|  | // Copyright 2007, Google Inc. | 
|  | // All rights reserved. | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | // notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | // copyright notice, this list of conditions and the following disclaimer | 
|  | // in the documentation and/or other materials provided with the | 
|  | // distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | // contributors may be used to endorse or promote products derived from | 
|  | // this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: wan@google.com (Zhanyong Wan) | 
|  |  | 
|  | // Google Mock - a framework for writing C++ mock classes. | 
|  | // | 
|  | // This file tests some commonly used argument matchers. | 
|  |  | 
|  | #include "gmock/gmock-matchers.h" | 
|  | #include "gmock/gmock-more-matchers.h" | 
|  |  | 
|  | #include <string.h> | 
|  | #include <time.h> | 
|  | #include <deque> | 
|  | #include <functional> | 
|  | #include <iostream> | 
|  | #include <iterator> | 
|  | #include <limits> | 
|  | #include <list> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <set> | 
|  | #include <sstream> | 
|  | #include <string> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  | #include "gmock/gmock.h" | 
|  | #include "gtest/gtest.h" | 
|  | #include "gtest/gtest-spi.h" | 
|  |  | 
|  | #if GTEST_HAS_STD_FORWARD_LIST_ | 
|  | # include <forward_list>  // NOLINT | 
|  | #endif | 
|  |  | 
|  | #if GTEST_LANG_CXX11 | 
|  | # include <type_traits> | 
|  | #endif | 
|  |  | 
|  | namespace testing { | 
|  | namespace gmock_matchers_test { | 
|  |  | 
|  | using std::greater; | 
|  | using std::less; | 
|  | using std::list; | 
|  | using std::make_pair; | 
|  | using std::map; | 
|  | using std::multimap; | 
|  | using std::multiset; | 
|  | using std::ostream; | 
|  | using std::pair; | 
|  | using std::set; | 
|  | using std::stringstream; | 
|  | using std::vector; | 
|  | using testing::A; | 
|  | using testing::AllArgs; | 
|  | using testing::AllOf; | 
|  | using testing::An; | 
|  | using testing::AnyOf; | 
|  | using testing::ByRef; | 
|  | using testing::ContainsRegex; | 
|  | using testing::DoubleEq; | 
|  | using testing::DoubleNear; | 
|  | using testing::EndsWith; | 
|  | using testing::Eq; | 
|  | using testing::ExplainMatchResult; | 
|  | using testing::Field; | 
|  | using testing::FloatEq; | 
|  | using testing::FloatNear; | 
|  | using testing::Ge; | 
|  | using testing::Gt; | 
|  | using testing::HasSubstr; | 
|  | using testing::IsEmpty; | 
|  | using testing::IsNull; | 
|  | using testing::Key; | 
|  | using testing::Le; | 
|  | using testing::Lt; | 
|  | using testing::MakeMatcher; | 
|  | using testing::MakePolymorphicMatcher; | 
|  | using testing::MatchResultListener; | 
|  | using testing::Matcher; | 
|  | using testing::MatcherCast; | 
|  | using testing::MatcherInterface; | 
|  | using testing::Matches; | 
|  | using testing::MatchesRegex; | 
|  | using testing::NanSensitiveDoubleEq; | 
|  | using testing::NanSensitiveDoubleNear; | 
|  | using testing::NanSensitiveFloatEq; | 
|  | using testing::NanSensitiveFloatNear; | 
|  | using testing::Ne; | 
|  | using testing::Not; | 
|  | using testing::NotNull; | 
|  | using testing::Pair; | 
|  | using testing::Pointee; | 
|  | using testing::Pointwise; | 
|  | using testing::PolymorphicMatcher; | 
|  | using testing::Property; | 
|  | using testing::Ref; | 
|  | using testing::ResultOf; | 
|  | using testing::SizeIs; | 
|  | using testing::StartsWith; | 
|  | using testing::StrCaseEq; | 
|  | using testing::StrCaseNe; | 
|  | using testing::StrEq; | 
|  | using testing::StrNe; | 
|  | using testing::StringMatchResultListener; | 
|  | using testing::Truly; | 
|  | using testing::TypedEq; | 
|  | using testing::UnorderedPointwise; | 
|  | using testing::Value; | 
|  | using testing::WhenSorted; | 
|  | using testing::WhenSortedBy; | 
|  | using testing::_; | 
|  | using testing::get; | 
|  | using testing::internal::DummyMatchResultListener; | 
|  | using testing::internal::ElementMatcherPair; | 
|  | using testing::internal::ElementMatcherPairs; | 
|  | using testing::internal::ExplainMatchFailureTupleTo; | 
|  | using testing::internal::FloatingEqMatcher; | 
|  | using testing::internal::FormatMatcherDescription; | 
|  | using testing::internal::IsReadableTypeName; | 
|  | using testing::internal::linked_ptr; | 
|  | using testing::internal::MatchMatrix; | 
|  | using testing::internal::RE; | 
|  | using testing::internal::scoped_ptr; | 
|  | using testing::internal::StreamMatchResultListener; | 
|  | using testing::internal::Strings; | 
|  | using testing::internal::linked_ptr; | 
|  | using testing::internal::scoped_ptr; | 
|  | using testing::internal::string; | 
|  | using testing::make_tuple; | 
|  | using testing::tuple; | 
|  |  | 
|  | // For testing ExplainMatchResultTo(). | 
|  | class GreaterThanMatcher : public MatcherInterface<int> { | 
|  | public: | 
|  | explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {} | 
|  |  | 
|  | virtual void DescribeTo(ostream* os) const { | 
|  | *os << "is > " << rhs_; | 
|  | } | 
|  |  | 
|  | virtual bool MatchAndExplain(int lhs, | 
|  | MatchResultListener* listener) const { | 
|  | const int diff = lhs - rhs_; | 
|  | if (diff > 0) { | 
|  | *listener << "which is " << diff << " more than " << rhs_; | 
|  | } else if (diff == 0) { | 
|  | *listener << "which is the same as " << rhs_; | 
|  | } else { | 
|  | *listener << "which is " << -diff << " less than " << rhs_; | 
|  | } | 
|  |  | 
|  | return lhs > rhs_; | 
|  | } | 
|  |  | 
|  | private: | 
|  | int rhs_; | 
|  | }; | 
|  |  | 
|  | Matcher<int> GreaterThan(int n) { | 
|  | return MakeMatcher(new GreaterThanMatcher(n)); | 
|  | } | 
|  |  | 
