is NaN"; | 
 |         } else { | 
 |           *os << "never matches"; | 
 |         } | 
 |       } else { | 
 |         *os << "is approximately " << expected_; | 
 |         if (HasMaxAbsError()) { | 
 |           *os << " (absolute error <= " << max_abs_error_ << ")"; | 
 |         } | 
 |       } | 
 |       os->precision(old_precision); | 
 |     } | 
 |  | 
 |     virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |       // As before, get original precision. | 
 |       const ::std::streamsize old_precision = os->precision( | 
 |           ::std::numeric_limits<FloatType>::digits10 + 2); | 
 |       if (FloatingPoint<FloatType>(expected_).is_nan()) { | 
 |         if (nan_eq_nan_) { | 
 |           *os << "isn't NaN"; | 
 |         } else { | 
 |           *os << "is anything"; | 
 |         } | 
 |       } else { | 
 |         *os << "isn't approximately " << expected_; | 
 |         if (HasMaxAbsError()) { | 
 |           *os << " (absolute error > " << max_abs_error_ << ")"; | 
 |         } | 
 |       } | 
 |       // Restore original precision. | 
 |       os->precision(old_precision); | 
 |     } | 
 |  | 
 |    private: | 
 |     bool HasMaxAbsError() const { | 
 |       return max_abs_error_ >= 0; | 
 |     } | 
 |  | 
 |     const FloatType expected_; | 
 |     const bool nan_eq_nan_; | 
 |     // max_abs_error will be used for value comparison when >= 0. | 
 |     const FloatType max_abs_error_; | 
 |  | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |   // The following 3 type conversion operators allow FloatEq(expected) and | 
 |   // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a | 
 |   // Matcher<const float&>, or a Matcher<float&>, but nothing else. | 
 |   // (While Google's C++ coding style doesn't allow arguments passed | 
 |   // by non-const reference, we may see them in code not conforming to | 
 |   // the style.  Therefore Google Mock needs to support them.) | 
 |   operator Matcher<FloatType>() const { | 
 |     return MakeMatcher( | 
 |         new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); | 
 |   } | 
 |  | 
 |   operator Matcher<const FloatType&>() const { | 
 |     return MakeMatcher( | 
 |         new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); | 
 |   } | 
 |  | 
 |   operator Matcher<FloatType&>() const { | 
 |     return MakeMatcher( | 
 |         new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   const FloatType expected_; | 
 |   const bool nan_eq_nan_; | 
 |   // max_abs_error will be used for value comparison when >= 0. | 
 |   const FloatType max_abs_error_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher); | 
 | }; | 
 |  | 
 | // A 2-tuple ("binary") wrapper around FloatingEqMatcher: | 
 | // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) | 
 | // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) | 
 | // against y. The former implements "Eq", the latter "Near". At present, there | 
 | // is no version that compares NaNs as equal. | 
 | template <typename FloatType> | 
 | class FloatingEq2Matcher { | 
 |  public: | 
 |   FloatingEq2Matcher() { Init(-1, false); } | 
 |  | 
 |   explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); } | 
 |  | 
 |   explicit FloatingEq2Matcher(FloatType max_abs_error) { | 
 |     Init(max_abs_error, false); | 
 |   } | 
 |  | 
 |   FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { | 
 |     Init(max_abs_error, nan_eq_nan); | 
 |   } | 
 |  | 
 |   template <typename T1, typename T2> | 
 |   operator Matcher< ::testing::tuple<T1, T2> >() const { | 
 |     return MakeMatcher( | 
 |         new Impl< ::testing::tuple<T1, T2> >(max_abs_error_, nan_eq_nan_)); | 
 |   } | 
 |   template <typename T1, typename T2> | 
 |   operator Matcher<const ::testing::tuple<T1, T2>&>() const { | 
 |     return MakeMatcher( | 
 |         new Impl<const ::testing::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT | 
 |     return os << "an almost-equal pair"; | 
 |   } | 
 |  | 
 |   template <typename Tuple> | 
 |   class Impl : public MatcherInterface<Tuple> { | 
 |    public: | 
 |     Impl(FloatType max_abs_error, bool nan_eq_nan) : | 
 |         max_abs_error_(max_abs_error), | 
 |         nan_eq_nan_(nan_eq_nan) {} | 
 |  | 
 |     virtual bool MatchAndExplain(Tuple args, | 
 |                                  MatchResultListener* listener) const { | 
 |       if (max_abs_error_ == -1) { | 
 |         FloatingEqMatcher<FloatType> fm(::testing::get<0>(args), nan_eq_nan_); | 
 |         return static_cast<Matcher<FloatType> >(fm).MatchAndExplain( | 
 |             ::testing::get<1>(args), listener); | 
 |       } else { | 
 |         FloatingEqMatcher<FloatType> fm(::testing::get<0>(args), nan_eq_nan_, | 
 |                                         max_abs_error_); | 
 |         return static_cast<Matcher<FloatType> >(fm).MatchAndExplain( | 
 |             ::testing::get<1>(args), listener); | 
 |       } | 
 |     } | 
 |     virtual void DescribeTo(::std::ostream* os) const { | 
 |       *os << "are " << GetDesc; | 
 |     } | 
 |     virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |       *os << "aren't " << GetDesc; | 
 |     } | 
 |  | 
 |    private: | 
 |     FloatType max_abs_error_; | 
 |     const bool nan_eq_nan_; | 
 |   }; | 
 |  | 
 |   void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { | 
 |     max_abs_error_ = max_abs_error_val; | 
 |     nan_eq_nan_ = nan_eq_nan_val; | 
 |   } | 
 |   FloatType max_abs_error_; | 
 |   bool nan_eq_nan_; | 
 | }; | 
 |  | 
 | // Implements the Pointee(m) matcher for matching a pointer whose | 
 | // pointee matches matcher m.  The pointer can be either raw or smart. | 
 | template <typename InnerMatcher> | 
 | class PointeeMatcher { | 
 |  public: | 
 |   explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} | 
 |  | 
 |   // This type conversion operator template allows Pointee(m) to be | 
 |   // used as a matcher for any pointer type whose pointee type is | 
 |   // compatible with the inner matcher, where type Pointer can be | 
 |   // either a raw pointer or a smart pointer. | 
 |   // | 
 |   // The reason we do this instead of relying on | 
 |   // MakePolymorphicMatcher() is that the latter is not flexible | 
 |   // enough for implementing the DescribeTo() method of Pointee(). | 
 |   template <typename Pointer> | 
 |   operator Matcher<Pointer>() const { | 
 |     return Matcher<Pointer>( | 
 |         new Impl<GTEST_REFERENCE_TO_CONST_(Pointer)>(matcher_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   // The monomorphic implementation that works for a particular pointer type. | 
 |   template <typename Pointer> | 
 |   class Impl : public MatcherInterface<Pointer> { | 
 |    public: | 
 |     typedef typename PointeeOf<GTEST_REMOVE_CONST_(  // NOLINT | 
 |         GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee; | 
 |  | 
 |     explicit Impl(const InnerMatcher& matcher) | 
 |         : matcher_(MatcherCast<const Pointee&>(matcher)) {} | 
 |  | 
 |     virtual void DescribeTo(::std::ostream* os) const { | 
 |       *os << "points to a value that "; | 
 |       matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |       *os << "does not point to a value that "; | 
 |       matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     virtual bool MatchAndExplain(Pointer pointer, | 
 |                                  MatchResultListener* listener) const { | 
 |       if (GetRawPointer(pointer) == NULL) | 
 |         return false; | 
 |  | 
 |       *listener << "which points to "; | 
 |       return MatchPrintAndExplain(*pointer, matcher_, listener); | 
 |     } | 
 |  | 
 |    private: | 
 |     const Matcher<const Pointee&> matcher_; | 
 |  | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |   const InnerMatcher matcher_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(PointeeMatcher); | 
 | }; | 
 |  | 
 | #if GTEST_HAS_RTTI | 
 | // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or | 
 | // reference that matches inner_matcher when dynamic_cast<T> is applied. | 
 | // The result of dynamic_cast<To> is forwarded to the inner matcher. | 
 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. | 
 | // If To is a reference and the cast fails, this matcher returns false | 
 | // immediately. | 
 | template <typename To> | 
 | class WhenDynamicCastToMatcherBase { | 
 |  public: | 
 |   explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) | 
 |       : matcher_(matcher) {} | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     GetCastTypeDescription(os); | 
 |     matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     GetCastTypeDescription(os); | 
 |     matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |  protected: | 
 |   const Matcher<To> matcher_; | 
 |  | 
 |   static std::string GetToName() { | 
 |     return GetTypeName<To>(); | 
 |   } | 
 |  | 
 |  private: | 
 |   static void GetCastTypeDescription(::std::ostream* os) { | 
 |     *os << "when dynamic_cast to " << GetToName() << ", "; | 
 |   } | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(WhenDynamicCastToMatcherBase); | 
 | }; | 
 |  | 
 | // Primary template. | 
 | // To is a pointer. Cast and forward the result. | 
 | template <typename To> | 
 | class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { | 
 |  public: | 
 |   explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) | 
 |       : WhenDynamicCastToMatcherBase<To>(matcher) {} | 
 |  | 
 |   template <typename From> | 
 |   bool MatchAndExplain(From from, MatchResultListener* listener) const { | 
 |     // TODO(sbenza): Add more detail on failures. ie did the dyn_cast fail? | 
 |     To to = dynamic_cast<To>(from); | 
 |     return MatchPrintAndExplain(to, this->matcher_, listener); | 
 |   } | 
 | }; | 
 |  | 
 | // Specialize for references. | 
 | // In this case we return false if the dynamic_cast fails. | 
 | template <typename To> | 
 | class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { | 
 |  public: | 
 |   explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) | 
 |       : WhenDynamicCastToMatcherBase<To&>(matcher) {} | 
 |  | 
 |   template <typename From> | 
 |   bool MatchAndExplain(From& from, MatchResultListener* listener) const { | 
 |     // We don't want an std::bad_cast here, so do the cast with pointers. | 
 |     To* to = dynamic_cast<To*>(&from); | 
 |     if (to == NULL) { | 
 |       *listener << "which cannot be dynamic_cast to " << this->GetToName(); | 
 |       return false; | 
 |     } | 
 |     return MatchPrintAndExplain(*to, this->matcher_, listener); | 
 |   } | 
 | }; | 
 | #endif  // GTEST_HAS_RTTI | 
 |  | 
 | // Implements the Field() matcher for matching a field (i.e. member | 
 | // variable) of an object. | 
 | template <typename Class, typename FieldType> | 
 | class FieldMatcher { | 
 |  public: | 
 |   FieldMatcher(FieldType Class::*field, | 
 |                const Matcher<const FieldType&>& matcher) | 
 |       : field_(field), matcher_(matcher), whose_field_("whose given field ") {} | 
 |  | 
 |   FieldMatcher(const std::string& field_name, FieldType Class::*field, | 
 |                const Matcher<const FieldType&>& matcher) | 
 |       : field_(field), | 
 |         matcher_(matcher), | 
 |         whose_field_("whose field `" + field_name + "` ") {} | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     *os << "is an object " << whose_field_; | 
 |     matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "is an object " << whose_field_; | 
 |     matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |   template <typename T> | 
 |   bool MatchAndExplain(const T& value, MatchResultListener* listener) const { | 
 |     return MatchAndExplainImpl( | 
 |         typename ::testing::internal:: | 
 |             is_pointer<GTEST_REMOVE_CONST_(T)>::type(), | 
 |         value, listener); | 
 |   } | 
 |  | 
 |  private: | 
 |   // The first argument of MatchAndExplainImpl() is needed to help | 
 |   // Symbian's C++ compiler choose which overload to use.  Its type is | 
 |   // true_type iff the Field() matcher is used to match a pointer. | 
 |   bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj, | 
 |                            MatchResultListener* listener) const { | 
 |     *listener << whose_field_ << "is "; | 
 |     return MatchPrintAndExplain(obj.*field_, matcher_, listener); | 
 |   } | 
 |  | 
 |   bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p, | 
 |                            MatchResultListener* listener) const { | 
 |     if (p == NULL) | 
 |       return false; | 
 |  | 
 |     *listener << "which points to an object "; | 
 |     // Since *p has a field, it must be a class/struct/union type and | 
 |     // thus cannot be a pointer.  Therefore we pass false_type() as | 
 |     // the first argument. | 
 |     return MatchAndExplainImpl(false_type(), *p, listener); | 
 |   } | 
 |  | 
 |   const FieldType Class::*field_; | 
 |   const Matcher<const FieldType&> matcher_; | 
 |  | 
 |   // Contains either "whose given field " if the name of the field is unknown | 
 |   // or "whose field `name_of_field` " if the name is known. | 
 |   const std::string whose_field_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(FieldMatcher); | 
 | }; | 
 |  | 
 | // Implements the Property() matcher for matching a property | 
 | // (i.e. return value of a getter method) of an object. | 
 | // | 
 | // Property is a const-qualified member function of Class returning | 
 | // PropertyType. | 
 | template <typename Class, typename PropertyType, typename Property> | 
 | class PropertyMatcher { | 
 |  public: | 
 |   // The property may have a reference type, so 'const PropertyType&' | 
 |   // may cause double references and fail to compile.  That's why we | 
 |   // need GTEST_REFERENCE_TO_CONST, which works regardless of | 
 |   // PropertyType being a reference or not. | 
 |   typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty; | 
 |  | 
 |   PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) | 
 |       : property_(property), | 
 |         matcher_(matcher), | 
 |         whose_property_("whose given property ") {} | 
 |  | 
 |   PropertyMatcher(const std::string& property_name, Property property, | 
 |                   const Matcher<RefToConstProperty>& matcher) | 
 |       : property_(property), | 
 |         matcher_(matcher), | 
 |         whose_property_("whose property `" + property_name + "` ") {} | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     *os << "is an object " << whose_property_; | 
 |     matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "is an object " << whose_property_; | 
 |     matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |   template <typename T> | 
 |   bool MatchAndExplain(const T&value, MatchResultListener* listener) const { | 
 |     return MatchAndExplainImpl( | 
 |         typename ::testing::internal:: | 
 |             is_pointer<GTEST_REMOVE_CONST_(T)>::type(), | 
 |         value, listener); | 
 |   } | 
 |  | 
 |  private: | 
 |   // The first argument of MatchAndExplainImpl() is needed to help | 
 |   // Symbian's C++ compiler choose which overload to use.  Its type is | 
 |   // true_type iff the Property() matcher is used to match a pointer. | 
 |   bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj, | 
 |                            MatchResultListener* listener) const { | 
 |     *listener << whose_property_ << "is "; | 
 |     // Cannot pass the return value (for example, int) to MatchPrintAndExplain, | 
 |     // which takes a non-const reference as argument. | 
 | #if defined(_PREFAST_ ) && _MSC_VER == 1800 | 
 |     // Workaround bug in VC++ 2013's /analyze parser. | 
 |     // https://connect.microsoft.com/VisualStudio/feedback/details/1106363/internal-compiler-error-with-analyze-due-to-failure-to-infer-move | 