|  | std::string OfType(const std::string& type_name) { | 
|  | #if GTEST_HAS_RTTI | 
|  | return " (of type " + type_name + ")"; | 
|  | #else | 
|  | return ""; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Returns the description of the given matcher. | 
|  | template <typename T> | 
|  | std::string Describe(const Matcher<T>& m) { | 
|  | return DescribeMatcher<T>(m); | 
|  | } | 
|  |  | 
|  | // Returns the description of the negation of the given matcher. | 
|  | template <typename T> | 
|  | std::string DescribeNegation(const Matcher<T>& m) { | 
|  | return DescribeMatcher<T>(m, true); | 
|  | } | 
|  |  | 
|  | // Returns the reason why x matches, or doesn't match, m. | 
|  | template <typename MatcherType, typename Value> | 
|  | std::string Explain(const MatcherType& m, const Value& x) { | 
|  | StringMatchResultListener listener; | 
|  | ExplainMatchResult(m, x, &listener); | 
|  | return listener.str(); | 
|  | } | 
|  |  | 
|  | TEST(MonotonicMatcherTest, IsPrintable) { | 
|  | stringstream ss; | 
|  | ss << GreaterThan(5); | 
|  | EXPECT_EQ("is > 5", ss.str()); | 
|  | } | 
|  |  | 
|  | TEST(MatchResultListenerTest, StreamingWorks) { | 
|  | StringMatchResultListener listener; | 
|  | listener << "hi" << 5; | 
|  | EXPECT_EQ("hi5", listener.str()); | 
|  |  | 
|  | listener.Clear(); | 
|  | EXPECT_EQ("", listener.str()); | 
|  |  | 
|  | listener << 42; | 
|  | EXPECT_EQ("42", listener.str()); | 
|  |  | 
|  | // Streaming shouldn't crash when the underlying ostream is NULL. | 
|  | DummyMatchResultListener dummy; | 
|  | dummy << "hi" << 5; | 
|  | } | 
|  |  | 
|  | TEST(MatchResultListenerTest, CanAccessUnderlyingStream) { | 
|  | EXPECT_TRUE(DummyMatchResultListener().stream() == NULL); | 
|  | EXPECT_TRUE(StreamMatchResultListener(NULL).stream() == NULL); | 
|  |  | 
|  | EXPECT_EQ(&std::cout, StreamMatchResultListener(&std::cout).stream()); | 
|  | } | 
|  |  | 
|  | TEST(MatchResultListenerTest, IsInterestedWorks) { | 
|  | EXPECT_TRUE(StringMatchResultListener().IsInterested()); | 
|  | EXPECT_TRUE(StreamMatchResultListener(&std::cout).IsInterested()); | 
|  |  | 
|  | EXPECT_FALSE(DummyMatchResultListener().IsInterested()); | 
|  | EXPECT_FALSE(StreamMatchResultListener(NULL).IsInterested()); | 
|  | } | 
|  |  | 
|  | // Makes sure that the MatcherInterface<T> interface doesn't | 
|  | // change. | 
|  | class EvenMatcherImpl : public MatcherInterface<int> { | 
|  | public: | 
|  | virtual bool MatchAndExplain(int x, | 
|  | MatchResultListener* /* listener */) const { | 
|  | return x % 2 == 0; | 
|  | } | 
|  |  | 
|  | virtual void DescribeTo(ostream* os) const { | 
|  | *os << "is an even number"; | 
|  | } | 
|  |  | 
|  | // We deliberately don't define DescribeNegationTo() and | 
|  | // ExplainMatchResultTo() here, to make sure the definition of these | 
|  | // two methods is optional. | 
|  | }; | 
|  |  | 
|  | // Makes sure that the MatcherInterface API doesn't change. | 
|  | TEST(MatcherInterfaceTest, CanBeImplementedUsingPublishedAPI) { | 
|  | EvenMatcherImpl m; | 
|  | } | 
|  |  | 
|  | // Tests implementing a monomorphic matcher using MatchAndExplain(). | 
|  |  | 
|  | class NewEvenMatcherImpl : public MatcherInterface<int> { | 
|  | public: | 
|  | virtual bool MatchAndExplain(int x, MatchResultListener* listener) const { | 
|  | const bool match = x % 2 == 0; | 
|  | // Verifies that we can stream to a listener directly. | 
|  | *listener << "value % " << 2; | 
|  | if (listener->stream() != NULL) { | 
|  | // Verifies that we can stream to a listener's underlying stream | 
|  | // too. | 
|  | *listener->stream() << " == " << (x % 2); | 
|  | } | 
|  | return match; | 
|  | } | 
|  |  | 
|  | virtual void DescribeTo(ostream* os) const { | 
|  | *os << "is an even number"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(MatcherInterfaceTest, CanBeImplementedUsingNewAPI) { | 
|  | Matcher<int> m = MakeMatcher(new NewEvenMatcherImpl); | 
|  | EXPECT_TRUE(m.Matches(2)); | 
|  | EXPECT_FALSE(m.Matches(3)); | 
|  | EXPECT_EQ("value % 2 == 0", Explain(m, 2)); | 
|  | EXPECT_EQ("value % 2 == 1", Explain(m, 3)); | 
|  | } | 
|  |  | 
|  | // Tests default-constructing a matcher. | 
|  | TEST(MatcherTest, CanBeDefaultConstructed) { | 
|  | Matcher<double> m; | 
|  | } | 
|  |  | 
|  | // Tests that Matcher<T> can be constructed from a MatcherInterface<T>*. | 
|  | TEST(MatcherTest, CanBeConstructedFromMatcherInterface) { | 
|  | const MatcherInterface<int>* impl = new EvenMatcherImpl; | 
|  | Matcher<int> m(impl); | 
|  | EXPECT_TRUE(m.Matches(4)); | 
|  | EXPECT_FALSE(m.Matches(5)); | 
|  | } | 
|  |  | 
|  | // Tests that value can be used in place of Eq(value). | 
|  | TEST(MatcherTest, CanBeImplicitlyConstructedFromValue) { | 
|  | Matcher<int> m1 = 5; | 
|  | EXPECT_TRUE(m1.Matches(5)); | 
|  | EXPECT_FALSE(m1.Matches(6)); | 
|  | } | 
|  |  | 
|  | // Tests that NULL can be used in place of Eq(NULL). | 
|  | TEST(MatcherTest, CanBeImplicitlyConstructedFromNULL) { | 
|  | Matcher<int*> m1 = NULL; | 
|  | EXPECT_TRUE(m1.Matches(NULL)); | 
|  | int n = 0; | 
|  | EXPECT_FALSE(m1.Matches(&n)); | 
|  | } | 
|  |  | 
|  | // Tests that matchers can be constructed from a variable that is not properly | 
|  | // defined. This should be illegal, but many users rely on this accidentally. | 
|  | struct Undefined { | 
|  | virtual ~Undefined() = 0; | 
|  | static const int kInt = 1; | 
|  | }; | 
|  |  | 
|  | TEST(MatcherTest, CanBeConstructedFromUndefinedVariable) { | 
|  | Matcher<int> m1 = Undefined::kInt; | 
|  | EXPECT_TRUE(m1.Matches(1)); | 
|  | EXPECT_FALSE(m1.Matches(2)); | 
|  | } | 
|  |  | 
|  | // Test that a matcher parameterized with an abstract class compiles. | 
|  | TEST(MatcherTest, CanAcceptAbstractClass) { Matcher<const Undefined&> m = _; } | 
|  |  | 
|  | // Tests that matchers are copyable. | 
|  | TEST(MatcherTest, IsCopyable) { | 
|  | // Tests the copy constructor. | 
|  | Matcher<bool> m1 = Eq(false); | 
|  | EXPECT_TRUE(m1.Matches(false)); | 
|  | EXPECT_FALSE(m1.Matches(true)); | 
|  |  | 
|  | // Tests the assignment operator. | 
|  | m1 = Eq(true); | 
|  | EXPECT_TRUE(m1.Matches(true)); | 
|  | EXPECT_FALSE(m1.Matches(false)); | 
|  | } | 
|  |  | 
|  | // Tests that Matcher<T>::DescribeTo() calls | 
|  | // MatcherInterface<T>::DescribeTo(). | 
|  | TEST(MatcherTest, CanDescribeItself) { | 
|  | EXPECT_EQ("is an even number", | 
|  | Describe(Matcher<int>(new EvenMatcherImpl))); | 
|  | } | 
|  |  | 
|  | // Tests Matcher<T>::MatchAndExplain(). | 
|  | TEST(MatcherTest, MatchAndExplain) { | 
|  | Matcher<int> m = GreaterThan(0); | 
|  | StringMatchResultListener listener1; | 
|  | EXPECT_TRUE(m.MatchAndExplain(42, &listener1)); | 
|  | EXPECT_EQ("which is 42 more than 0", listener1.str()); | 
|  |  | 
|  | StringMatchResultListener listener2; | 
|  | EXPECT_FALSE(m.MatchAndExplain(-9, &listener2)); | 
|  | EXPECT_EQ("which is 9 less than 0", listener2.str()); | 
|  | } | 
|  |  | 
|  | // Tests that a C-string literal can be implicitly converted to a | 
|  | // Matcher<std::string> or Matcher<const std::string&>. | 
|  | TEST(StringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) { | 
|  | Matcher<std::string> m1 = "hi"; | 
|  | EXPECT_TRUE(m1.Matches("hi")); | 
|  | EXPECT_FALSE(m1.Matches("hello")); | 
|  |  | 
|  | Matcher<const std::string&> m2 = "hi"; | 
|  | EXPECT_TRUE(m2.Matches("hi")); | 
|  | EXPECT_FALSE(m2.Matches("hello")); | 
|  | } | 
|  |  | 
|  | // Tests that a string object can be implicitly converted to a | 
|  | // Matcher<std::string> or Matcher<const std::string&>. | 
|  | TEST(StringMatcherTest, CanBeImplicitlyConstructedFromString) { | 
|  | Matcher<std::string> m1 = std::string("hi"); | 
|  | EXPECT_TRUE(m1.Matches("hi")); | 
|  | EXPECT_FALSE(m1.Matches("hello")); | 
|  |  | 
|  | Matcher<const std::string&> m2 = std::string("hi"); | 
|  | EXPECT_TRUE(m2.Matches("hi")); | 
|  | EXPECT_FALSE(m2.Matches("hello")); | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_GLOBAL_STRING | 
|  | // Tests that a ::string object can be implicitly converted to a | 
|  | // Matcher<std::string> or Matcher<const std::string&>. | 
|  | TEST(StringMatcherTest, CanBeImplicitlyConstructedFromGlobalString) { | 
|  | Matcher<std::string> m1 = ::string("hi"); | 
|  | EXPECT_TRUE(m1.Matches("hi")); | 
|  | EXPECT_FALSE(m1.Matches("hello")); | 
|  |  | 
|  | Matcher<const std::string&> m2 = ::string("hi"); | 
|  | EXPECT_TRUE(m2.Matches("hi")); | 
|  | EXPECT_FALSE(m2.Matches("hello")); | 
|  | } | 
|  | #endif  // GTEST_HAS_GLOBAL_STRING | 
|  |  | 
|  | #if GTEST_HAS_GLOBAL_STRING | 
|  | // Tests that a C-string literal can be implicitly converted to a | 
|  | // Matcher<::string> or Matcher<const ::string&>. | 
|  | TEST(GlobalStringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) { | 
|  | Matcher< ::string> m1 = "hi"; | 
|  | EXPECT_TRUE(m1.Matches("hi")); | 
|  | EXPECT_FALSE(m1.Matches("hello")); | 
|  |  | 
|  | Matcher<const ::string&> m2 = "hi"; | 
|  | EXPECT_TRUE(m2.Matches("hi")); | 
|  | EXPECT_FALSE(m2.Matches("hello")); | 
|  | } | 
|  |  | 
|  | // Tests that a std::string object can be implicitly converted to a | 
|  | // Matcher<::string> or Matcher<const ::string&>. | 
|  | TEST(GlobalStringMatcherTest, CanBeImplicitlyConstructedFromString) { | 
|  | Matcher< ::string> m1 = std::string("hi"); | 
|  | EXPECT_TRUE(m1.Matches("hi")); | 
|  | EXPECT_FALSE(m1.Matches("hello")); | 
|  |  | 
|  | Matcher<const ::string&> m2 = std::string("hi"); | 
|  | EXPECT_TRUE(m2.Matches("hi")); | 
|  | EXPECT_FALSE(m2.Matches("hello")); | 
|  | } | 
|  |  | 
|  | // Tests that a ::string object can be implicitly converted to a | 
|  | // Matcher<::string> or Matcher<const ::string&>. | 
|  | TEST(GlobalStringMatcherTest, CanBeImplicitlyConstructedFromGlobalString) { | 
|  | Matcher< ::string> m1 = ::string("hi"); | 
|  | EXPECT_TRUE(m1.Matches("hi")); | 
|  | EXPECT_FALSE(m1.Matches("hello")); | 
|  |  | 
|  | Matcher<const ::string&> m2 = ::string("hi"); | 
|  | EXPECT_TRUE(m2.Matches("hi")); | 
|  | EXPECT_FALSE(m2.Matches("hello")); | 
|  | } | 
|  | #endif  // GTEST_HAS_GLOBAL_STRING | 
|  |  | 
|  | #if GTEST_HAS_ABSL | 
|  | // Tests that a C-string literal can be implicitly converted to a | 
|  | // Matcher<absl::string_view> or Matcher<const absl::string_view&>. | 
|  | TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) { | 
|  | Matcher<absl::string_view> m1 = "cats"; | 
|  | EXPECT_TRUE(m1.Matches("cats")); | 
|  | EXPECT_FALSE(m1.Matches("dogs")); | 
|  |  | 
|  | Matcher<const absl::string_view&> m2 = "cats"; | 
|  | EXPECT_TRUE(m2.Matches("cats")); | 
|  | EXPECT_FALSE(m2.Matches("dogs")); | 
|  | } | 
|  |  | 
|  | // Tests that a std::string object can be implicitly converted to a | 
|  | // Matcher<absl::string_view> or Matcher<const absl::string_view&>. | 
|  | TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromString) { | 
|  | Matcher<absl::string_view> m1 = std::string("cats"); | 
|  | EXPECT_TRUE(m1.Matches("cats")); | 
|  | EXPECT_FALSE(m1.Matches("dogs")); | 
|  |  | 
|  | Matcher<const absl::string_view&> m2 = std::string("cats"); | 
|  | EXPECT_TRUE(m2.Matches("cats")); | 
|  | EXPECT_FALSE(m2.Matches("dogs")); | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_GLOBAL_STRING | 
|  | // Tests that a ::string object can be implicitly converted to a | 
|  | // Matcher<absl::string_view> or Matcher<const absl::string_view&>. | 
|  | TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromGlobalString) { | 