 |     posix::Abort();  // To make sure it is never run. | 
 |     return false; | 
 | #else | 
 |     RefToConstProperty result = (obj.*property_)(); | 
 |     return MatchPrintAndExplain(result, matcher_, listener); | 
 | #endif | 
 |   } | 
 |  | 
 |   bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p, | 
 |                            MatchResultListener* listener) const { | 
 |     if (p == NULL) | 
 |       return false; | 
 |  | 
 |     *listener << "which points to an object "; | 
 |     // Since *p has a property method, it must be a class/struct/union | 
 |     // type and thus cannot be a pointer.  Therefore we pass | 
 |     // false_type() as the first argument. | 
 |     return MatchAndExplainImpl(false_type(), *p, listener); | 
 |   } | 
 |  | 
 |   Property property_; | 
 |   const Matcher<RefToConstProperty> matcher_; | 
 |  | 
 |   // Contains either "whose given property " if the name of the property is | 
 |   // unknown or "whose property `name_of_property` " if the name is known. | 
 |   const std::string whose_property_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(PropertyMatcher); | 
 | }; | 
 |  | 
 | // Type traits specifying various features of different functors for ResultOf. | 
 | // The default template specifies features for functor objects. | 
 | // Functor classes have to typedef argument_type and result_type | 
 | // to be compatible with ResultOf. | 
 | template <typename Functor> | 
 | struct CallableTraits { | 
 |   typedef typename Functor::result_type ResultType; | 
 |   typedef Functor StorageType; | 
 |  | 
 |   static void CheckIsValid(Functor /* functor */) {} | 
 |   template <typename T> | 
 |   static ResultType Invoke(Functor f, T arg) { return f(arg); } | 
 | }; | 
 |  | 
 | // Specialization for function pointers. | 
 | template <typename ArgType, typename ResType> | 
 | struct CallableTraits<ResType(*)(ArgType)> { | 
 |   typedef ResType ResultType; | 
 |   typedef ResType(*StorageType)(ArgType); | 
 |  | 
 |   static void CheckIsValid(ResType(*f)(ArgType)) { | 
 |     GTEST_CHECK_(f != NULL) | 
 |         << "NULL function pointer is passed into ResultOf()."; | 
 |   } | 
 |   template <typename T> | 
 |   static ResType Invoke(ResType(*f)(ArgType), T arg) { | 
 |     return (*f)(arg); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements the ResultOf() matcher for matching a return value of a | 
 | // unary function of an object. | 
 | template <typename Callable> | 
 | class ResultOfMatcher { | 
 |  public: | 
 |   typedef typename CallableTraits<Callable>::ResultType ResultType; | 
 |  | 
 |   ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher) | 
 |       : callable_(callable), matcher_(matcher) { | 
 |     CallableTraits<Callable>::CheckIsValid(callable_); | 
 |   } | 
 |  | 
 |   template <typename T> | 
 |   operator Matcher<T>() const { | 
 |     return Matcher<T>(new Impl<T>(callable_, matcher_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   typedef typename CallableTraits<Callable>::StorageType CallableStorageType; | 
 |  | 
 |   template <typename T> | 
 |   class Impl : public MatcherInterface<T> { | 
 |    public: | 
 |     Impl(CallableStorageType callable, const Matcher<ResultType>& matcher) | 
 |         : callable_(callable), matcher_(matcher) {} | 
 |  | 
 |     virtual void DescribeTo(::std::ostream* os) const { | 
 |       *os << "is mapped by the given callable to a value that "; | 
 |       matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |       *os << "is mapped by the given callable to a value that "; | 
 |       matcher_.DescribeNegationTo(os); | 
 |     } | 
 |  | 
 |     virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const { | 
 |       *listener << "which is mapped by the given callable to "; | 
 |       // Cannot pass the return value (for example, int) to | 
 |       // MatchPrintAndExplain, which takes a non-const reference as argument. | 
 |       ResultType result = | 
 |           CallableTraits<Callable>::template Invoke<T>(callable_, obj); | 
 |       return MatchPrintAndExplain(result, matcher_, listener); | 
 |     } | 
 |  | 
 |    private: | 
 |     // Functors often define operator() as non-const method even though | 
 |     // they are actually stateless. But we need to use them even when | 
 |     // 'this' is a const pointer. It's the user's responsibility not to | 
 |     // use stateful callables with ResultOf(), which does't guarantee | 
 |     // how many times the callable will be invoked. | 
 |     mutable CallableStorageType callable_; | 
 |     const Matcher<ResultType> matcher_; | 
 |  | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   };  // class Impl | 
 |  | 
 |   const CallableStorageType callable_; | 
 |   const Matcher<ResultType> matcher_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(ResultOfMatcher); | 
 | }; | 
 |  | 
 | // Implements a matcher that checks the size of an STL-style container. | 
 | template <typename SizeMatcher> | 
 | class SizeIsMatcher { | 
 |  public: | 
 |   explicit SizeIsMatcher(const SizeMatcher& size_matcher) | 
 |        : size_matcher_(size_matcher) { | 
 |   } | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     return MakeMatcher(new Impl<Container>(size_matcher_)); | 
 |   } | 
 |  | 
 |   template <typename Container> | 
 |   class Impl : public MatcherInterface<Container> { | 
 |    public: | 
 |     typedef internal::StlContainerView< | 
 |          GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; | 
 |     typedef typename ContainerView::type::size_type SizeType; | 
 |     explicit Impl(const SizeMatcher& size_matcher) | 
 |         : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} | 
 |  | 
 |     virtual void DescribeTo(::std::ostream* os) const { | 
 |       *os << "size "; | 
 |       size_matcher_.DescribeTo(os); | 
 |     } | 
 |     virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |       *os << "size "; | 
 |       size_matcher_.DescribeNegationTo(os); | 
 |     } | 
 |  | 
 |     virtual bool MatchAndExplain(Container container, | 
 |                                  MatchResultListener* listener) const { | 
 |       SizeType size = container.size(); | 
 |       StringMatchResultListener size_listener; | 
 |       const bool result = size_matcher_.MatchAndExplain(size, &size_listener); | 
 |       *listener | 
 |           << "whose size " << size << (result ? " matches" : " doesn't match"); | 
 |       PrintIfNotEmpty(size_listener.str(), listener->stream()); | 
 |       return result; | 
 |     } | 
 |  | 
 |    private: | 
 |     const Matcher<SizeType> size_matcher_; | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |  private: | 
 |   const SizeMatcher size_matcher_; | 
 |   GTEST_DISALLOW_ASSIGN_(SizeIsMatcher); | 
 | }; | 
 |  | 
 | // Implements a matcher that checks the begin()..end() distance of an STL-style | 
 | // container. | 
 | template <typename DistanceMatcher> | 
 | class BeginEndDistanceIsMatcher { | 
 |  public: | 
 |   explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) | 
 |       : distance_matcher_(distance_matcher) {} | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     return MakeMatcher(new Impl<Container>(distance_matcher_)); | 
 |   } | 
 |  | 
 |   template <typename Container> | 
 |   class Impl : public MatcherInterface<Container> { | 
 |    public: | 
 |     typedef internal::StlContainerView< | 
 |         GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; | 
 |     typedef typename std::iterator_traits< | 
 |         typename ContainerView::type::const_iterator>::difference_type | 
 |         DistanceType; | 
 |     explicit Impl(const DistanceMatcher& distance_matcher) | 
 |         : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} | 
 |  | 
 |     virtual void DescribeTo(::std::ostream* os) const { | 
 |       *os << "distance between begin() and end() "; | 
 |       distance_matcher_.DescribeTo(os); | 
 |     } | 
 |     virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |       *os << "distance between begin() and end() "; | 
 |       distance_matcher_.DescribeNegationTo(os); | 
 |     } | 
 |  | 
 |     virtual bool MatchAndExplain(Container container, | 
 |                                  MatchResultListener* listener) const { | 
 | #if GTEST_HAS_STD_BEGIN_AND_END_ | 
 |       using std::begin; | 
 |       using std::end; | 
 |       DistanceType distance = std::distance(begin(container), end(container)); | 
 | #else | 
 |       DistanceType distance = std::distance(container.begin(), container.end()); | 
 | #endif | 
 |       StringMatchResultListener distance_listener; | 
 |       const bool result = | 
 |           distance_matcher_.MatchAndExplain(distance, &distance_listener); | 
 |       *listener << "whose distance between begin() and end() " << distance | 
 |                 << (result ? " matches" : " doesn't match"); | 
 |       PrintIfNotEmpty(distance_listener.str(), listener->stream()); | 
 |       return result; | 
 |     } | 
 |  | 
 |    private: | 
 |     const Matcher<DistanceType> distance_matcher_; | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |  private: | 
 |   const DistanceMatcher distance_matcher_; | 
 |   GTEST_DISALLOW_ASSIGN_(BeginEndDistanceIsMatcher); | 
 | }; | 
 |  | 
 | // Implements an equality matcher for any STL-style container whose elements | 
 | // support ==. This matcher is like Eq(), but its failure explanations provide | 
 | // more detailed information that is useful when the container is used as a set. | 
 | // The failure message reports elements that are in one of the operands but not | 
 | // the other. The failure messages do not report duplicate or out-of-order | 
 | // elements in the containers (which don't properly matter to sets, but can | 
 | // occur if the containers are vectors or lists, for example). | 
 | // | 
 | // Uses the container's const_iterator, value_type, operator ==, | 
 | // begin(), and end(). | 
 | template <typename Container> | 
 | class ContainerEqMatcher { | 
 |  public: | 
 |   typedef internal::StlContainerView<Container> View; | 
 |   typedef typename View::type StlContainer; | 
 |   typedef typename View::const_reference StlContainerReference; | 
 |  | 
 |   // We make a copy of expected in case the elements in it are modified | 
 |   // after this matcher is created. | 
 |   explicit ContainerEqMatcher(const Container& expected) | 
 |       : expected_(View::Copy(expected)) { | 
 |     // Makes sure the user doesn't instantiate this class template | 
 |     // with a const or reference type. | 
 |     (void)testing::StaticAssertTypeEq<Container, | 
 |         GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>(); | 
 |   } | 
 |  | 
 |   void DescribeTo(::std::ostream* os) const { | 
 |     *os << "equals "; | 
 |     UniversalPrint(expected_, os); | 
 |   } | 
 |   void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "does not equal "; | 
 |     UniversalPrint(expected_, os); | 
 |   } | 
 |  | 
 |   template <typename LhsContainer> | 
 |   bool MatchAndExplain(const LhsContainer& lhs, | 
 |                        MatchResultListener* listener) const { | 
 |     // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug | 
 |     // that causes LhsContainer to be a const type sometimes. | 
 |     typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)> | 
 |         LhsView; | 
 |     typedef typename LhsView::type LhsStlContainer; | 
 |     StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); | 
 |     if (lhs_stl_container == expected_) | 
 |       return true; | 
 |  | 
 |     ::std::ostream* const os = listener->stream(); | 
 |     if (os != NULL) { | 
 |       // Something is different. Check for extra values first. | 
 |       bool printed_header = false; | 
 |       for (typename LhsStlContainer::const_iterator it = | 
 |                lhs_stl_container.begin(); | 
 |            it != lhs_stl_container.end(); ++it) { | 
 |         if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == | 
 |             expected_.end()) { | 
 |           if (printed_header) { | 
 |             *os << ", "; | 
 |           } else { | 
 |             *os << "which has these unexpected elements: "; | 
 |             printed_header = true; | 
 |           } | 
 |           UniversalPrint(*it, os); | 
 |         } | 
 |       } | 
 |  | 
 |       // Now check for missing values. | 
 |       bool printed_header2 = false; | 
 |       for (typename StlContainer::const_iterator it = expected_.begin(); | 
 |            it != expected_.end(); ++it) { | 
 |         if (internal::ArrayAwareFind( | 
 |                 lhs_stl_container.begin(), lhs_stl_container.end(), *it) == | 
 |             lhs_stl_container.end()) { | 
 |           if (printed_header2) { | 
 |             *os << ", "; | 
 |           } else { | 
 |             *os << (printed_header ? ",\nand" : "which") | 
 |                 << " doesn't have these expected elements: "; | 
 |             printed_header2 = true; | 
 |           } | 
 |           UniversalPrint(*it, os); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     return false; | 
 |   } | 
 |  | 
 |  private: | 
 |   const StlContainer expected_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher); | 
 | }; | 
 |  | 
 | // A comparator functor that uses the < operator to compare two values. | 
 | struct LessComparator { | 
 |   template <typename T, typename U> | 
 |   bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } | 
 | }; | 
 |  | 
 | // Implements WhenSortedBy(comparator, container_matcher). | 
 | template <typename Comparator, typename ContainerMatcher> | 
 | class WhenSortedByMatcher { | 
 |  public: | 
 |   WhenSortedByMatcher(const Comparator& comparator, | 
 |                       const ContainerMatcher& matcher) | 
 |       : comparator_(comparator), matcher_(matcher) {} | 
 |  | 
 |   template <typename LhsContainer> | 
 |   operator Matcher<LhsContainer>() const { | 
 |     return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); | 
 |   } | 
 |  | 
 |   template <typename LhsContainer> | 
 |   class Impl : public MatcherInterface<LhsContainer> { | 
 |    public: | 
 |     typedef internal::StlContainerView< | 
 |          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; | 
 |     typedef typename LhsView::type LhsStlContainer; | 
 |     typedef typename LhsView::const_reference LhsStlContainerReference; | 
 |     // Transforms std::pair<const Key, Value> into std::pair<Key, Value> | 
 |     // so that we can match associative containers. | 
 |     typedef typename RemoveConstFromKey< | 
 |         typename LhsStlContainer::value_type>::type LhsValue; | 
 |  | 
 |     Impl(const Comparator& comparator, const ContainerMatcher& matcher) | 
 |         : comparator_(comparator), matcher_(matcher) {} | 
 |  | 
 |     virtual void DescribeTo(::std::ostream* os) const { | 
 |       *os << "(when sorted) "; | 
 |       matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |       *os << "(when sorted) "; | 
 |       matcher_.DescribeNegationTo(os); | 
 |     } | 
 |  | 
 |     virtual bool MatchAndExplain(LhsContainer lhs, | 
 |                                  MatchResultListener* listener) const { | 
 |       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); | 
 |       ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), | 
 |                                                lhs_stl_container.end()); | 
 |       ::std::sort( | 
 |            sorted_container.begin(), sorted_container.end(), comparator_); | 
 |  | 
 |       if (!listener->IsInterested()) { | 
 |         // If the listener is not interested, we do not need to | 
 |         // construct the inner explanation. | 
 |         return matcher_.Matches(sorted_container); | 
 |       } | 