|  | Matcher<absl::string_view> m1 = ::string("cats"); | 
|  | EXPECT_TRUE(m1.Matches("cats")); | 
|  | EXPECT_FALSE(m1.Matches("dogs")); | 
|  |  | 
|  | Matcher<const absl::string_view&> m2 = ::string("cats"); | 
|  | EXPECT_TRUE(m2.Matches("cats")); | 
|  | EXPECT_FALSE(m2.Matches("dogs")); | 
|  | } | 
|  | #endif  // GTEST_HAS_GLOBAL_STRING | 
|  |  | 
|  | // Tests that a absl::string_view object can be implicitly converted to a | 
|  | // Matcher<absl::string_view> or Matcher<const absl::string_view&>. | 
|  | TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromStringView) { | 
|  | Matcher<absl::string_view> m1 = absl::string_view("cats"); | 
|  | EXPECT_TRUE(m1.Matches("cats")); | 
|  | EXPECT_FALSE(m1.Matches("dogs")); | 
|  |  | 
|  | Matcher<const absl::string_view&> m2 = absl::string_view("cats"); | 
|  | EXPECT_TRUE(m2.Matches("cats")); | 
|  | EXPECT_FALSE(m2.Matches("dogs")); | 
|  | } | 
|  | #endif  // GTEST_HAS_ABSL | 
|  |  | 
|  | // Tests that MakeMatcher() constructs a Matcher<T> from a | 
|  | // MatcherInterface* without requiring the user to explicitly | 
|  | // write the type. | 
|  | TEST(MakeMatcherTest, ConstructsMatcherFromMatcherInterface) { | 
|  | const MatcherInterface<int>* dummy_impl = NULL; | 
|  | Matcher<int> m = MakeMatcher(dummy_impl); | 
|  | } | 
|  |  | 
|  | // Tests that MakePolymorphicMatcher() can construct a polymorphic | 
|  | // matcher from its implementation using the old API. | 
|  | const int g_bar = 1; | 
|  | class ReferencesBarOrIsZeroImpl { | 
|  | public: | 
|  | template <typename T> | 
|  | bool MatchAndExplain(const T& x, | 
|  | MatchResultListener* /* listener */) const { | 
|  | const void* p = &x; | 
|  | return p == &g_bar || x == 0; | 
|  | } | 
|  |  | 
|  | void DescribeTo(ostream* os) const { *os << "g_bar or zero"; } | 
|  |  | 
|  | void DescribeNegationTo(ostream* os) const { | 
|  | *os << "doesn't reference g_bar and is not zero"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // This function verifies that MakePolymorphicMatcher() returns a | 
|  | // PolymorphicMatcher<T> where T is the argument's type. | 
|  | PolymorphicMatcher<ReferencesBarOrIsZeroImpl> ReferencesBarOrIsZero() { | 
|  | return MakePolymorphicMatcher(ReferencesBarOrIsZeroImpl()); | 
|  | } | 
|  |  | 
|  | TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingOldAPI) { | 
|  | // Using a polymorphic matcher to match a reference type. | 
|  | Matcher<const int&> m1 = ReferencesBarOrIsZero(); | 
|  | EXPECT_TRUE(m1.Matches(0)); | 
|  | // Verifies that the identity of a by-reference argument is preserved. | 
|  | EXPECT_TRUE(m1.Matches(g_bar)); | 
|  | EXPECT_FALSE(m1.Matches(1)); | 
|  | EXPECT_EQ("g_bar or zero", Describe(m1)); | 
|  |  | 
|  | // Using a polymorphic matcher to match a value type. | 
|  | Matcher<double> m2 = ReferencesBarOrIsZero(); | 
|  | EXPECT_TRUE(m2.Matches(0.0)); | 
|  | EXPECT_FALSE(m2.Matches(0.1)); | 
|  | EXPECT_EQ("g_bar or zero", Describe(m2)); | 
|  | } | 
|  |  | 
|  | // Tests implementing a polymorphic matcher using MatchAndExplain(). | 
|  |  | 
|  | class PolymorphicIsEvenImpl { | 
|  | public: | 
|  | void DescribeTo(ostream* os) const { *os << "is even"; } | 
|  |  | 
|  | void DescribeNegationTo(ostream* os) const { | 
|  | *os << "is odd"; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool MatchAndExplain(const T& x, MatchResultListener* listener) const { | 
|  | // Verifies that we can stream to the listener directly. | 
|  | *listener << "% " << 2; | 
|  | if (listener->stream() != NULL) { | 
|  | // Verifies that we can stream to the listener's underlying stream | 
|  | // too. | 
|  | *listener->stream() << " == " << (x % 2); | 
|  | } | 
|  | return (x % 2) == 0; | 
|  | } | 
|  | }; | 
|  |  | 
|  | PolymorphicMatcher<PolymorphicIsEvenImpl> PolymorphicIsEven() { | 
|  | return MakePolymorphicMatcher(PolymorphicIsEvenImpl()); | 
|  | } | 
|  |  | 
|  | TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingNewAPI) { | 
|  | // Using PolymorphicIsEven() as a Matcher<int>. | 
|  | const Matcher<int> m1 = PolymorphicIsEven(); | 
|  | EXPECT_TRUE(m1.Matches(42)); | 
|  | EXPECT_FALSE(m1.Matches(43)); | 
|  | EXPECT_EQ("is even", Describe(m1)); | 
|  |  | 
|  | const Matcher<int> not_m1 = Not(m1); | 
|  | EXPECT_EQ("is odd", Describe(not_m1)); | 
|  |  | 
|  | EXPECT_EQ("% 2 == 0", Explain(m1, 42)); | 
|  |  | 
|  | // Using PolymorphicIsEven() as a Matcher<char>. | 
|  | const Matcher<char> m2 = PolymorphicIsEven(); | 
|  | EXPECT_TRUE(m2.Matches('\x42')); | 
|  | EXPECT_FALSE(m2.Matches('\x43')); | 
|  | EXPECT_EQ("is even", Describe(m2)); | 
|  |  | 
|  | const Matcher<char> not_m2 = Not(m2); | 
|  | EXPECT_EQ("is odd", Describe(not_m2)); | 
|  |  | 
|  | EXPECT_EQ("% 2 == 0", Explain(m2, '\x42')); | 
|  | } | 
|  |  | 
|  | // Tests that MatcherCast<T>(m) works when m is a polymorphic matcher. | 
|  | TEST(MatcherCastTest, FromPolymorphicMatcher) { | 
|  | Matcher<int> m = MatcherCast<int>(Eq(5)); | 
|  | EXPECT_TRUE(m.Matches(5)); | 
|  | EXPECT_FALSE(m.Matches(6)); | 
|  | } | 
|  |  | 
|  | // For testing casting matchers between compatible types. | 
|  | class IntValue { | 
|  | public: | 
|  | // An int can be statically (although not implicitly) cast to a | 
|  | // IntValue. | 
|  | explicit IntValue(int a_value) : value_(a_value) {} | 
|  |  | 
|  | int value() const { return value_; } | 
|  | private: | 
|  | int value_; | 
|  | }; | 
|  |  | 
|  | // For testing casting matchers between compatible types. | 
|  | bool IsPositiveIntValue(const IntValue& foo) { | 
|  | return foo.value() > 0; | 
|  | } | 
|  |  | 
|  | // Tests that MatcherCast<T>(m) works when m is a Matcher<U> where T | 
|  | // can be statically converted to U. | 
|  | TEST(MatcherCastTest, FromCompatibleType) { | 
|  | Matcher<double> m1 = Eq(2.0); | 
|  | Matcher<int> m2 = MatcherCast<int>(m1); | 
|  | EXPECT_TRUE(m2.Matches(2)); | 
|  | EXPECT_FALSE(m2.Matches(3)); | 
|  |  | 
|  | Matcher<IntValue> m3 = Truly(IsPositiveIntValue); | 
|  | Matcher<int> m4 = MatcherCast<int>(m3); | 
|  | // In the following, the arguments 1 and 0 are statically converted | 
|  | // to IntValue objects, and then tested by the IsPositiveIntValue() | 
|  | // predicate. | 
|  | EXPECT_TRUE(m4.Matches(1)); | 
|  | EXPECT_FALSE(m4.Matches(0)); | 
|  | } | 
|  |  | 
|  | // Tests that MatcherCast<T>(m) works when m is a Matcher<const T&>. | 
|  | TEST(MatcherCastTest, FromConstReferenceToNonReference) { | 
|  | Matcher<const int&> m1 = Eq(0); | 
|  | Matcher<int> m2 = MatcherCast<int>(m1); | 
|  | EXPECT_TRUE(m2.Matches(0)); | 
|  | EXPECT_FALSE(m2.Matches(1)); | 
|  | } | 
|  |  | 
|  | // Tests that MatcherCast<T>(m) works when m is a Matcher<T&>. | 
|  | TEST(MatcherCastTest, FromReferenceToNonReference) { | 
|  | Matcher<int&> m1 = Eq(0); | 
|  | Matcher<int> m2 = MatcherCast<int>(m1); | 
|  | EXPECT_TRUE(m2.Matches(0)); | 
|  | EXPECT_FALSE(m2.Matches(1)); | 
|  | } | 
|  |  | 
|  | // Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>. | 
|  | TEST(MatcherCastTest, FromNonReferenceToConstReference) { | 
|  | Matcher<int> m1 = Eq(0); | 
|  | Matcher<const int&> m2 = MatcherCast<const int&>(m1); | 
|  | EXPECT_TRUE(m2.Matches(0)); | 
|  | EXPECT_FALSE(m2.Matches(1)); | 
|  | } | 
|  |  | 
|  | // Tests that MatcherCast<T&>(m) works when m is a Matcher<T>. | 
|  | TEST(MatcherCastTest, FromNonReferenceToReference) { | 
|  | Matcher<int> m1 = Eq(0); | 
|  | Matcher<int&> m2 = MatcherCast<int&>(m1); | 
|  | int n = 0; | 
|  | EXPECT_TRUE(m2.Matches(n)); | 
|  | n = 1; | 
|  | EXPECT_FALSE(m2.Matches(n)); | 
|  | } | 
|  |  | 
|  | // Tests that MatcherCast<T>(m) works when m is a Matcher<T>. | 
|  | TEST(MatcherCastTest, FromSameType) { | 
|  | Matcher<int> m1 = Eq(0); | 
|  | Matcher<int> m2 = MatcherCast<int>(m1); | 
|  | EXPECT_TRUE(m2.Matches(0)); | 
|  | EXPECT_FALSE(m2.Matches(1)); | 
|  | } | 
|  |  | 
|  | // Tests that MatcherCast<T>(m) works when m is a value of the same type as the | 
|  | // value type of the Matcher. | 
|  | TEST(MatcherCastTest, FromAValue) { | 
|  | Matcher<int> m = MatcherCast<int>(42); | 
|  | EXPECT_TRUE(m.Matches(42)); | 
|  | EXPECT_FALSE(m.Matches(239)); | 
|  | } | 
|  |  | 
|  | // Tests that MatcherCast<T>(m) works when m is a value of the type implicitly | 
|  | // convertible to the value type of the Matcher. | 
|  | TEST(MatcherCastTest, FromAnImplicitlyConvertibleValue) { | 
|  | const int kExpected = 'c'; | 
|  | Matcher<int> m = MatcherCast<int>('c'); | 
|  | EXPECT_TRUE(m.Matches(kExpected)); | 
|  | EXPECT_FALSE(m.Matches(kExpected + 1)); | 
|  | } | 
|  |  | 
|  | struct NonImplicitlyConstructibleTypeWithOperatorEq { | 
|  | friend bool operator==( | 
|  | const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */, | 
|  | int rhs) { | 
|  | return 42 == rhs; | 
|  | } | 
|  | friend bool operator==( | 
|  | int lhs, | 
|  | const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */) { | 
|  | return lhs == 42; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Tests that MatcherCast<T>(m) works when m is a neither a matcher nor | 
|  | // implicitly convertible to the value type of the Matcher, but the value type | 
|  | // of the matcher has operator==() overload accepting m. | 
|  | TEST(MatcherCastTest, NonImplicitlyConstructibleTypeWithOperatorEq) { | 
|  | Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m1 = | 
|  | MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(42); | 
|  | EXPECT_TRUE(m1.Matches(NonImplicitlyConstructibleTypeWithOperatorEq())); | 
|  |  | 
|  | Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m2 = | 
|  | MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(239); | 
|  | EXPECT_FALSE(m2.Matches(NonImplicitlyConstructibleTypeWithOperatorEq())); | 
|  |  | 
|  | // When updating the following lines please also change the comment to | 
|  | // namespace convertible_from_any. | 
|  | Matcher<int> m3 = | 
|  | MatcherCast<int>(NonImplicitlyConstructibleTypeWithOperatorEq()); | 
|  | EXPECT_TRUE(m3.Matches(42)); | 
|  | EXPECT_FALSE(m3.Matches(239)); | 
|  | } | 
|  |  | 
|  | // ConvertibleFromAny does not work with MSVC. resulting in | 
|  | // error C2440: 'initializing': cannot convert from 'Eq' to 'M' | 
|  | // No constructor could take the source type, or constructor overload | 
|  | // resolution was ambiguous | 
|  |  | 
|  | #if !defined _MSC_VER | 
|  |  | 
|  | // The below ConvertibleFromAny struct is implicitly constructible from anything | 
|  | // and when in the same namespace can interact with other tests. In particular, | 
|  | // if it is in the same namespace as other tests and one removes | 
|  | //   NonImplicitlyConstructibleTypeWithOperatorEq::operator==(int lhs, ...); | 
|  | // then the corresponding test still compiles (and it should not!) by implicitly | 
|  | // converting NonImplicitlyConstructibleTypeWithOperatorEq to ConvertibleFromAny | 
|  | // in m3.Matcher(). | 
|  | namespace convertible_from_any { | 
|  | // Implicitly convertible from any type. | 
|  | struct ConvertibleFromAny { | 
|  | ConvertibleFromAny(int a_value) : value(a_value) {} | 
|  | template <typename T> | 
|  | ConvertibleFromAny(const T& /*a_value*/) : value(-1) { | 
|  | ADD_FAILURE() << "Conversion constructor called"; | 
|  | } | 
|  | int value; | 
|  | }; | 
|  |  | 
|  | bool operator==(const ConvertibleFromAny& a, const ConvertibleFromAny& b) { | 
|  | return a.value == b.value; | 
|  | } | 
|  |  | 