 |  | 
 |       *listener << "which is "; | 
 |       UniversalPrint(sorted_container, listener->stream()); | 
 |       *listener << " when sorted"; | 
 |  | 
 |       StringMatchResultListener inner_listener; | 
 |       const bool match = matcher_.MatchAndExplain(sorted_container, | 
 |                                                   &inner_listener); | 
 |       PrintIfNotEmpty(inner_listener.str(), listener->stream()); | 
 |       return match; | 
 |     } | 
 |  | 
 |    private: | 
 |     const Comparator comparator_; | 
 |     const Matcher<const ::std::vector<LhsValue>&> matcher_; | 
 |  | 
 |     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |  private: | 
 |   const Comparator comparator_; | 
 |   const ContainerMatcher matcher_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher); | 
 | }; | 
 |  | 
 | // Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher | 
 | // must be able to be safely cast to Matcher<tuple<const T1&, const | 
 | // T2&> >, where T1 and T2 are the types of elements in the LHS | 
 | // container and the RHS container respectively. | 
 | template <typename TupleMatcher, typename RhsContainer> | 
 | class PointwiseMatcher { | 
 |   GTEST_COMPILE_ASSERT_( | 
 |       !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, | 
 |       use_UnorderedPointwise_with_hash_tables); | 
 |  | 
 |  public: | 
 |   typedef internal::StlContainerView<RhsContainer> RhsView; | 
 |   typedef typename RhsView::type RhsStlContainer; | 
 |   typedef typename RhsStlContainer::value_type RhsValue; | 
 |  | 
 |   // Like ContainerEq, we make a copy of rhs in case the elements in | 
 |   // it are modified after this matcher is created. | 
 |   PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) | 
 |       : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) { | 
 |     // Makes sure the user doesn't instantiate this class template | 
 |     // with a const or reference type. | 
 |     (void)testing::StaticAssertTypeEq<RhsContainer, | 
 |         GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>(); | 
 |   } | 
 |  | 
 |   template <typename LhsContainer> | 
 |   operator Matcher<LhsContainer>() const { | 
 |     GTEST_COMPILE_ASSERT_( | 
 |         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, | 
 |         use_UnorderedPointwise_with_hash_tables); | 
 |  | 
 |     return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_)); | 
 |   } | 
 |  | 
 |   template <typename LhsContainer> | 
 |   class Impl : public MatcherInterface<LhsContainer> { | 
 |    public: | 
 |     typedef internal::StlContainerView< | 
 |          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; | 
 |     typedef typename LhsView::type LhsStlContainer; | 
 |     typedef typename LhsView::const_reference LhsStlContainerReference; | 
 |     typedef typename LhsStlContainer::value_type LhsValue; | 
 |     // We pass the LHS value and the RHS value to the inner matcher by | 
 |     // reference, as they may be expensive to copy.  We must use tuple | 
 |     // instead of pair here, as a pair cannot hold references (C++ 98, | 
 |     // 20.2.2 [lib.pairs]). | 
 |     typedef ::testing::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; | 
 |  | 
 |     Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) | 
 |         // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. | 
 |         : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), | 
 |           rhs_(rhs) {} | 
 |  | 
 |     virtual void DescribeTo(::std::ostream* os) const { | 
 |       *os << "contains " << rhs_.size() | 
 |           << " values, where each value and its corresponding value in "; | 
 |       UniversalPrinter<RhsStlContainer>::Print(rhs_, os); | 
 |       *os << " "; | 
 |       mono_tuple_matcher_.DescribeTo(os); | 
 |     } | 
 |     virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |       *os << "doesn't contain exactly " << rhs_.size() | 
 |           << " values, or contains a value x at some index i" | 
 |           << " where x and the i-th value of "; | 
 |       UniversalPrint(rhs_, os); | 
 |       *os << " "; | 
 |       mono_tuple_matcher_.DescribeNegationTo(os); | 
 |     } | 
 |  | 
 |     virtual bool MatchAndExplain(LhsContainer lhs, | 
 |                                  MatchResultListener* listener) const { | 
 |       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); | 
 |       const size_t actual_size = lhs_stl_container.size(); | 
 |       if (actual_size != rhs_.size()) { | 
 |         *listener << "which contains " << actual_size << " values"; | 
 |         return false; | 
 |       } | 
 |  | 
 |       typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); | 
 |       typename RhsStlContainer::const_iterator right = rhs_.begin(); | 
 |       for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { | 
 |         if (listener->IsInterested()) { | 
 |           StringMatchResultListener inner_listener; | 
 |           // Create InnerMatcherArg as a temporarily object to avoid it outlives | 
 |           // *left and *right. Dereference or the conversion to `const T&` may | 
 |           // return temp objects, e.g for vector<bool>. | 
 |           if (!mono_tuple_matcher_.MatchAndExplain( | 
 |                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), | 
 |                                   ImplicitCast_<const RhsValue&>(*right)), | 
 |                   &inner_listener)) { | 
 |             *listener << "where the value pair ("; | 
 |             UniversalPrint(*left, listener->stream()); | 
 |             *listener << ", "; | 
 |             UniversalPrint(*right, listener->stream()); | 
 |             *listener << ") at index #" << i << " don't match"; | 
 |             PrintIfNotEmpty(inner_listener.str(), listener->stream()); | 
 |             return false; | 
 |           } | 
 |         } else { | 
 |           if (!mono_tuple_matcher_.Matches( | 
 |                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), | 
 |                                   ImplicitCast_<const RhsValue&>(*right)))) | 
 |             return false; | 
 |         } | 
 |       } | 
 |  | 
 |       return true; | 
 |     } | 
 |  | 
 |    private: | 
 |     const Matcher<InnerMatcherArg> mono_tuple_matcher_; | 
 |     const RhsStlContainer rhs_; | 
 |  | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |  private: | 
 |   const TupleMatcher tuple_matcher_; | 
 |   const RhsStlContainer rhs_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(PointwiseMatcher); | 
 | }; | 
 |  | 
 | // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. | 
 | template <typename Container> | 
 | class QuantifierMatcherImpl : public MatcherInterface<Container> { | 
 |  public: | 
 |   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
 |   typedef StlContainerView<RawContainer> View; | 
 |   typedef typename View::type StlContainer; | 
 |   typedef typename View::const_reference StlContainerReference; | 
 |   typedef typename StlContainer::value_type Element; | 
 |  | 
 |   template <typename InnerMatcher> | 
 |   explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) | 
 |       : inner_matcher_( | 
 |            testing::SafeMatcherCast<const Element&>(inner_matcher)) {} | 
 |  | 
 |   // Checks whether: | 
 |   // * All elements in the container match, if all_elements_should_match. | 
 |   // * Any element in the container matches, if !all_elements_should_match. | 
 |   bool MatchAndExplainImpl(bool all_elements_should_match, | 
 |                            Container container, | 
 |                            MatchResultListener* listener) const { | 
 |     StlContainerReference stl_container = View::ConstReference(container); | 
 |     size_t i = 0; | 
 |     for (typename StlContainer::const_iterator it = stl_container.begin(); | 
 |          it != stl_container.end(); ++it, ++i) { | 
 |       StringMatchResultListener inner_listener; | 
 |       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); | 
 |  | 
 |       if (matches != all_elements_should_match) { | 
 |         *listener << "whose element #" << i | 
 |                   << (matches ? " matches" : " doesn't match"); | 
 |         PrintIfNotEmpty(inner_listener.str(), listener->stream()); | 
 |         return !all_elements_should_match; | 
 |       } | 
 |     } | 
 |     return all_elements_should_match; | 
 |   } | 
 |  | 
 |  protected: | 
 |   const Matcher<const Element&> inner_matcher_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl); | 
 | }; | 
 |  | 
 | // Implements Contains(element_matcher) for the given argument type Container. | 
 | // Symmetric to EachMatcherImpl. | 
 | template <typename Container> | 
 | class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { | 
 |  public: | 
 |   template <typename InnerMatcher> | 
 |   explicit ContainsMatcherImpl(InnerMatcher inner_matcher) | 
 |       : QuantifierMatcherImpl<Container>(inner_matcher) {} | 
 |  | 
 |   // Describes what this matcher does. | 
 |   virtual void DescribeTo(::std::ostream* os) const { | 
 |     *os << "contains at least one element that "; | 
 |     this->inner_matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "doesn't contain any element that "; | 
 |     this->inner_matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   virtual bool MatchAndExplain(Container container, | 
 |                                MatchResultListener* listener) const { | 
 |     return this->MatchAndExplainImpl(false, container, listener); | 
 |   } | 
 |  | 
 |  private: | 
 |   GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl); | 
 | }; | 
 |  | 
 | // Implements Each(element_matcher) for the given argument type Container. | 
 | // Symmetric to ContainsMatcherImpl. | 
 | template <typename Container> | 
 | class EachMatcherImpl : public QuantifierMatcherImpl<Container> { | 
 |  public: | 
 |   template <typename InnerMatcher> | 
 |   explicit EachMatcherImpl(InnerMatcher inner_matcher) | 
 |       : QuantifierMatcherImpl<Container>(inner_matcher) {} | 
 |  | 
 |   // Describes what this matcher does. | 
 |   virtual void DescribeTo(::std::ostream* os) const { | 
 |     *os << "only contains elements that "; | 
 |     this->inner_matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "contains some element that "; | 
 |     this->inner_matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |   virtual bool MatchAndExplain(Container container, | 
 |                                MatchResultListener* listener) const { | 
 |     return this->MatchAndExplainImpl(true, container, listener); | 
 |   } | 
 |  | 
 |  private: | 
 |   GTEST_DISALLOW_ASSIGN_(EachMatcherImpl); | 
 | }; | 
 |  | 
 | // Implements polymorphic Contains(element_matcher). | 
 | template <typename M> | 
 | class ContainsMatcher { | 
 |  public: | 
 |   explicit ContainsMatcher(M m) : inner_matcher_(m) {} | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   const M inner_matcher_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(ContainsMatcher); | 
 | }; | 
 |  | 
 | // Implements polymorphic Each(element_matcher). | 
 | template <typename M> | 
 | class EachMatcher { | 
 |  public: | 
 |   explicit EachMatcher(M m) : inner_matcher_(m) {} | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   const M inner_matcher_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(EachMatcher); | 
 | }; | 
 |  | 
 | struct Rank1 {}; | 
 | struct Rank0 : Rank1 {}; | 
 |  | 
 | namespace pair_getters { | 
 | #if GTEST_LANG_CXX11 | 
 | using std::get; | 
 | template <typename T> | 
 | auto First(T& x, Rank1) -> decltype(get<0>(x)) {  // NOLINT | 
 |   return get<0>(x); | 
 | } | 
 | template <typename T> | 
 | auto First(T& x, Rank0) -> decltype((x.first)) {  // NOLINT | 
 |   return x.first; | 
 | } | 
 |  | 
 | template <typename T> | 
 | auto Second(T& x, Rank1) -> decltype(get<1>(x)) {  // NOLINT | 
 |   return get<1>(x); | 
 | } | 
 | template <typename T> | 
 | auto Second(T& x, Rank0) -> decltype((x.second)) {  // NOLINT | 
 |   return x.second; | 
 | } | 
 | #else | 
 | template <typename T> | 
 | typename T::first_type& First(T& x, Rank0) {  // NOLINT | 
 |   return x.first; | 
 | } | 
 | template <typename T> | 
 | const typename T::first_type& First(const T& x, Rank0) { | 
 |   return x.first; | 
 | } | 
 |  | 
 | template <typename T> | 
 | typename T::second_type& Second(T& x, Rank0) {  // NOLINT | 
 |   return x.second; | 
 | } | 
 | template <typename T> | 
 | const typename T::second_type& Second(const T& x, Rank0) { | 
 |   return x.second; | 
 | } | 
 | #endif  // GTEST_LANG_CXX11 | 
 | }  // namespace pair_getters | 
 |  | 
 | // Implements Key(inner_matcher) for the given argument pair type. | 
 | // Key(inner_matcher) matches an std::pair whose 'first' field matches | 
 | // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an | 
 | // std::map that contains at least one element whose key is >= 5. | 
 | template <typename PairType> | 
 | class KeyMatcherImpl : public MatcherInterface<PairType> { | 
 |  public: | 
 |   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; | 
 |   typedef typename RawPairType::first_type KeyType; | 
 |  | 
 |   template <typename InnerMatcher> | 
 |   explicit KeyMatcherImpl(InnerMatcher inner_matcher) | 
 |       : inner_matcher_( | 
 |           testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { | 
 |   } | 
 |  | 
 |   // Returns true iff 'key_value.first' (the key) matches the inner matcher. | 
 |   virtual bool MatchAndExplain(PairType key_value, | 
 |                                MatchResultListener* listener) const { | 
 |     StringMatchResultListener inner_listener; | 
 |     const bool match = inner_matcher_.MatchAndExplain( | 
 |         pair_getters::First(key_value, Rank0()), &inner_listener); | 
 |     const std::string explanation = inner_listener.str(); | 
 |     if (explanation != "") { | 
 |       *listener << "whose first field is a value " << explanation; | 
 |     } | 
 |     return match; | 
 |   } | 
 |  | 
 |   // Describes what this matcher does. | 
 |   virtual void DescribeTo(::std::ostream* os) const { | 
 |     *os << "has a key that "; | 
 |     inner_matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   // Describes what the negation of this matcher does. | 
 |   virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "doesn't have a key that "; | 
 |     inner_matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |  private: | 
 |   const Matcher<const KeyType&> inner_matcher_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl); | 
 | }; | 
 |  | 
 | // Implements polymorphic Key(matcher_for_key). | 
 | template <typename M> | 
 | class KeyMatcher { | 
 |  public: | 
 |   explicit KeyMatcher(M m) : matcher_for_key_(m) {} | 
 |  | 
 |   template <typename PairType> | 
 |   operator Matcher<PairType>() const { | 
 |     return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   const M matcher_for_key_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(KeyMatcher); | 
 | }; | 
 |  | 
 | // Implements Pair(first_matcher, second_matcher) for the given argument pair | 
 | // type with its two matchers. See Pair() function below. | 
 | template <typename PairType> | 
 | class PairMatcherImpl : public MatcherInterface<PairType> { | 
 |  public: | 
 |   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; | 
 |   typedef typename RawPairType::first_type FirstType; | 
 |   typedef typename RawPairType::second_type SecondType; | 
 |  | 
 |   template <typename FirstMatcher, typename SecondMatcher> | 
 |   PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) | 
 |       : first_matcher_( | 
 |             testing::SafeMatcherCast<const FirstType&>(first_matcher)), | 
 |         second_matcher_( | 
 |             testing::SafeMatcherCast<const SecondType&>(second_matcher)) { | 
 |   } | 