|  | ostream& operator<<(ostream& os, const ConvertibleFromAny& a) { | 
|  | return os << a.value; | 
|  | } | 
|  |  | 
|  | TEST(MatcherCastTest, ConversionConstructorIsUsed) { | 
|  | Matcher<ConvertibleFromAny> m = MatcherCast<ConvertibleFromAny>(1); | 
|  | EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); | 
|  | EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); | 
|  | } | 
|  |  | 
|  | TEST(MatcherCastTest, FromConvertibleFromAny) { | 
|  | Matcher<ConvertibleFromAny> m = | 
|  | MatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1))); | 
|  | EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); | 
|  | EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); | 
|  | } | 
|  | }  // namespace convertible_from_any | 
|  |  | 
|  | #endif  // !defined _MSC_VER | 
|  |  | 
|  | struct IntReferenceWrapper { | 
|  | IntReferenceWrapper(const int& a_value) : value(&a_value) {} | 
|  | const int* value; | 
|  | }; | 
|  |  | 
|  | bool operator==(const IntReferenceWrapper& a, const IntReferenceWrapper& b) { | 
|  | return a.value == b.value; | 
|  | } | 
|  |  | 
|  | TEST(MatcherCastTest, ValueIsNotCopied) { | 
|  | int n = 42; | 
|  | Matcher<IntReferenceWrapper> m = MatcherCast<IntReferenceWrapper>(n); | 
|  | // Verify that the matcher holds a reference to n, not to its temporary copy. | 
|  | EXPECT_TRUE(m.Matches(n)); | 
|  | } | 
|  |  | 
|  | class Base { | 
|  | public: | 
|  | virtual ~Base() {} | 
|  | Base() {} | 
|  | private: | 
|  | GTEST_DISALLOW_COPY_AND_ASSIGN_(Base); | 
|  | }; | 
|  |  | 
|  | class Derived : public Base { | 
|  | public: | 
|  | Derived() : Base() {} | 
|  | int i; | 
|  | }; | 
|  |  | 
|  | class OtherDerived : public Base {}; | 
|  |  | 
|  | // Tests that SafeMatcherCast<T>(m) works when m is a polymorphic matcher. | 
|  | TEST(SafeMatcherCastTest, FromPolymorphicMatcher) { | 
|  | Matcher<char> m2 = SafeMatcherCast<char>(Eq(32)); | 
|  | EXPECT_TRUE(m2.Matches(' ')); | 
|  | EXPECT_FALSE(m2.Matches('\n')); | 
|  | } | 
|  |  | 
|  | // Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where | 
|  | // T and U are arithmetic types and T can be losslessly converted to | 
|  | // U. | 
|  | TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) { | 
|  | Matcher<double> m1 = DoubleEq(1.0); | 
|  | Matcher<float> m2 = SafeMatcherCast<float>(m1); | 
|  | EXPECT_TRUE(m2.Matches(1.0f)); | 
|  | EXPECT_FALSE(m2.Matches(2.0f)); | 
|  |  | 
|  | Matcher<char> m3 = SafeMatcherCast<char>(TypedEq<int>('a')); | 
|  | EXPECT_TRUE(m3.Matches('a')); | 
|  | EXPECT_FALSE(m3.Matches('b')); | 
|  | } | 
|  |  | 
|  | // Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T and U | 
|  | // are pointers or references to a derived and a base class, correspondingly. | 
|  | TEST(SafeMatcherCastTest, FromBaseClass) { | 
|  | Derived d, d2; | 
|  | Matcher<Base*> m1 = Eq(&d); | 
|  | Matcher<Derived*> m2 = SafeMatcherCast<Derived*>(m1); | 
|  | EXPECT_TRUE(m2.Matches(&d)); | 
|  | EXPECT_FALSE(m2.Matches(&d2)); | 
|  |  | 
|  | Matcher<Base&> m3 = Ref(d); | 
|  | Matcher<Derived&> m4 = SafeMatcherCast<Derived&>(m3); | 
|  | EXPECT_TRUE(m4.Matches(d)); | 
|  | EXPECT_FALSE(m4.Matches(d2)); | 
|  | } | 
|  |  | 
|  | // Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<const T&>. | 
|  | TEST(SafeMatcherCastTest, FromConstReferenceToReference) { | 
|  | int n = 0; | 
|  | Matcher<const int&> m1 = Ref(n); | 
|  | Matcher<int&> m2 = SafeMatcherCast<int&>(m1); | 
|  | int n1 = 0; | 
|  | EXPECT_TRUE(m2.Matches(n)); | 
|  | EXPECT_FALSE(m2.Matches(n1)); | 
|  | } | 
|  |  | 
|  | // Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>. | 
|  | TEST(SafeMatcherCastTest, FromNonReferenceToConstReference) { | 
|  | Matcher<int> m1 = Eq(0); | 
|  | Matcher<const int&> m2 = SafeMatcherCast<const int&>(m1); | 
|  | EXPECT_TRUE(m2.Matches(0)); | 
|  | EXPECT_FALSE(m2.Matches(1)); | 
|  | } | 
|  |  | 
|  | // Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<T>. | 
|  | TEST(SafeMatcherCastTest, FromNonReferenceToReference) { | 
|  | Matcher<int> m1 = Eq(0); | 
|  | Matcher<int&> m2 = SafeMatcherCast<int&>(m1); | 
|  | int n = 0; | 
|  | EXPECT_TRUE(m2.Matches(n)); | 
|  | n = 1; | 
|  | EXPECT_FALSE(m2.Matches(n)); | 
|  | } | 
|  |  | 
|  | // Tests that SafeMatcherCast<T>(m) works when m is a Matcher<T>. | 
|  | TEST(SafeMatcherCastTest, FromSameType) { | 
|  | Matcher<int> m1 = Eq(0); | 
|  | Matcher<int> m2 = SafeMatcherCast<int>(m1); | 
|  | EXPECT_TRUE(m2.Matches(0)); | 
|  | EXPECT_FALSE(m2.Matches(1)); | 
|  | } | 
|  |  | 
|  | #if !defined _MSC_VER | 
|  |  | 
|  | namespace convertible_from_any { | 
|  | TEST(SafeMatcherCastTest, ConversionConstructorIsUsed) { | 
|  | Matcher<ConvertibleFromAny> m = SafeMatcherCast<ConvertibleFromAny>(1); | 
|  | EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); | 
|  | EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); | 
|  | } | 
|  |  | 
|  | TEST(SafeMatcherCastTest, FromConvertibleFromAny) { | 
|  | Matcher<ConvertibleFromAny> m = | 
|  | SafeMatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1))); | 
|  | EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); | 
|  | EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); | 
|  | } | 
|  | }  // namespace convertible_from_any | 
|  |  | 
|  | #endif  // !defined _MSC_VER | 
|  |  | 
|  | TEST(SafeMatcherCastTest, ValueIsNotCopied) { | 
|  | int n = 42; | 
|  | Matcher<IntReferenceWrapper> m = SafeMatcherCast<IntReferenceWrapper>(n); | 
|  | // Verify that the matcher holds a reference to n, not to its temporary copy. | 
|  | EXPECT_TRUE(m.Matches(n)); | 
|  | } | 
|  |  | 
|  | TEST(ExpectThat, TakesLiterals) { | 
|  | EXPECT_THAT(1, 1); | 
|  | EXPECT_THAT(1.0, 1.0); | 
|  | EXPECT_THAT(std::string(), ""); | 
|  | } | 
|  |  | 
|  | TEST(ExpectThat, TakesFunctions) { | 
|  | struct Helper { | 
|  | static void Func() {} | 
|  | }; | 
|  | void (*func)() = Helper::Func; | 
|  | EXPECT_THAT(func, Helper::Func); | 
|  | EXPECT_THAT(func, &Helper::Func); | 
|  | } | 
|  |  | 
|  | // Tests that A<T>() matches any value of type T. | 
|  | TEST(ATest, MatchesAnyValue) { | 
|  | // Tests a matcher for a value type. | 
|  | Matcher<double> m1 = A<double>(); | 
|  | EXPECT_TRUE(m1.Matches(91.43)); | 
|  | EXPECT_TRUE(m1.Matches(-15.32)); | 
|  |  | 
|  | // Tests a matcher for a reference type. | 
|  | int a = 2; | 
|  | int b = -6; | 
|  | Matcher<int&> m2 = A<int&>(); | 
|  | EXPECT_TRUE(m2.Matches(a)); | 
|  | EXPECT_TRUE(m2.Matches(b)); | 
|  | } | 
|  |  | 
|  | TEST(ATest, WorksForDerivedClass) { | 
|  | Base base; | 
|  | Derived derived; | 
|  | EXPECT_THAT(&base, A<Base*>()); | 
|  | // This shouldn't compile: EXPECT_THAT(&base, A<Derived*>()); | 
|  | EXPECT_THAT(&derived, A<Base*>()); | 
|  | EXPECT_THAT(&derived, A<Derived*>()); | 
|  | } | 
|  |  | 
|  | // Tests that A<T>() describes itself properly. | 
|  | TEST(ATest, CanDescribeSelf) { | 
|  | EXPECT_EQ("is anything", Describe(A<bool>())); | 
|  | } | 
|  |  | 
|  | // Tests that An<T>() matches any value of type T. | 
|  | TEST(AnTest, MatchesAnyValue) { | 
|  | // Tests a matcher for a value type. | 
|  | Matcher<int> m1 = An<int>(); | 
|  | EXPECT_TRUE(m1.Matches(9143)); | 
|  | EXPECT_TRUE(m1.Matches(-1532)); | 
|  |  | 
|  | // Tests a matcher for a reference type. | 
|  | int a = 2; | 
|  | int b = -6; | 
|  | Matcher<int&> m2 = An<int&>(); | 
|  | EXPECT_TRUE(m2.Matches(a)); | 
|  | EXPECT_TRUE(m2.Matches(b)); | 
|  | } | 
|  |  | 
|  | // Tests that An<T>() describes itself properly. | 
|  | TEST(AnTest, CanDescribeSelf) { | 
|  | EXPECT_EQ("is anything", Describe(An<int>())); | 
|  | } | 
|  |  | 
|  | // Tests that _ can be used as a matcher for any type and matches any | 
|  | // value of that type. | 
|  | TEST(UnderscoreTest, MatchesAnyValue) { | 
|  | // Uses _ as a matcher for a value type. | 
|  | Matcher<int> m1 = _; | 
|  | EXPECT_TRUE(m1.Matches(123)); | 
|  | EXPECT_TRUE(m1.Matches(-242)); | 
|  |  | 
|  | // Uses _ as a matcher for a reference type. | 
|  | bool a = false; | 
|  | const bool b = true; | 
|  | Matcher<const bool&> m2 = _; | 
|  | EXPECT_TRUE(m2.Matches(a)); | 
|  | EXPECT_TRUE(m2.Matches(b)); | 
|  | } | 
|  |  | 
|  | // Tests that _ describes itself properly. | 
|  | TEST(UnderscoreTest, CanDescribeSelf) { | 
|  | Matcher<int> m = _; | 
|  | EXPECT_EQ("is anything", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Eq(x) matches any value equal to x. | 
|  | TEST(EqTest, MatchesEqualValue) { | 
|  | // 2 C-strings with same content but different addresses. | 
|  | const char a1[] = "hi"; | 
|  | const char a2[] = "hi"; | 
|  |  | 
|  | Matcher<const char*> m1 = Eq(a1); | 
|  | EXPECT_TRUE(m1.Matches(a1)); | 
|  | EXPECT_FALSE(m1.Matches(a2)); | 
|  | } | 
|  |  | 
|  | // Tests that Eq(v) describes itself properly. | 
|  |  | 
|  | class Unprintable { | 
|  | public: | 
|  | Unprintable() : c_('a') {} | 
|  |  | 
|  | bool operator==(const Unprintable& /* rhs */) const { return true; } | 
|  | private: | 
|  | char c_; | 
|  | }; | 
|  |  | 
|  | TEST(EqTest, CanDescribeSelf) { | 
|  | Matcher<Unprintable> m = Eq(Unprintable()); | 
|  | EXPECT_EQ("is equal to 1-byte object <61>", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Eq(v) can be used to match any type that supports | 
|  | // comparing with type T, where T is v's type. | 
|  | TEST(EqTest, IsPolymorphic) { | 
|  | Matcher<int> m1 = Eq(1); | 
|  | EXPECT_TRUE(m1.Matches(1)); | 
|  | EXPECT_FALSE(m1.Matches(2)); | 
|  |  | 
|  | Matcher<char> m2 = Eq(1); | 
|  | EXPECT_TRUE(m2.Matches('\1')); | 
|  | EXPECT_FALSE(m2.Matches('a')); | 
|  | } | 
|  |  | 
|  | // Tests that TypedEq<T>(v) matches values of type T that's equal to v. | 
|  | TEST(TypedEqTest, ChecksEqualityForGivenType) { | 
|  | Matcher<char> m1 = TypedEq<char>('a'); | 
|  | EXPECT_TRUE(m1.Matches('a')); | 
|  | EXPECT_FALSE(m1.Matches('b')); | 
|  |  | 
|  | Matcher<int> m2 = TypedEq<int>(6); | 
|  | EXPECT_TRUE(m2.Matches(6)); | 
|  | EXPECT_FALSE(m2.Matches(7)); | 
|  | } | 
|  |  | 
|  | // Tests that TypedEq(v) describes itself properly. | 
|  | TEST(TypedEqTest, CanDescribeSelf) { | 
|  | EXPECT_EQ("is equal to 2", Describe(TypedEq<int>(2))); | 
|  | } | 
|  |  | 
|  | // Tests that TypedEq<T>(v) has type Matcher<T>. | 
|  |  | 
|  | // Type<T>::IsTypeOf(v) compiles iff the type of value v is T, where T | 
|  | // is a "bare" type (i.e. not in the form of const U or U&).  If v's | 
|  | // type is not T, the compiler will generate a message about | 
|  | // "undefined reference". | 
|  | template <typename T> | 
|  | struct Type { | 
|  | static bool IsTypeOf(const T& /* v */) { return true; } | 
|  |  | 
|  | template <typename T2> | 
|  | static void IsTypeOf(T2 v); | 
|  | }; | 
|  |  | 
|  | TEST(TypedEqTest, HasSpecifiedType) { | 
|  | // Verfies that the type of TypedEq<T>(v) is Matcher<T>. | 
|  | Type<Matcher<int> >::IsTypeOf(TypedEq<int>(5)); | 
|  | Type<Matcher<double> >::IsTypeOf(TypedEq<double>(5)); | 
|  | } | 
|  |  | 
|  | // Tests that Ge(v) matches anything >= v. | 
|  | TEST(GeTest, ImplementsGreaterThanOrEqual) { | 
|  | Matcher<int> m1 = Ge(0); | 
|  | EXPECT_TRUE(m1.Matches(1)); | 
|  | EXPECT_TRUE(m1.Matches(0)); | 
|  | EXPECT_FALSE(m1.Matches(-1)); | 
|  | } | 
|  |  | 
|  | // Tests that Ge(v) describes itself properly. | 
|  | TEST(GeTest, CanDescribeSelf) { | 
|  | Matcher<int> m = Ge(5); | 
|  | EXPECT_EQ("is >= 5", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Gt(v) matches anything > v. | 