 |  | 
 |   // Describes what this matcher does. | 
 |   virtual void DescribeTo(::std::ostream* os) const { | 
 |     *os << "has a first field that "; | 
 |     first_matcher_.DescribeTo(os); | 
 |     *os << ", and has a second field that "; | 
 |     second_matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   // Describes what the negation of this matcher does. | 
 |   virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |     *os << "has a first field that "; | 
 |     first_matcher_.DescribeNegationTo(os); | 
 |     *os << ", or has a second field that "; | 
 |     second_matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |   // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second' | 
 |   // matches second_matcher. | 
 |   virtual bool MatchAndExplain(PairType a_pair, | 
 |                                MatchResultListener* listener) const { | 
 |     if (!listener->IsInterested()) { | 
 |       // If the listener is not interested, we don't need to construct the | 
 |       // explanation. | 
 |       return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && | 
 |              second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); | 
 |     } | 
 |     StringMatchResultListener first_inner_listener; | 
 |     if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), | 
 |                                         &first_inner_listener)) { | 
 |       *listener << "whose first field does not match"; | 
 |       PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); | 
 |       return false; | 
 |     } | 
 |     StringMatchResultListener second_inner_listener; | 
 |     if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), | 
 |                                          &second_inner_listener)) { | 
 |       *listener << "whose second field does not match"; | 
 |       PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); | 
 |       return false; | 
 |     } | 
 |     ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), | 
 |                    listener); | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   void ExplainSuccess(const std::string& first_explanation, | 
 |                       const std::string& second_explanation, | 
 |                       MatchResultListener* listener) const { | 
 |     *listener << "whose both fields match"; | 
 |     if (first_explanation != "") { | 
 |       *listener << ", where the first field is a value " << first_explanation; | 
 |     } | 
 |     if (second_explanation != "") { | 
 |       *listener << ", "; | 
 |       if (first_explanation != "") { | 
 |         *listener << "and "; | 
 |       } else { | 
 |         *listener << "where "; | 
 |       } | 
 |       *listener << "the second field is a value " << second_explanation; | 
 |     } | 
 |   } | 
 |  | 
 |   const Matcher<const FirstType&> first_matcher_; | 
 |   const Matcher<const SecondType&> second_matcher_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(PairMatcherImpl); | 
 | }; | 
 |  | 
 | // Implements polymorphic Pair(first_matcher, second_matcher). | 
 | template <typename FirstMatcher, typename SecondMatcher> | 
 | class PairMatcher { | 
 |  public: | 
 |   PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) | 
 |       : first_matcher_(first_matcher), second_matcher_(second_matcher) {} | 
 |  | 
 |   template <typename PairType> | 
 |   operator Matcher<PairType> () const { | 
 |     return MakeMatcher( | 
 |         new PairMatcherImpl<PairType>( | 
 |             first_matcher_, second_matcher_)); | 
 |   } | 
 |  | 
 |  private: | 
 |   const FirstMatcher first_matcher_; | 
 |   const SecondMatcher second_matcher_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(PairMatcher); | 
 | }; | 
 |  | 
 | // Implements ElementsAre() and ElementsAreArray(). | 
 | template <typename Container> | 
 | class ElementsAreMatcherImpl : public MatcherInterface<Container> { | 
 |  public: | 
 |   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
 |   typedef internal::StlContainerView<RawContainer> View; | 
 |   typedef typename View::type StlContainer; | 
 |   typedef typename View::const_reference StlContainerReference; | 
 |   typedef typename StlContainer::value_type Element; | 
 |  | 
 |   // Constructs the matcher from a sequence of element values or | 
 |   // element matchers. | 
 |   template <typename InputIter> | 
 |   ElementsAreMatcherImpl(InputIter first, InputIter last) { | 
 |     while (first != last) { | 
 |       matchers_.push_back(MatcherCast<const Element&>(*first++)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Describes what this matcher does. | 
 |   virtual void DescribeTo(::std::ostream* os) const { | 
 |     if (count() == 0) { | 
 |       *os << "is empty"; | 
 |     } else if (count() == 1) { | 
 |       *os << "has 1 element that "; | 
 |       matchers_[0].DescribeTo(os); | 
 |     } else { | 
 |       *os << "has " << Elements(count()) << " where\n"; | 
 |       for (size_t i = 0; i != count(); ++i) { | 
 |         *os << "element #" << i << " "; | 
 |         matchers_[i].DescribeTo(os); | 
 |         if (i + 1 < count()) { | 
 |           *os << ",\n"; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Describes what the negation of this matcher does. | 
 |   virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |     if (count() == 0) { | 
 |       *os << "isn't empty"; | 
 |       return; | 
 |     } | 
 |  | 
 |     *os << "doesn't have " << Elements(count()) << ", or\n"; | 
 |     for (size_t i = 0; i != count(); ++i) { | 
 |       *os << "element #" << i << " "; | 
 |       matchers_[i].DescribeNegationTo(os); | 
 |       if (i + 1 < count()) { | 
 |         *os << ", or\n"; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   virtual bool MatchAndExplain(Container container, | 
 |                                MatchResultListener* listener) const { | 
 |     // To work with stream-like "containers", we must only walk | 
 |     // through the elements in one pass. | 
 |  | 
 |     const bool listener_interested = listener->IsInterested(); | 
 |  | 
 |     // explanations[i] is the explanation of the element at index i. | 
 |     ::std::vector<std::string> explanations(count()); | 
 |     StlContainerReference stl_container = View::ConstReference(container); | 
 |     typename StlContainer::const_iterator it = stl_container.begin(); | 
 |     size_t exam_pos = 0; | 
 |     bool mismatch_found = false;  // Have we found a mismatched element yet? | 
 |  | 
 |     // Go through the elements and matchers in pairs, until we reach | 
 |     // the end of either the elements or the matchers, or until we find a | 
 |     // mismatch. | 
 |     for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { | 
 |       bool match;  // Does the current element match the current matcher? | 
 |       if (listener_interested) { | 
 |         StringMatchResultListener s; | 
 |         match = matchers_[exam_pos].MatchAndExplain(*it, &s); | 
 |         explanations[exam_pos] = s.str(); | 
 |       } else { | 
 |         match = matchers_[exam_pos].Matches(*it); | 
 |       } | 
 |  | 
 |       if (!match) { | 
 |         mismatch_found = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |     // If mismatch_found is true, 'exam_pos' is the index of the mismatch. | 
 |  | 
 |     // Find how many elements the actual container has.  We avoid | 
 |     // calling size() s.t. this code works for stream-like "containers" | 
 |     // that don't define size(). | 
 |     size_t actual_count = exam_pos; | 
 |     for (; it != stl_container.end(); ++it) { | 
 |       ++actual_count; | 
 |     } | 
 |  | 
 |     if (actual_count != count()) { | 
 |       // The element count doesn't match.  If the container is empty, | 
 |       // there's no need to explain anything as Google Mock already | 
 |       // prints the empty container.  Otherwise we just need to show | 
 |       // how many elements there actually are. | 
 |       if (listener_interested && (actual_count != 0)) { | 
 |         *listener << "which has " << Elements(actual_count); | 
 |       } | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (mismatch_found) { | 
 |       // The element count matches, but the exam_pos-th element doesn't match. | 
 |       if (listener_interested) { | 
 |         *listener << "whose element #" << exam_pos << " doesn't match"; | 
 |         PrintIfNotEmpty(explanations[exam_pos], listener->stream()); | 
 |       } | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Every element matches its expectation.  We need to explain why | 
 |     // (the obvious ones can be skipped). | 
 |     if (listener_interested) { | 
 |       bool reason_printed = false; | 
 |       for (size_t i = 0; i != count(); ++i) { | 
 |         const std::string& s = explanations[i]; | 
 |         if (!s.empty()) { | 
 |           if (reason_printed) { | 
 |             *listener << ",\nand "; | 
 |           } | 
 |           *listener << "whose element #" << i << " matches, " << s; | 
 |           reason_printed = true; | 
 |         } | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   static Message Elements(size_t count) { | 
 |     return Message() << count << (count == 1 ? " element" : " elements"); | 
 |   } | 
 |  | 
 |   size_t count() const { return matchers_.size(); } | 
 |  | 
 |   ::std::vector<Matcher<const Element&> > matchers_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl); | 
 | }; | 
 |  | 
 | // Connectivity matrix of (elements X matchers), in element-major order. | 
 | // Initially, there are no edges. | 
 | // Use NextGraph() to iterate over all possible edge configurations. | 
 | // Use Randomize() to generate a random edge configuration. | 
 | class GTEST_API_ MatchMatrix { | 
 |  public: | 
 |   MatchMatrix(size_t num_elements, size_t num_matchers) | 
 |       : num_elements_(num_elements), | 
 |         num_matchers_(num_matchers), | 
 |         matched_(num_elements_* num_matchers_, 0) { | 
 |   } | 
 |  | 
 |   size_t LhsSize() const { return num_elements_; } | 
 |   size_t RhsSize() const { return num_matchers_; } | 
 |   bool HasEdge(size_t ilhs, size_t irhs) const { | 
 |     return matched_[SpaceIndex(ilhs, irhs)] == 1; | 
 |   } | 
 |   void SetEdge(size_t ilhs, size_t irhs, bool b) { | 
 |     matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; | 
 |   } | 
 |  | 
 |   // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, | 
 |   // adds 1 to that number; returns false if incrementing the graph left it | 
 |   // empty. | 
 |   bool NextGraph(); | 
 |  | 
 |   void Randomize(); | 
 |  | 
 |   std::string DebugString() const; | 
 |  | 
 |  private: | 
 |   size_t SpaceIndex(size_t ilhs, size_t irhs) const { | 
 |     return ilhs * num_matchers_ + irhs; | 
 |   } | 
 |  | 
 |   size_t num_elements_; | 
 |   size_t num_matchers_; | 
 |  | 
 |   // Each element is a char interpreted as bool. They are stored as a | 
 |   // flattened array in lhs-major order, use 'SpaceIndex()' to translate | 
 |   // a (ilhs, irhs) matrix coordinate into an offset. | 
 |   ::std::vector<char> matched_; | 
 | }; | 
 |  | 
 | typedef ::std::pair<size_t, size_t> ElementMatcherPair; | 
 | typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; | 
 |  | 
 | // Returns a maximum bipartite matching for the specified graph 'g'. | 
 | // The matching is represented as a vector of {element, matcher} pairs. | 
 | GTEST_API_ ElementMatcherPairs | 
 | FindMaxBipartiteMatching(const MatchMatrix& g); | 
 |  | 
 | struct UnorderedMatcherRequire { | 
 |   enum Flags { | 
 |     Superset = 1 << 0, | 
 |     Subset = 1 << 1, | 
 |     ExactMatch = Superset | Subset, | 
 |   }; | 
 | }; | 
 |  | 
 | // Untyped base class for implementing UnorderedElementsAre.  By | 
 | // putting logic that's not specific to the element type here, we | 
 | // reduce binary bloat and increase compilation speed. | 
 | class GTEST_API_ UnorderedElementsAreMatcherImplBase { | 
 |  protected: | 
 |   explicit UnorderedElementsAreMatcherImplBase( | 
 |       UnorderedMatcherRequire::Flags matcher_flags) | 
 |       : match_flags_(matcher_flags) {} | 
 |  | 
 |   // A vector of matcher describers, one for each element matcher. | 
 |   // Does not own the describers (and thus can be used only when the | 
 |   // element matchers are alive). | 
 |   typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; | 
 |  | 
 |   // Describes this UnorderedElementsAre matcher. | 
 |   void DescribeToImpl(::std::ostream* os) const; | 
 |  | 
 |   // Describes the negation of this UnorderedElementsAre matcher. | 
 |   void DescribeNegationToImpl(::std::ostream* os) const; | 
 |  | 
 |   bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, | 
 |                          const MatchMatrix& matrix, | 
 |                          MatchResultListener* listener) const; | 
 |  | 
 |   bool FindPairing(const MatchMatrix& matrix, | 
 |                    MatchResultListener* listener) const; | 
 |  | 
 |   MatcherDescriberVec& matcher_describers() { | 
 |     return matcher_describers_; | 
 |   } | 
 |  | 
 |   static Message Elements(size_t n) { | 
 |     return Message() << n << " element" << (n == 1 ? "" : "s"); | 
 |   } | 
 |  | 
 |   UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } | 
 |  | 
 |  private: | 
 |   UnorderedMatcherRequire::Flags match_flags_; | 
 |   MatcherDescriberVec matcher_describers_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImplBase); | 
 | }; | 
 |  | 
 | // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and | 
 | // IsSupersetOf. | 
 | template <typename Container> | 
 | class UnorderedElementsAreMatcherImpl | 
 |     : public MatcherInterface<Container>, | 
 |       public UnorderedElementsAreMatcherImplBase { | 
 |  public: | 
 |   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
 |   typedef internal::StlContainerView<RawContainer> View; | 
 |   typedef typename View::type StlContainer; | 
 |   typedef typename View::const_reference StlContainerReference; | 
 |   typedef typename StlContainer::const_iterator StlContainerConstIterator; | 
 |   typedef typename StlContainer::value_type Element; | 
 |  | 
 |   template <typename InputIter> | 
 |   UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, | 
 |                                   InputIter first, InputIter last) | 
 |       : UnorderedElementsAreMatcherImplBase(matcher_flags) { | 
 |     for (; first != last; ++first) { | 
 |       matchers_.push_back(MatcherCast<const Element&>(*first)); | 
 |       matcher_describers().push_back(matchers_.back().GetDescriber()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Describes what this matcher does. | 
 |   virtual void DescribeTo(::std::ostream* os) const { | 
 |     return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); | 
 |   } | 
 |  | 
 |   // Describes what the negation of this matcher does. | 
 |   virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |     return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); | 
 |   } | 
 |  | 
 |   virtual bool MatchAndExplain(Container container, | 
 |                                MatchResultListener* listener) const { | 
 |     StlContainerReference stl_container = View::ConstReference(container); | 
 |     ::std::vector<std::string> element_printouts; | 
 |     MatchMatrix matrix = | 
 |         AnalyzeElements(stl_container.begin(), stl_container.end(), | 
 |                         &element_printouts, listener); | 
 |  | 
 |     if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { | 
 |       return true; | 
 |     } | 
 |  | 
 |     if (match_flags() == UnorderedMatcherRequire::ExactMatch) { | 
 |       if (matrix.LhsSize() != matrix.RhsSize()) { | 
 |         // The element count doesn't match.  If the container is empty, | 
 |         // there's no need to explain anything as Google Mock already | 
 |         // prints the empty container. Otherwise we just need to show | 
 |         // how many elements there actually are. | 
 |         if (matrix.LhsSize() != 0 && listener->IsInterested()) { | 
 |           *listener << "which has " << Elements(matrix.LhsSize()); | 
 |         } | 
 |         return false; | 
 |       } | 
 |     } | 
 |  | 
 |     return VerifyMatchMatrix(element_printouts, matrix, listener) && | 
 |            FindPairing(matrix, listener); | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename ElementIter> | 
 |   MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, | 
 |                               ::std::vector<std::string>* element_printouts, | 
 |                               MatchResultListener* listener) const { | 
 |     element_printouts->clear(); | 
 |     ::std::vector<char> did_match; | 
 |     size_t num_elements = 0; | 
 |     for (; elem_first != elem_last; ++num_elements, ++elem_first) { | 
 |       if (listener->IsInterested()) { | 
 |         element_printouts->push_back(PrintToString(*elem_first)); | 
 |       } | 
 |       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { | 
 |         did_match.push_back(Matches(matchers_[irhs])(*elem_first)); | 
 |       } | 
 |     } | 
 |  | 
 |     MatchMatrix matrix(num_elements, matchers_.size()); | 
 |     ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); | 
 |     for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { | 
 |       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { | 
 |         matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); | 
 |       } | 
 |     } | 
 |     return matrix; | 
 |   } | 
 |  | 
 |   ::std::vector<Matcher<const Element&> > matchers_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImpl); | 
 | }; | 
 |  | 
 | // Functor for use in TransformTuple. | 
 | // Performs MatcherCast<Target> on an input argument of any type. | 
 | template <typename Target> | 
 | struct CastAndAppendTransform { | 
 |   template <typename Arg> | 
 |   Matcher<Target> operator()(const Arg& a) const { | 
 |     return MatcherCast<Target>(a); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements UnorderedElementsAre. | 
 | template <typename MatcherTuple> | 
 | class UnorderedElementsAreMatcher { | 
 |  public: | 
 |   explicit UnorderedElementsAreMatcher(const MatcherTuple& args) | 
 |       : matchers_(args) {} | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
 |     typedef typename internal::StlContainerView<RawContainer>::type View; | 
 |     typedef typename View::value_type Element; | 
 |     typedef ::std::vector<Matcher<const Element&> > MatcherVec; | 
 |     MatcherVec matchers; | 
 |     matchers.reserve(::testing::tuple_size<MatcherTuple>::value); | 
 |     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, | 
 |                          ::std::back_inserter(matchers)); | 
 |     return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>( | 
 |         UnorderedMatcherRequire::ExactMatch, matchers.begin(), matchers.end())); | 
 |   } | 
 |  | 
 |  private: | 
 |   const MatcherTuple matchers_; | 
 |   GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcher); | 
 | }; | 
 |  | 
 | // Implements ElementsAre. | 
 | template <typename MatcherTuple> | 
 | class ElementsAreMatcher { | 
 |  public: | 
 |   explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     GTEST_COMPILE_ASSERT_( | 
 |         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || | 
 |             ::testing::tuple_size<MatcherTuple>::value < 2, | 
 |         use_UnorderedElementsAre_with_hash_tables); | 
 |  | 
 |     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
 |     typedef typename internal::StlContainerView<RawContainer>::type View; | 
 |     typedef typename View::value_type Element; | 
 |     typedef ::std::vector<Matcher<const Element&> > MatcherVec; | 
 |     MatcherVec matchers; | 
 |     matchers.reserve(::testing::tuple_size<MatcherTuple>::value); | 
 |     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, | 
 |                          ::std::back_inserter(matchers)); | 
 |     return MakeMatcher(new ElementsAreMatcherImpl<Container>( | 
 |                            matchers.begin(), matchers.end())); | 
 |   } | 
 |  | 
 |  private: | 
 |   const MatcherTuple matchers_; | 
 |   GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher); | 
 | }; | 
 |  | 
 | // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). | 
 | template <typename T> | 
 | class UnorderedElementsAreArrayMatcher { | 
 |  public: | 
 |   template <typename Iter> | 
 |   UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, | 
 |                                    Iter first, Iter last) | 
 |       : match_flags_(match_flags), matchers_(first, last) {} | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>( | 
 |         match_flags_, matchers_.begin(), matchers_.end())); | 
 |   } | 
 |  | 
 |  private: | 
 |   UnorderedMatcherRequire::Flags match_flags_; | 
 |   ::std::vector<T> matchers_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreArrayMatcher); | 
 | }; | 
 |  | 
 | // Implements ElementsAreArray(). | 
 | template <typename T> | 
 | class ElementsAreArrayMatcher { | 
 |  public: | 
 |   template <typename Iter> | 
 |   ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} | 
 |  | 
 |   template <typename Container> | 
 |   operator Matcher<Container>() const { | 
 |     GTEST_COMPILE_ASSERT_( | 
 |         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, | 
 |         use_UnorderedElementsAreArray_with_hash_tables); | 
 |  | 
 |     return MakeMatcher(new ElementsAreMatcherImpl<Container>( | 
 |         matchers_.begin(), matchers_.end())); | 
 |   } | 
 |  | 
 |  private: | 
 |   const ::std::vector<T> matchers_; | 
 |  | 
 |   GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher); | 
 | }; | 
 |  | 
 | // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second | 
 | // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, | 
 | // second) is a polymorphic matcher that matches a value x iff tm | 
 | // matches tuple (x, second).  Useful for implementing | 
 | // UnorderedPointwise() in terms of UnorderedElementsAreArray(). | 
 | // | 
 | // BoundSecondMatcher is copyable and assignable, as we need to put | 
 | // instances of this class in a vector when implementing | 
 | // UnorderedPointwise(). | 
 | template <typename Tuple2Matcher, typename Second> | 
 | class BoundSecondMatcher { | 
 |  public: | 
 |   BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) | 
 |       : tuple2_matcher_(tm), second_value_(second) {} | 
 |  | 
 |   template <typename T> | 
 |   operator Matcher<T>() const { | 
 |     return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); | 
 |   } | 
 |  | 
 |   // We have to define this for UnorderedPointwise() to compile in | 
 |   // C++98 mode, as it puts BoundSecondMatcher instances in a vector, | 
 |   // which requires the elements to be assignable in C++98.  The | 
 |   // compiler cannot generate the operator= for us, as Tuple2Matcher | 
 |   // and Second may not be assignable. | 
 |   // | 
 |   // However, this should never be called, so the implementation just | 
 |   // need to assert. | 
 |   void operator=(const BoundSecondMatcher& /*rhs*/) { | 
 |     GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned."; | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename T> | 
 |   class Impl : public MatcherInterface<T> { | 
 |    public: | 
 |     typedef ::testing::tuple<T, Second> ArgTuple; | 
 |  | 
 |     Impl(const Tuple2Matcher& tm, const Second& second) | 
 |         : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), | 
 |           second_value_(second) {} | 
 |  | 
 |     virtual void DescribeTo(::std::ostream* os) const { | 
 |       *os << "and "; | 
 |       UniversalPrint(second_value_, os); | 
 |       *os << " "; | 
 |       mono_tuple2_matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { | 
 |       return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), | 
 |                                                   listener); | 
 |     } | 
 |  | 
 |    private: | 
 |     const Matcher<const ArgTuple&> mono_tuple2_matcher_; | 
 |     const Second second_value_; | 
 |  | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |   const Tuple2Matcher tuple2_matcher_; | 
 |   const Second second_value_; | 
 | }; | 
 |  | 
 | // Given a 2-tuple matcher tm and a value second, | 
 | // MatcherBindSecond(tm, second) returns a matcher that matches a | 
 | // value x iff tm matches tuple (x, second).  Useful for implementing | 
 | // UnorderedPointwise() in terms of UnorderedElementsAreArray(). | 
 | template <typename Tuple2Matcher, typename Second> | 
 | BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( | 
 |     const Tuple2Matcher& tm, const Second& second) { | 
 |   return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); | 
 | } | 
 |  | 
 | // Returns the description for a matcher defined using the MATCHER*() | 
 | // macro where the user-supplied description string is "", if | 
 | // 'negation' is false; otherwise returns the description of the | 
 | // negation of the matcher.  'param_values' contains a list of strings | 
 | // that are the print-out of the matcher's parameters. | 
 | GTEST_API_ std::string FormatMatcherDescription(bool negation, | 
 |                                                 const char* matcher_name, | 
 |                                                 const Strings& param_values); | 
 |  | 
 | // Implements a matcher that checks the value of a optional<> type variable. | 
 | template <typename ValueMatcher> | 
 | class OptionalMatcher { | 
 |  public: | 
 |   explicit OptionalMatcher(const ValueMatcher& value_matcher) | 
 |       : value_matcher_(value_matcher) {} | 
 |  | 
 |   template <typename Optional> | 
 |   operator Matcher<Optional>() const { | 
 |     return MakeMatcher(new Impl<Optional>(value_matcher_)); | 
 |   } | 
 |  | 
 |   template <typename Optional> | 
 |   class Impl : public MatcherInterface<Optional> { | 
 |    public: | 
 |     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; | 
 |     typedef typename OptionalView::value_type ValueType; | 
 |     explicit Impl(const ValueMatcher& value_matcher) | 
 |         : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} | 
 |  | 
 |     virtual void DescribeTo(::std::ostream* os) const { | 
 |       *os << "value "; | 
 |       value_matcher_.DescribeTo(os); | 
 |     } | 
 |  | 
 |     virtual void DescribeNegationTo(::std::ostream* os) const { | 
 |       *os << "value "; | 
 |       value_matcher_.DescribeNegationTo(os); | 
 |     } | 
 |  | 
 |     virtual bool MatchAndExplain(Optional optional, | 
 |                                  MatchResultListener* listener) const { | 
 |       if (!optional) { | 
 |         *listener << "which is not engaged"; | 
 |         return false; | 
 |       } | 
 |       const ValueType& value = *optional; | 
 |       StringMatchResultListener value_listener; | 
 |       const bool match = value_matcher_.MatchAndExplain(value, &value_listener); | 
 |       *listener << "whose value " << PrintToString(value) | 
 |                 << (match ? " matches" : " doesn't match"); | 
 |       PrintIfNotEmpty(value_listener.str(), listener->stream()); | 
 |       return match; | 
 |     } | 
 |  | 
 |    private: | 
 |     const Matcher<ValueType> value_matcher_; | 
 |     GTEST_DISALLOW_ASSIGN_(Impl); | 
 |   }; | 
 |  | 
 |  private: | 
 |   const ValueMatcher value_matcher_; | 
 |   GTEST_DISALLOW_ASSIGN_(OptionalMatcher); | 
 | }; | 
 |  | 
 | namespace variant_matcher { | 
 | // Overloads to allow VariantMatcher to do proper ADL lookup. | 
 | template <typename T> | 
 | void holds_alternative() {} | 
 | template <typename T> | 
 | void get() {} | 
 |  | 
 | // Implements a matcher that checks the value of a variant<> type variable. | 
 | template <typename T> | 
 | class VariantMatcher { | 
 |  public: | 
 |   explicit VariantMatcher(::testing::Matcher<const T&> matcher) | 
 |       : matcher_(internal::move(matcher)) {} | 
 |  | 
 |   template <typename Variant> | 
 |   bool MatchAndExplain(const Variant& value, | 
 |                        ::testing::MatchResultListener* listener) const { | 
 |     if (!listener->IsInterested()) { | 
 |       return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); | 
 |     } | 
 |  | 
 |     if (!holds_alternative<T>(value)) { | 
 |       *listener << "whose value is not of type '" << GetTypeName() << "'"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     const T& elem = get<T>(value); | 
 |     StringMatchResultListener elem_listener; | 
 |     const bool match = matcher_.MatchAndExplain(elem, &elem_listener); | 
 |     *listener << "whose value " << PrintToString(elem) | 
 |               << (match ? " matches" : " doesn't match"); | 
 |     PrintIfNotEmpty(elem_listener.str(), listener->stream()); | 
 |     return match; | 
 |   } | 
 |  | 
 |   void DescribeTo(std::ostream* os) const { | 
 |     *os << "is a variant<> with value of type '" << GetTypeName() | 
 |         << "' and the value "; | 
 |     matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(std::ostream* os) const { | 
 |     *os << "is a variant<> with value of type other than '" << GetTypeName() | 
 |         << "' or the value "; | 
 |     matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |  private: | 
 |   static std::string GetTypeName() { | 
 | #if GTEST_HAS_RTTI | 
 |     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( | 
 |         return internal::GetTypeName<T>()); | 
 | #endif | 
 |     return "the element type"; | 
 |   } | 
 |  | 
 |   const ::testing::Matcher<const T&> matcher_; | 
 | }; | 
 |  | 
 | }  // namespace variant_matcher | 
 |  | 
 | namespace any_cast_matcher { | 
 |  | 
 | // Overloads to allow AnyCastMatcher to do proper ADL lookup. | 
 | template <typename T> | 
 | void any_cast() {} | 
 |  | 
 | // Implements a matcher that any_casts the value. | 
 | template <typename T> | 
 | class AnyCastMatcher { | 
 |  public: | 
 |   explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) | 
 |       : matcher_(matcher) {} | 
 |  | 
 |   template <typename AnyType> | 
 |   bool MatchAndExplain(const AnyType& value, | 
 |                        ::testing::MatchResultListener* listener) const { | 
 |     if (!listener->IsInterested()) { | 
 |       const T* ptr = any_cast<T>(&value); | 
 |       return ptr != NULL && matcher_.Matches(*ptr); | 
 |     } | 
 |  | 
 |     const T* elem = any_cast<T>(&value); | 
 |     if (elem == NULL) { | 
 |       *listener << "whose value is not of type '" << GetTypeName() << "'"; | 
 |       return false; | 
 |     } | 
 |  | 
 |     StringMatchResultListener elem_listener; | 
 |     const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); | 
 |     *listener << "whose value " << PrintToString(*elem) | 
 |               << (match ? " matches" : " doesn't match"); | 
 |     PrintIfNotEmpty(elem_listener.str(), listener->stream()); | 
 |     return match; | 
 |   } | 
 |  | 
 |   void DescribeTo(std::ostream* os) const { | 
 |     *os << "is an 'any' type with value of type '" << GetTypeName() | 
 |         << "' and the value "; | 
 |     matcher_.DescribeTo(os); | 
 |   } | 
 |  | 
 |   void DescribeNegationTo(std::ostream* os) const { | 
 |     *os << "is an 'any' type with value of type other than '" << GetTypeName() | 
 |         << "' or the value "; | 
 |     matcher_.DescribeNegationTo(os); | 
 |   } | 
 |  | 
 |  private: | 
 |   static std::string GetTypeName() { | 
 | #if GTEST_HAS_RTTI | 
 |     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( | 
 |         return internal::GetTypeName<T>()); | 
 | #endif | 
 |     return "the element type"; | 