|  | TEST(GtTest, ImplementsGreaterThan) { | 
|  | Matcher<double> m1 = Gt(0); | 
|  | EXPECT_TRUE(m1.Matches(1.0)); | 
|  | EXPECT_FALSE(m1.Matches(0.0)); | 
|  | EXPECT_FALSE(m1.Matches(-1.0)); | 
|  | } | 
|  |  | 
|  | // Tests that Gt(v) describes itself properly. | 
|  | TEST(GtTest, CanDescribeSelf) { | 
|  | Matcher<int> m = Gt(5); | 
|  | EXPECT_EQ("is > 5", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Le(v) matches anything <= v. | 
|  | TEST(LeTest, ImplementsLessThanOrEqual) { | 
|  | Matcher<char> m1 = Le('b'); | 
|  | EXPECT_TRUE(m1.Matches('a')); | 
|  | EXPECT_TRUE(m1.Matches('b')); | 
|  | EXPECT_FALSE(m1.Matches('c')); | 
|  | } | 
|  |  | 
|  | // Tests that Le(v) describes itself properly. | 
|  | TEST(LeTest, CanDescribeSelf) { | 
|  | Matcher<int> m = Le(5); | 
|  | EXPECT_EQ("is <= 5", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Lt(v) matches anything < v. | 
|  | TEST(LtTest, ImplementsLessThan) { | 
|  | Matcher<const std::string&> m1 = Lt("Hello"); | 
|  | EXPECT_TRUE(m1.Matches("Abc")); | 
|  | EXPECT_FALSE(m1.Matches("Hello")); | 
|  | EXPECT_FALSE(m1.Matches("Hello, world!")); | 
|  | } | 
|  |  | 
|  | // Tests that Lt(v) describes itself properly. | 
|  | TEST(LtTest, CanDescribeSelf) { | 
|  | Matcher<int> m = Lt(5); | 
|  | EXPECT_EQ("is < 5", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Ne(v) matches anything != v. | 
|  | TEST(NeTest, ImplementsNotEqual) { | 
|  | Matcher<int> m1 = Ne(0); | 
|  | EXPECT_TRUE(m1.Matches(1)); | 
|  | EXPECT_TRUE(m1.Matches(-1)); | 
|  | EXPECT_FALSE(m1.Matches(0)); | 
|  | } | 
|  |  | 
|  | // Tests that Ne(v) describes itself properly. | 
|  | TEST(NeTest, CanDescribeSelf) { | 
|  | Matcher<int> m = Ne(5); | 
|  | EXPECT_EQ("isn't equal to 5", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that IsNull() matches any NULL pointer of any type. | 
|  | TEST(IsNullTest, MatchesNullPointer) { | 
|  | Matcher<int*> m1 = IsNull(); | 
|  | int* p1 = NULL; | 
|  | int n = 0; | 
|  | EXPECT_TRUE(m1.Matches(p1)); | 
|  | EXPECT_FALSE(m1.Matches(&n)); | 
|  |  | 
|  | Matcher<const char*> m2 = IsNull(); | 
|  | const char* p2 = NULL; | 
|  | EXPECT_TRUE(m2.Matches(p2)); | 
|  | EXPECT_FALSE(m2.Matches("hi")); | 
|  |  | 
|  | #if !GTEST_OS_SYMBIAN | 
|  | // Nokia's Symbian compiler generates: | 
|  | // gmock-matchers.h: ambiguous access to overloaded function | 
|  | // gmock-matchers.h: 'testing::Matcher<void *>::Matcher(void *)' | 
|  | // gmock-matchers.h: 'testing::Matcher<void *>::Matcher(const testing:: | 
|  | //     MatcherInterface<void *> *)' | 
|  | // gmock-matchers.h:  (point of instantiation: 'testing:: | 
|  | //     gmock_matchers_test::IsNullTest_MatchesNullPointer_Test::TestBody()') | 
|  | // gmock-matchers.h:   (instantiating: 'testing::PolymorphicMatc | 
|  | Matcher<void*> m3 = IsNull(); | 
|  | void* p3 = NULL; | 
|  | EXPECT_TRUE(m3.Matches(p3)); | 
|  | EXPECT_FALSE(m3.Matches(reinterpret_cast<void*>(0xbeef))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST(IsNullTest, LinkedPtr) { | 
|  | const Matcher<linked_ptr<int> > m = IsNull(); | 
|  | const linked_ptr<int> null_p; | 
|  | const linked_ptr<int> non_null_p(new int); | 
|  |  | 
|  | EXPECT_TRUE(m.Matches(null_p)); | 
|  | EXPECT_FALSE(m.Matches(non_null_p)); | 
|  | } | 
|  |  | 
|  | TEST(IsNullTest, ReferenceToConstLinkedPtr) { | 
|  | const Matcher<const linked_ptr<double>&> m = IsNull(); | 
|  | const linked_ptr<double> null_p; | 
|  | const linked_ptr<double> non_null_p(new double); | 
|  |  | 
|  | EXPECT_TRUE(m.Matches(null_p)); | 
|  | EXPECT_FALSE(m.Matches(non_null_p)); | 
|  | } | 
|  |  | 
|  | #if GTEST_LANG_CXX11 | 
|  | TEST(IsNullTest, StdFunction) { | 
|  | const Matcher<std::function<void()>> m = IsNull(); | 
|  |  | 
|  | EXPECT_TRUE(m.Matches(std::function<void()>())); | 
|  | EXPECT_FALSE(m.Matches([]{})); | 
|  | } | 
|  | #endif  // GTEST_LANG_CXX11 | 
|  |  | 
|  | // Tests that IsNull() describes itself properly. | 
|  | TEST(IsNullTest, CanDescribeSelf) { | 
|  | Matcher<int*> m = IsNull(); | 
|  | EXPECT_EQ("is NULL", Describe(m)); | 
|  | EXPECT_EQ("isn't NULL", DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | // Tests that NotNull() matches any non-NULL pointer of any type. | 
|  | TEST(NotNullTest, MatchesNonNullPointer) { | 
|  | Matcher<int*> m1 = NotNull(); | 
|  | int* p1 = NULL; | 
|  | int n = 0; | 
|  | EXPECT_FALSE(m1.Matches(p1)); | 
|  | EXPECT_TRUE(m1.Matches(&n)); | 
|  |  | 
|  | Matcher<const char*> m2 = NotNull(); | 
|  | const char* p2 = NULL; | 
|  | EXPECT_FALSE(m2.Matches(p2)); | 
|  | EXPECT_TRUE(m2.Matches("hi")); | 
|  | } | 
|  |  | 
|  | TEST(NotNullTest, LinkedPtr) { | 
|  | const Matcher<linked_ptr<int> > m = NotNull(); | 
|  | const linked_ptr<int> null_p; | 
|  | const linked_ptr<int> non_null_p(new int); | 
|  |  | 
|  | EXPECT_FALSE(m.Matches(null_p)); | 
|  | EXPECT_TRUE(m.Matches(non_null_p)); | 
|  | } | 
|  |  | 
|  | TEST(NotNullTest, ReferenceToConstLinkedPtr) { | 
|  | const Matcher<const linked_ptr<double>&> m = NotNull(); | 
|  | const linked_ptr<double> null_p; | 
|  | const linked_ptr<double> non_null_p(new double); | 
|  |  | 
|  | EXPECT_FALSE(m.Matches(null_p)); | 
|  | EXPECT_TRUE(m.Matches(non_null_p)); | 
|  | } | 
|  |  | 
|  | #if GTEST_LANG_CXX11 | 
|  | TEST(NotNullTest, StdFunction) { | 
|  | const Matcher<std::function<void()>> m = NotNull(); | 
|  |  | 
|  | EXPECT_TRUE(m.Matches([]{})); | 
|  | EXPECT_FALSE(m.Matches(std::function<void()>())); | 
|  | } | 
|  | #endif  // GTEST_LANG_CXX11 | 
|  |  | 
|  | // Tests that NotNull() describes itself properly. | 
|  | TEST(NotNullTest, CanDescribeSelf) { | 
|  | Matcher<int*> m = NotNull(); | 
|  | EXPECT_EQ("isn't NULL", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