 |   } | 
 |  | 
 |   const ::testing::Matcher<const T&> matcher_; | 
 | }; | 
 |  | 
 | }  // namespace any_cast_matcher | 
 | }  // namespace internal | 
 |  | 
 | // ElementsAreArray(iterator_first, iterator_last) | 
 | // ElementsAreArray(pointer, count) | 
 | // ElementsAreArray(array) | 
 | // ElementsAreArray(container) | 
 | // ElementsAreArray({ e1, e2, ..., en }) | 
 | // | 
 | // The ElementsAreArray() functions are like ElementsAre(...), except | 
 | // that they are given a homogeneous sequence rather than taking each | 
 | // element as a function argument. The sequence can be specified as an | 
 | // array, a pointer and count, a vector, an initializer list, or an | 
 | // STL iterator range. In each of these cases, the underlying sequence | 
 | // can be either a sequence of values or a sequence of matchers. | 
 | // | 
 | // All forms of ElementsAreArray() make a copy of the input matcher sequence. | 
 |  | 
 | template <typename Iter> | 
 | inline internal::ElementsAreArrayMatcher< | 
 |     typename ::std::iterator_traits<Iter>::value_type> | 
 | ElementsAreArray(Iter first, Iter last) { | 
 |   typedef typename ::std::iterator_traits<Iter>::value_type T; | 
 |   return internal::ElementsAreArrayMatcher<T>(first, last); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( | 
 |     const T* pointer, size_t count) { | 
 |   return ElementsAreArray(pointer, pointer + count); | 
 | } | 
 |  | 
 | template <typename T, size_t N> | 
 | inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( | 
 |     const T (&array)[N]) { | 
 |   return ElementsAreArray(array, N); | 
 | } | 
 |  | 
 | template <typename Container> | 
 | inline internal::ElementsAreArrayMatcher<typename Container::value_type> | 
 | ElementsAreArray(const Container& container) { | 
 |   return ElementsAreArray(container.begin(), container.end()); | 
 | } | 
 |  | 
 | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
 | template <typename T> | 
 | inline internal::ElementsAreArrayMatcher<T> | 
 | ElementsAreArray(::std::initializer_list<T> xs) { | 
 |   return ElementsAreArray(xs.begin(), xs.end()); | 
 | } | 
 | #endif | 
 |  | 
 | // UnorderedElementsAreArray(iterator_first, iterator_last) | 
 | // UnorderedElementsAreArray(pointer, count) | 
 | // UnorderedElementsAreArray(array) | 
 | // UnorderedElementsAreArray(container) | 
 | // UnorderedElementsAreArray({ e1, e2, ..., en }) | 
 | // | 
 | // UnorderedElementsAreArray() verifies that a bijective mapping onto a | 
 | // collection of matchers exists. | 
 | // | 
 | // The matchers can be specified as an array, a pointer and count, a container, | 
 | // an initializer list, or an STL iterator range. In each of these cases, the | 
 | // underlying matchers can be either values or matchers. | 
 |  | 
 | template <typename Iter> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename ::std::iterator_traits<Iter>::value_type> | 
 | UnorderedElementsAreArray(Iter first, Iter last) { | 
 |   typedef typename ::std::iterator_traits<Iter>::value_type T; | 
 |   return internal::UnorderedElementsAreArrayMatcher<T>( | 
 |       internal::UnorderedMatcherRequire::ExactMatch, first, last); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> | 
 | UnorderedElementsAreArray(const T* pointer, size_t count) { | 
 |   return UnorderedElementsAreArray(pointer, pointer + count); | 
 | } | 
 |  | 
 | template <typename T, size_t N> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> | 
 | UnorderedElementsAreArray(const T (&array)[N]) { | 
 |   return UnorderedElementsAreArray(array, N); | 
 | } | 
 |  | 
 | template <typename Container> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename Container::value_type> | 
 | UnorderedElementsAreArray(const Container& container) { | 
 |   return UnorderedElementsAreArray(container.begin(), container.end()); | 
 | } | 
 |  | 
 | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
 | template <typename T> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> | 
 | UnorderedElementsAreArray(::std::initializer_list<T> xs) { | 
 |   return UnorderedElementsAreArray(xs.begin(), xs.end()); | 
 | } | 
 | #endif | 
 |  | 
 | // _ is a matcher that matches anything of any type. | 
 | // | 
 | // This definition is fine as: | 
 | // | 
 | //   1. The C++ standard permits using the name _ in a namespace that | 
 | //      is not the global namespace or ::std. | 
 | //   2. The AnythingMatcher class has no data member or constructor, | 
 | //      so it's OK to create global variables of this type. | 
 | //   3. c-style has approved of using _ in this case. | 
 | const internal::AnythingMatcher _ = {}; | 
 | // Creates a matcher that matches any value of the given type T. | 
 | template <typename T> | 
 | inline Matcher<T> A() { | 
 |   return Matcher<T>(new internal::AnyMatcherImpl<T>()); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any value of the given type T. | 
 | template <typename T> | 
 | inline Matcher<T> An() { return A<T>(); } | 
 |  | 
 | // Creates a polymorphic matcher that matches anything equal to x. | 
 | // Note: if the parameter of Eq() were declared as const T&, Eq("foo") | 
 | // wouldn't compile. | 
 | template <typename T> | 
 | inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); } | 
 |  | 
 | // Constructs a Matcher<T> from a 'value' of type T.  The constructed | 
 | // matcher matches any value that's equal to 'value'. | 
 | template <typename T> | 
 | Matcher<T>::Matcher(T value) { *this = Eq(value); } | 
 |  | 
 | template <typename T, typename M> | 
 | Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( | 
 |     const M& value, | 
 |     internal::BooleanConstant<false> /* convertible_to_matcher */, | 
 |     internal::BooleanConstant<false> /* convertible_to_T */) { | 
 |   return Eq(value); | 
 | } | 
 |  | 
 | // Creates a monomorphic matcher that matches anything with type Lhs | 
 | // and equal to rhs.  A user may need to use this instead of Eq(...) | 
 | // in order to resolve an overloading ambiguity. | 
 | // | 
 | // TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x)) | 
 | // or Matcher<T>(x), but more readable than the latter. | 
 | // | 
 | // We could define similar monomorphic matchers for other comparison | 
 | // operations (e.g. TypedLt, TypedGe, and etc), but decided not to do | 
 | // it yet as those are used much less than Eq() in practice.  A user | 
 | // can always write Matcher<T>(Lt(5)) to be explicit about the type, | 
 | // for example. | 
 | template <typename Lhs, typename Rhs> | 
 | inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); } | 
 |  | 
 | // Creates a polymorphic matcher that matches anything >= x. | 
 | template <typename Rhs> | 
 | inline internal::GeMatcher<Rhs> Ge(Rhs x) { | 
 |   return internal::GeMatcher<Rhs>(x); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches anything > x. | 
 | template <typename Rhs> | 
 | inline internal::GtMatcher<Rhs> Gt(Rhs x) { | 
 |   return internal::GtMatcher<Rhs>(x); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches anything <= x. | 
 | template <typename Rhs> | 
 | inline internal::LeMatcher<Rhs> Le(Rhs x) { | 
 |   return internal::LeMatcher<Rhs>(x); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches anything < x. | 
 | template <typename Rhs> | 
 | inline internal::LtMatcher<Rhs> Lt(Rhs x) { | 
 |   return internal::LtMatcher<Rhs>(x); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches anything != x. | 
 | template <typename Rhs> | 
 | inline internal::NeMatcher<Rhs> Ne(Rhs x) { | 
 |   return internal::NeMatcher<Rhs>(x); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches any NULL pointer. | 
 | inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { | 
 |   return MakePolymorphicMatcher(internal::IsNullMatcher()); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches any non-NULL pointer. | 
 | // This is convenient as Not(NULL) doesn't compile (the compiler | 
 | // thinks that that expression is comparing a pointer with an integer). | 
 | inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { | 
 |   return MakePolymorphicMatcher(internal::NotNullMatcher()); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches any argument that | 
 | // references variable x. | 
 | template <typename T> | 
 | inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT | 
 |   return internal::RefMatcher<T&>(x); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any double argument approximately | 
 | // equal to rhs, where two NANs are considered unequal. | 
 | inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { | 
 |   return internal::FloatingEqMatcher<double>(rhs, false); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any double argument approximately | 
 | // equal to rhs, including NaN values when rhs is NaN. | 
 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { | 
 |   return internal::FloatingEqMatcher<double>(rhs, true); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any double argument approximately equal to | 
 | // rhs, up to the specified max absolute error bound, where two NANs are | 
 | // considered unequal.  The max absolute error bound must be non-negative. | 
 | inline internal::FloatingEqMatcher<double> DoubleNear( | 
 |     double rhs, double max_abs_error) { | 
 |   return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any double argument approximately equal to | 
 | // rhs, up to the specified max absolute error bound, including NaN values when | 
 | // rhs is NaN.  The max absolute error bound must be non-negative. | 
 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( | 
 |     double rhs, double max_abs_error) { | 
 |   return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any float argument approximately | 
 | // equal to rhs, where two NANs are considered unequal. | 
 | inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { | 
 |   return internal::FloatingEqMatcher<float>(rhs, false); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any float argument approximately | 
 | // equal to rhs, including NaN values when rhs is NaN. | 
 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { | 
 |   return internal::FloatingEqMatcher<float>(rhs, true); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any float argument approximately equal to | 
 | // rhs, up to the specified max absolute error bound, where two NANs are | 
 | // considered unequal.  The max absolute error bound must be non-negative. | 
 | inline internal::FloatingEqMatcher<float> FloatNear( | 
 |     float rhs, float max_abs_error) { | 
 |   return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any float argument approximately equal to | 
 | // rhs, up to the specified max absolute error bound, including NaN values when | 
 | // rhs is NaN.  The max absolute error bound must be non-negative. | 
 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( | 
 |     float rhs, float max_abs_error) { | 
 |   return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); | 
 | } | 
 |  | 
 | // Creates a matcher that matches a pointer (raw or smart) that points | 
 | // to a value that matches inner_matcher. | 
 | template <typename InnerMatcher> | 
 | inline internal::PointeeMatcher<InnerMatcher> Pointee( | 
 |     const InnerMatcher& inner_matcher) { | 
 |   return internal::PointeeMatcher<InnerMatcher>(inner_matcher); | 
 | } | 
 |  | 
 | #if GTEST_HAS_RTTI | 
 | // Creates a matcher that matches a pointer or reference that matches | 
 | // inner_matcher when dynamic_cast<To> is applied. | 
 | // The result of dynamic_cast<To> is forwarded to the inner matcher. | 
 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. | 
 | // If To is a reference and the cast fails, this matcher returns false | 
 | // immediately. | 
 | template <typename To> | 
 | inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > | 
 | WhenDynamicCastTo(const Matcher<To>& inner_matcher) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::WhenDynamicCastToMatcher<To>(inner_matcher)); | 
 | } | 
 | #endif  // GTEST_HAS_RTTI | 
 |  | 
 | // Creates a matcher that matches an object whose given field matches | 
 | // 'matcher'.  For example, | 
 | //   Field(&Foo::number, Ge(5)) | 
 | // matches a Foo object x iff x.number >= 5. | 
 | template <typename Class, typename FieldType, typename FieldMatcher> | 
 | inline PolymorphicMatcher< | 
 |   internal::FieldMatcher<Class, FieldType> > Field( | 
 |     FieldType Class::*field, const FieldMatcher& matcher) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::FieldMatcher<Class, FieldType>( | 
 |           field, MatcherCast<const FieldType&>(matcher))); | 
 |   // The call to MatcherCast() is required for supporting inner | 
 |   // matchers of compatible types.  For example, it allows | 
 |   //   Field(&Foo::bar, m) | 
 |   // to compile where bar is an int32 and m is a matcher for int64. | 
 | } | 
 |  | 
 | // Same as Field() but also takes the name of the field to provide better error | 
 | // messages. | 
 | template <typename Class, typename FieldType, typename FieldMatcher> | 
 | inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field( | 
 |     const std::string& field_name, FieldType Class::*field, | 
 |     const FieldMatcher& matcher) { | 
 |   return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( | 
 |       field_name, field, MatcherCast<const FieldType&>(matcher))); | 
 | } | 
 |  | 
 | // Creates a matcher that matches an object whose given property | 
 | // matches 'matcher'.  For example, | 
 | //   Property(&Foo::str, StartsWith("hi")) | 
 | // matches a Foo object x iff x.str() starts with "hi". | 
 | template <typename Class, typename PropertyType, typename PropertyMatcher> | 
 | inline PolymorphicMatcher<internal::PropertyMatcher< | 
 |     Class, PropertyType, PropertyType (Class::*)() const> > | 
 | Property(PropertyType (Class::*property)() const, | 
 |          const PropertyMatcher& matcher) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::PropertyMatcher<Class, PropertyType, | 
 |                                 PropertyType (Class::*)() const>( | 
 |           property, | 
 |           MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); | 
 |   // The call to MatcherCast() is required for supporting inner | 
 |   // matchers of compatible types.  For example, it allows | 
 |   //   Property(&Foo::bar, m) | 
 |   // to compile where bar() returns an int32 and m is a matcher for int64. | 
 | } | 
 |  | 
 | // Same as Property() above, but also takes the name of the property to provide | 
 | // better error messages. | 
 | template <typename Class, typename PropertyType, typename PropertyMatcher> | 
 | inline PolymorphicMatcher<internal::PropertyMatcher< | 
 |     Class, PropertyType, PropertyType (Class::*)() const> > | 
 | Property(const std::string& property_name, | 
 |          PropertyType (Class::*property)() const, | 
 |          const PropertyMatcher& matcher) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::PropertyMatcher<Class, PropertyType, | 
 |                                 PropertyType (Class::*)() const>( | 
 |           property_name, property, | 
 |           MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); | 
 | } | 
 |  | 
 | #if GTEST_LANG_CXX11 | 
 | // The same as above but for reference-qualified member functions. | 
 | template <typename Class, typename PropertyType, typename PropertyMatcher> | 
 | inline PolymorphicMatcher<internal::PropertyMatcher< | 
 |     Class, PropertyType, PropertyType (Class::*)() const &> > | 
 | Property(PropertyType (Class::*property)() const &, | 
 |          const PropertyMatcher& matcher) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::PropertyMatcher<Class, PropertyType, | 
 |                                 PropertyType (Class::*)() const &>( | 
 |           property, | 
 |           MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); | 
 | } | 
 | #endif | 
 |  | 
 | // Creates a matcher that matches an object iff the result of applying | 
 | // a callable to x matches 'matcher'. | 
 | // For example, | 
 | //   ResultOf(f, StartsWith("hi")) | 
 | // matches a Foo object x iff f(x) starts with "hi". | 
 | // callable parameter can be a function, function pointer, or a functor. | 
 | // Callable has to satisfy the following conditions: | 
 | //   * It is required to keep no state affecting the results of | 
 | //     the calls on it and make no assumptions about how many calls | 
 | //     will be made. Any state it keeps must be protected from the | 
 | //     concurrent access. | 
 | //   * If it is a function object, it has to define type result_type. | 
 | //     We recommend deriving your functor classes from std::unary_function. | 
 | // | 
 | template <typename Callable, typename ResultOfMatcher> | 
 | internal::ResultOfMatcher<Callable> ResultOf( | 
 |     Callable callable, const ResultOfMatcher& matcher) { | 
 |   return internal::ResultOfMatcher<Callable>( | 
 |           callable, | 
 |           MatcherCast<typename internal::CallableTraits<Callable>::ResultType>( | 
 |               matcher)); | 
 |   // The call to MatcherCast() is required for supporting inner | 
 |   // matchers of compatible types.  For example, it allows | 
 |   //   ResultOf(Function, m) | 
 |   // to compile where Function() returns an int32 and m is a matcher for int64. | 
 | } | 
 |  | 
 | // String matchers. | 
 |  | 
 | // Matches a string equal to str. | 
 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq( | 
 |     const std::string& str) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StrEqualityMatcher<std::string>(str, true, true)); | 
 | } | 
 |  | 
 | // Matches a string not equal to str. | 
 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe( | 
 |     const std::string& str) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StrEqualityMatcher<std::string>(str, false, true)); | 
 | } | 
 |  | 
 | // Matches a string equal to str, ignoring case. | 
 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq( | 
 |     const std::string& str) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StrEqualityMatcher<std::string>(str, true, false)); | 
 | } | 
 |  | 
 | // Matches a string not equal to str, ignoring case. | 
 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe( | 
 |     const std::string& str) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StrEqualityMatcher<std::string>(str, false, false)); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any string, std::string, or C string | 
 | // that contains the given substring. | 
 | inline PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr( | 
 |     const std::string& substring) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::HasSubstrMatcher<std::string>(substring)); | 
 | } | 
 |  | 
 | // Matches a string that starts with 'prefix' (case-sensitive). | 
 | inline PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith( | 
 |     const std::string& prefix) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StartsWithMatcher<std::string>(prefix)); | 
 | } | 
 |  | 
 | // Matches a string that ends with 'suffix' (case-sensitive). | 
 | inline PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith( | 
 |     const std::string& suffix) { | 
 |   return MakePolymorphicMatcher(internal::EndsWithMatcher<std::string>(suffix)); | 
 | } | 
 |  | 
 | // Matches a string that fully matches regular expression 'regex'. | 
 | // The matcher takes ownership of 'regex'. | 
 | inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( | 
 |     const internal::RE* regex) { | 
 |   return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true)); | 
 | } | 
 | inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( | 
 |     const std::string& regex) { | 
 |   return MatchesRegex(new internal::RE(regex)); | 
 | } | 
 |  | 
 | // Matches a string that contains regular expression 'regex'. | 
 | // The matcher takes ownership of 'regex'. | 
 | inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( | 
 |     const internal::RE* regex) { | 
 |   return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false)); | 
 | } | 
 | inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( | 
 |     const std::string& regex) { | 
 |   return ContainsRegex(new internal::RE(regex)); | 
 | } | 
 |  | 
 | #if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING | 
 | // Wide string matchers. | 
 |  | 
 | // Matches a string equal to str. | 
 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq( | 
 |     const std::wstring& str) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StrEqualityMatcher<std::wstring>(str, true, true)); | 
 | } | 
 |  | 
 | // Matches a string not equal to str. | 
 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe( | 
 |     const std::wstring& str) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StrEqualityMatcher<std::wstring>(str, false, true)); | 
 | } | 
 |  | 
 | // Matches a string equal to str, ignoring case. | 
 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > | 
 | StrCaseEq(const std::wstring& str) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StrEqualityMatcher<std::wstring>(str, true, false)); | 
 | } | 
 |  | 
 | // Matches a string not equal to str, ignoring case. | 
 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > | 
 | StrCaseNe(const std::wstring& str) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StrEqualityMatcher<std::wstring>(str, false, false)); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any ::wstring, std::wstring, or C wide string | 
 | // that contains the given substring. | 
 | inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr( | 
 |     const std::wstring& substring) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::HasSubstrMatcher<std::wstring>(substring)); | 
 | } | 
 |  | 
 | // Matches a string that starts with 'prefix' (case-sensitive). | 
 | inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> > | 
 | StartsWith(const std::wstring& prefix) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::StartsWithMatcher<std::wstring>(prefix)); | 
 | } | 
 |  | 
 | // Matches a string that ends with 'suffix' (case-sensitive). | 
 | inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith( | 
 |     const std::wstring& suffix) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::EndsWithMatcher<std::wstring>(suffix)); | 
 | } | 
 |  | 
 | #endif  // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where the | 
 | // first field == the second field. | 
 | inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where the | 
 | // first field >= the second field. | 
 | inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where the | 
 | // first field > the second field. | 
 | inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where the | 
 | // first field <= the second field. | 
 | inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where the | 
 | // first field < the second field. | 
 | inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where the | 
 | // first field != the second field. | 
 | inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // FloatEq(first field) matches the second field. | 
 | inline internal::FloatingEq2Matcher<float> FloatEq() { | 
 |   return internal::FloatingEq2Matcher<float>(); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // DoubleEq(first field) matches the second field. | 
 | inline internal::FloatingEq2Matcher<double> DoubleEq() { | 
 |   return internal::FloatingEq2Matcher<double>(); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // FloatEq(first field) matches the second field with NaN equality. | 
 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { | 
 |   return internal::FloatingEq2Matcher<float>(true); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // DoubleEq(first field) matches the second field with NaN equality. | 
 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { | 
 |   return internal::FloatingEq2Matcher<double>(true); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // FloatNear(first field, max_abs_error) matches the second field. | 
 | inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { | 
 |   return internal::FloatingEq2Matcher<float>(max_abs_error); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // DoubleNear(first field, max_abs_error) matches the second field. | 
 | inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { | 
 |   return internal::FloatingEq2Matcher<double>(max_abs_error); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // FloatNear(first field, max_abs_error) matches the second field with NaN | 
 | // equality. | 
 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( | 
 |     float max_abs_error) { | 
 |   return internal::FloatingEq2Matcher<float>(max_abs_error, true); | 
 | } | 
 |  | 
 | // Creates a polymorphic matcher that matches a 2-tuple where | 
 | // DoubleNear(first field, max_abs_error) matches the second field with NaN | 
 | // equality. | 
 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( | 
 |     double max_abs_error) { | 
 |   return internal::FloatingEq2Matcher<double>(max_abs_error, true); | 
 | } | 
 |  | 
 | // Creates a matcher that matches any value of type T that m doesn't | 
 | // match. | 
 | template <typename InnerMatcher> | 
 | inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { | 
 |   return internal::NotMatcher<InnerMatcher>(m); | 
 | } | 
 |  | 
 | // Returns a matcher that matches anything that satisfies the given | 
 | // predicate.  The predicate can be any unary function or functor | 
 | // whose return type can be implicitly converted to bool. | 
 | template <typename Predicate> | 
 | inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > | 
 | Truly(Predicate pred) { | 
 |   return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); | 
 | } | 
 |  | 
 | // Returns a matcher that matches the container size. The container must | 
 | // support both size() and size_type which all STL-like containers provide. | 
 | // Note that the parameter 'size' can be a value of type size_type as well as | 
 | // matcher. For instance: | 
 | //   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements. | 
 | //   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2. | 
 | template <typename SizeMatcher> | 
 | inline internal::SizeIsMatcher<SizeMatcher> | 
 | SizeIs(const SizeMatcher& size_matcher) { | 
 |   return internal::SizeIsMatcher<SizeMatcher>(size_matcher); | 
 | } | 
 |  | 
 | // Returns a matcher that matches the distance between the container's begin() | 
 | // iterator and its end() iterator, i.e. the size of the container. This matcher | 
 | // can be used instead of SizeIs with containers such as std::forward_list which | 
 | // do not implement size(). The container must provide const_iterator (with | 
 | // valid iterator_traits), begin() and end(). | 
 | template <typename DistanceMatcher> | 
 | inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> | 
 | BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { | 
 |   return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); | 
 | } | 
 |  | 
 | // Returns a matcher that matches an equal container. | 
 | // This matcher behaves like Eq(), but in the event of mismatch lists the | 
 | // values that are included in one container but not the other. (Duplicate | 
 | // values and order differences are not explained.) | 
 | template <typename Container> | 
 | inline PolymorphicMatcher<internal::ContainerEqMatcher<  // NOLINT | 
 |                             GTEST_REMOVE_CONST_(Container)> > | 
 |     ContainerEq(const Container& rhs) { | 
 |   // This following line is for working around a bug in MSVC 8.0, | 
 |   // which causes Container to be a const type sometimes. | 
 |   typedef GTEST_REMOVE_CONST_(Container) RawContainer; | 
 |   return MakePolymorphicMatcher( | 
 |       internal::ContainerEqMatcher<RawContainer>(rhs)); | 
 | } | 
 |  | 
 | // Returns a matcher that matches a container that, when sorted using | 
 | // the given comparator, matches container_matcher. | 
 | template <typename Comparator, typename ContainerMatcher> | 
 | inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> | 
 | WhenSortedBy(const Comparator& comparator, | 
 |              const ContainerMatcher& container_matcher) { | 
 |   return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( | 
 |       comparator, container_matcher); | 
 | } | 
 |  | 
 | // Returns a matcher that matches a container that, when sorted using | 
 | // the < operator, matches container_matcher. | 
 | template <typename ContainerMatcher> | 
 | inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> | 
 | WhenSorted(const ContainerMatcher& container_matcher) { | 
 |   return | 
 |       internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( | 
 |           internal::LessComparator(), container_matcher); | 
 | } | 
 |  | 
 | // Matches an STL-style container or a native array that contains the | 
 | // same number of elements as in rhs, where its i-th element and rhs's | 
 | // i-th element (as a pair) satisfy the given pair matcher, for all i. | 
 | // TupleMatcher must be able to be safely cast to Matcher<tuple<const | 
 | // T1&, const T2&> >, where T1 and T2 are the types of elements in the | 
 | // LHS container and the RHS container respectively. | 
 | template <typename TupleMatcher, typename Container> | 
 | inline internal::PointwiseMatcher<TupleMatcher, | 
 |                                   GTEST_REMOVE_CONST_(Container)> | 
 | Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { | 
 |   // This following line is for working around a bug in MSVC 8.0, | 
 |   // which causes Container to be a const type sometimes (e.g. when | 
 |   // rhs is a const int[]).. | 
 |   typedef GTEST_REMOVE_CONST_(Container) RawContainer; | 
 |   return internal::PointwiseMatcher<TupleMatcher, RawContainer>( | 
 |       tuple_matcher, rhs); | 
 | } | 
 |  | 
 | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
 |  | 
 | // Supports the Pointwise(m, {a, b, c}) syntax. | 
 | template <typename TupleMatcher, typename T> | 
 | inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( | 
 |     const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { | 
 |   return Pointwise(tuple_matcher, std::vector<T>(rhs)); | 
 | } | 
 |  | 
 | #endif  // GTEST_HAS_STD_INITIALIZER_LIST_ | 
 |  | 
 | // UnorderedPointwise(pair_matcher, rhs) matches an STL-style | 
 | // container or a native array that contains the same number of | 
 | // elements as in rhs, where in some permutation of the container, its | 
 | // i-th element and rhs's i-th element (as a pair) satisfy the given | 
 | // pair matcher, for all i.  Tuple2Matcher must be able to be safely | 
 | // cast to Matcher<tuple<const T1&, const T2&> >, where T1 and T2 are | 
 | // the types of elements in the LHS container and the RHS container | 
 | // respectively. | 
 | // | 
 | // This is like Pointwise(pair_matcher, rhs), except that the element | 
 | // order doesn't matter. | 
 | template <typename Tuple2Matcher, typename RhsContainer> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename internal::BoundSecondMatcher< | 
 |         Tuple2Matcher, typename internal::StlContainerView<GTEST_REMOVE_CONST_( | 
 |                            RhsContainer)>::type::value_type> > | 
 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, | 
 |                    const RhsContainer& rhs_container) { | 
 |   // This following line is for working around a bug in MSVC 8.0, | 
 |   // which causes RhsContainer to be a const type sometimes (e.g. when | 
 |   // rhs_container is a const int[]). | 
 |   typedef GTEST_REMOVE_CONST_(RhsContainer) RawRhsContainer; | 
 |  | 
 |   // RhsView allows the same code to handle RhsContainer being a | 
 |   // STL-style container and it being a native C-style array. | 
 |   typedef typename internal::StlContainerView<RawRhsContainer> RhsView; | 
 |   typedef typename RhsView::type RhsStlContainer; | 
 |   typedef typename RhsStlContainer::value_type Second; | 
 |   const RhsStlContainer& rhs_stl_container = | 
 |       RhsView::ConstReference(rhs_container); | 
 |  | 
 |   // Create a matcher for each element in rhs_container. | 
 |   ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; | 
 |   for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); | 
 |        it != rhs_stl_container.end(); ++it) { | 
 |     matchers.push_back( | 
 |         internal::MatcherBindSecond(tuple2_matcher, *it)); | 
 |   } | 
 |  | 
 |   // Delegate the work to UnorderedElementsAreArray(). | 
 |   return UnorderedElementsAreArray(matchers); | 
 | } | 
 |  | 
 | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
 |  | 
 | // Supports the UnorderedPointwise(m, {a, b, c}) syntax. | 
 | template <typename Tuple2Matcher, typename T> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename internal::BoundSecondMatcher<Tuple2Matcher, T> > | 
 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, | 
 |                    std::initializer_list<T> rhs) { | 
 |   return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); | 
 | } | 
 |  | 
 | #endif  // GTEST_HAS_STD_INITIALIZER_LIST_ | 
 |  | 
 | // Matches an STL-style container or a native array that contains at | 
 | // least one element matching the given value or matcher. | 
 | // | 
 | // Examples: | 
 | //   ::std::set<int> page_ids; | 
 | //   page_ids.insert(3); | 
 | //   page_ids.insert(1); | 
 | //   EXPECT_THAT(page_ids, Contains(1)); | 
 | //   EXPECT_THAT(page_ids, Contains(Gt(2))); | 
 | //   EXPECT_THAT(page_ids, Not(Contains(4))); | 
 | // | 
 | //   ::std::map<int, size_t> page_lengths; | 
 | //   page_lengths[1] = 100; | 
 | //   EXPECT_THAT(page_lengths, | 
 | //               Contains(::std::pair<const int, size_t>(1, 100))); | 
 | // | 
 | //   const char* user_ids[] = { "joe", "mike", "tom" }; | 
 | //   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); | 
 | template <typename M> | 
 | inline internal::ContainsMatcher<M> Contains(M matcher) { | 
 |   return internal::ContainsMatcher<M>(matcher); | 
 | } | 
 |  | 
 | // IsSupersetOf(iterator_first, iterator_last) | 
 | // IsSupersetOf(pointer, count) | 
 | // IsSupersetOf(array) | 
 | // IsSupersetOf(container) | 
 | // IsSupersetOf({e1, e2, ..., en}) | 
 | // | 
 | // IsSupersetOf() verifies that a surjective partial mapping onto a collection | 
 | // of matchers exists. In other words, a container matches | 
 | // IsSupersetOf({e1, ..., en}) if and only if there is a permutation | 
 | // {y1, ..., yn} of some of the container's elements where y1 matches e1, | 
 | // ..., and yn matches en. Obviously, the size of the container must be >= n | 
 | // in order to have a match. Examples: | 
 | // | 
 | // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and | 
 | //   1 matches Ne(0). | 
 | // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches | 
 | //   both Eq(1) and Lt(2). The reason is that different matchers must be used | 
 | //   for elements in different slots of the container. | 
 | // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches | 
 | //   Eq(1) and (the second) 1 matches Lt(2). | 
 | // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) | 
 | //   Gt(1) and 3 matches (the second) Gt(1). | 
 | // | 
 | // The matchers can be specified as an array, a pointer and count, a container, | 
 | // an initializer list, or an STL iterator range. In each of these cases, the | 
 | // underlying matchers can be either values or matchers. | 
 |  | 
 | template <typename Iter> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename ::std::iterator_traits<Iter>::value_type> | 
 | IsSupersetOf(Iter first, Iter last) { | 
 |   typedef typename ::std::iterator_traits<Iter>::value_type T; | 
 |   return internal::UnorderedElementsAreArrayMatcher<T>( | 
 |       internal::UnorderedMatcherRequire::Superset, first, last); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( | 
 |     const T* pointer, size_t count) { | 
 |   return IsSupersetOf(pointer, pointer + count); | 
 | } | 
 |  | 
 | template <typename T, size_t N> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( | 
 |     const T (&array)[N]) { | 
 |   return IsSupersetOf(array, N); | 
 | } | 
 |  | 
 | template <typename Container> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename Container::value_type> | 
 | IsSupersetOf(const Container& container) { | 
 |   return IsSupersetOf(container.begin(), container.end()); | 
 | } | 
 |  | 
 | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
 | template <typename T> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( | 
 |     ::std::initializer_list<T> xs) { | 
 |   return IsSupersetOf(xs.begin(), xs.end()); | 
 | } | 
 | #endif | 
 |  | 
 | // IsSubsetOf(iterator_first, iterator_last) | 
 | // IsSubsetOf(pointer, count) | 
 | // IsSubsetOf(array) | 
 | // IsSubsetOf(container) | 
 | // IsSubsetOf({e1, e2, ..., en}) | 
 | // | 
 | // IsSubsetOf() verifies that an injective mapping onto a collection of matchers | 
 | // exists.  In other words, a container matches IsSubsetOf({e1, ..., en}) if and | 
 | // only if there is a subset of matchers {m1, ..., mk} which would match the | 
 | // container using UnorderedElementsAre.  Obviously, the size of the container | 
 | // must be <= n in order to have a match. Examples: | 
 | // | 
 | // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). | 
 | // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 | 
 | //   matches Lt(0). | 
 | // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both | 
 | //   match Gt(0). The reason is that different matchers must be used for | 
 | //   elements in different slots of the container. | 
 | // | 
 | // The matchers can be specified as an array, a pointer and count, a container, | 
 | // an initializer list, or an STL iterator range. In each of these cases, the | 
 | // underlying matchers can be either values or matchers. | 
 |  | 
 | template <typename Iter> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename ::std::iterator_traits<Iter>::value_type> | 
 | IsSubsetOf(Iter first, Iter last) { | 
 |   typedef typename ::std::iterator_traits<Iter>::value_type T; | 
 |   return internal::UnorderedElementsAreArrayMatcher<T>( | 
 |       internal::UnorderedMatcherRequire::Subset, first, last); | 
 | } | 
 |  | 
 | template <typename T> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( | 
 |     const T* pointer, size_t count) { | 
 |   return IsSubsetOf(pointer, pointer + count); | 
 | } | 
 |  | 
 | template <typename T, size_t N> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( | 
 |     const T (&array)[N]) { | 
 |   return IsSubsetOf(array, N); | 
 | } | 
 |  | 
 | template <typename Container> | 
 | inline internal::UnorderedElementsAreArrayMatcher< | 
 |     typename Container::value_type> | 
 | IsSubsetOf(const Container& container) { | 
 |   return IsSubsetOf(container.begin(), container.end()); | 
 | } | 
 |  | 
 | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
 | template <typename T> | 
 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( | 
 |     ::std::initializer_list<T> xs) { | 
 |   return IsSubsetOf(xs.begin(), xs.end()); | 
 | } | 
 | #endif | 
 |  | 
 | // Matches an STL-style container or a native array that contains only | 
 | // elements matching the given value or matcher. | 
 | // | 
 | // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only | 
 | // the messages are different. | 
 | // | 
 | // Examples: | 
 | //   ::std::set<int> page_ids; | 
 | //   // Each(m) matches an empty container, regardless of what m is. | 
 | //   EXPECT_THAT(page_ids, Each(Eq(1))); | 
 | //   EXPECT_THAT(page_ids, Each(Eq(77))); | 
 | // | 
 | //   page_ids.insert(3); | 
 | //   EXPECT_THAT(page_ids, Each(Gt(0))); | 
 | //   EXPECT_THAT(page_ids, Not(Each(Gt(4)))); | 
 | //   page_ids.insert(1); | 
 | //   EXPECT_THAT(page_ids, Not(Each(Lt(2)))); | 
 | // | 
 | //   ::std::map<int, size_t> page_lengths; | 
 | //   page_lengths[1] = 100; | 
 | //   page_lengths[2] = 200; | 
 | //   page_lengths[3] = 300; | 
 | //   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); | 
 | //   EXPECT_THAT(page_lengths, Each(Key(Le(3)))); | 
 | // | 
 | //   const char* user_ids[] = { "joe", "mike", "tom" }; | 
 | //   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); | 
 | template <typename M> | 
 | inline internal::EachMatcher<M> Each(M matcher) { | 
 |   return internal::EachMatcher<M>(matcher); | 
 | } | 
 |  | 
 | // Key(inner_matcher) matches an std::pair whose 'first' field matches | 
 | // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an | 
 | // std::map that contains at least one element whose key is >= 5. | 
 | template <typename M> | 
 | inline internal::KeyMatcher<M> Key(M inner_matcher) { | 
 |   return internal::KeyMatcher<M>(inner_matcher); | 
 | } | 
 |  | 
 | // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field | 
 | // matches first_matcher and whose 'second' field matches second_matcher.  For | 
 | // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used | 
 | // to match a std::map<int, string> that contains exactly one element whose key | 
 | // is >= 5 and whose value equals "foo". | 
 | template <typename FirstMatcher, typename SecondMatcher> | 
 | inline internal::PairMatcher<FirstMatcher, SecondMatcher> | 
 | Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { | 
 |   return internal::PairMatcher<FirstMatcher, SecondMatcher>( | 
 |       first_matcher, second_matcher); | 
 | } | 
 |  | 
 | // Returns a predicate that is satisfied by anything that matches the | 
 | // given matcher. | 
 | template <typename M> | 
 | inline internal::MatcherAsPredicate<M> Matches(M matcher) { | 
 |   return internal::MatcherAsPredicate<M>(matcher); | 
 | } | 
 |  | 
 | // Returns true iff the value matches the matcher. | 
 | template <typename T, typename M> | 
 | inline bool Value(const T& value, M matcher) { | 
 |   return testing::Matches(matcher)(value); | 
 | } | 
 |  | 
 | // Matches the value against the given matcher and explains the match | 
 | // result to listener. | 
 | template <typename T, typename M> | 
 | inline bool ExplainMatchResult( | 
 |     M matcher, const T& value, MatchResultListener* listener) { | 
 |   return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); | 
 | } | 
 |  | 
 | // Returns a string representation of the given matcher.  Useful for description | 
 | // strings of matchers defined using MATCHER_P* macros that accept matchers as | 
 | // their arguments.  For example: | 
 | // | 
 | // MATCHER_P(XAndYThat, matcher, | 
 | //           "X that " + DescribeMatcher<int>(matcher, negation) + | 
 | //               " and Y that " + DescribeMatcher<double>(matcher, negation)) { | 
 | //   return ExplainMatchResult(matcher, arg.x(), result_listener) && | 
 | //          ExplainMatchResult(matcher, arg.y(), result_listener); | 
 | // } | 
 | template <typename T, typename M> | 
 | std::string DescribeMatcher(const M& matcher, bool negation = false) { | 
 |   ::std::stringstream ss; | 
 |   Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); | 
 |   if (negation) { | 
 |     monomorphic_matcher.DescribeNegationTo(&ss); | 
 |   } else { | 
 |     monomorphic_matcher.DescribeTo(&ss); | 
 |   } | 
 |   return ss.str(); | 
 | } | 
 |  | 
 | #if GTEST_LANG_CXX11 | 
 | // Define variadic matcher versions. They are overloaded in | 
 | // gmock-generated-matchers.h for the cases supported by pre C++11 compilers. | 
 | template <typename... Args> | 
 | internal::AllOfMatcher<Args...> AllOf(const Args&... matchers) { | 
 |   return internal::AllOfMatcher<Args...>(matchers...); | 
 | } | 
 |  | 
 | template <typename... Args> | 
 | internal::AnyOfMatcher<Args...> AnyOf(const Args&... matchers) { | 
 |   return internal::AnyOfMatcher<Args...>(matchers...); | 
 | } | 
 |  | 
 | template <typename... Args> | 
 | internal::ElementsAreMatcher<tuple<typename std::decay<const Args&>::type...>> | 
 | ElementsAre(const Args&... matchers) { | 
 |   return internal::ElementsAreMatcher< | 
 |       tuple<typename std::decay<const Args&>::type...>>( | 
 |       make_tuple(matchers...)); | 
 | } | 
 |  | 
 | template <typename... Args> | 
 | internal::UnorderedElementsAreMatcher< | 
 |     tuple<typename std::decay<const Args&>::type...>> | 
 | UnorderedElementsAre(const Args&... matchers) { | 
 |   return internal::UnorderedElementsAreMatcher< | 
 |       tuple<typename std::decay<const Args&>::type...>>( | 
 |       make_tuple(matchers...)); | 
 | } | 
 |  | 
 | #endif  // GTEST_LANG_CXX11 | 
 |  | 
 | // AllArgs(m) is a synonym of m.  This is useful in | 
 | // | 
 | //   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); | 
 | // | 
 | // which is easier to read than | 
 | // | 
 | //   EXPECT_CALL(foo, Bar(_, _)).With(Eq()); | 
 | template <typename InnerMatcher> | 
 | inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } | 
 |  | 
 | // Returns a matcher that matches the value of an optional<> type variable. | 
 | // The matcher implementation only uses '!arg' and requires that the optional<> | 
 | // type has a 'value_type' member type and that '*arg' is of type 'value_type' | 
 | // and is printable using 'PrintToString'. It is compatible with | 
 | // std::optional/std::experimental::optional. | 
 | // Note that to compare an optional type variable against nullopt you should | 
 | // use Eq(nullopt) and not Optional(Eq(nullopt)). The latter implies that the | 
 | // optional value contains an optional itself. | 
 | template <typename ValueMatcher> | 
 | inline internal::OptionalMatcher<ValueMatcher> Optional( | 
 |     const ValueMatcher& value_matcher) { | 
 |   return internal::OptionalMatcher<ValueMatcher>(value_matcher); | 
 | } | 
 |  | 
 | // Returns a matcher that matches the value of a absl::any type variable. | 
 | template <typename T> | 
 | PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith( | 
 |     const Matcher<const T&>& matcher) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); | 
 | } | 
 |  | 
 | // Returns a matcher that matches the value of a variant<> type variable. | 
 | // The matcher implementation uses ADL to find the holds_alternative and get | 
 | // functions. | 
 | // It is compatible with std::variant. | 
 | template <typename T> | 
 | PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith( | 
 |     const Matcher<const T&>& matcher) { | 
 |   return MakePolymorphicMatcher( | 
 |       internal::variant_matcher::VariantMatcher<T>(matcher)); | 
 | } | 
 |  | 
 | // These macros allow using matchers to check values in Google Test | 
 | // tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) | 
 | // succeed iff the value matches the matcher.  If the assertion fails, | 
 | // the value and the description of the matcher will be printed. | 
 | #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ | 
 |     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) | 
 | #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ | 
 |     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) | 
 |  | 
 | }  // namespace testing | 
 |  | 
 | // Include any custom callback matchers added by the local installation. | 
 | // We must include this header at the end to make sure it can use the | 
 | // declarations from this file. | 
 | #include "gmock/internal/custom/gmock-matchers.h" | 
 |  | 
 | #endif  // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |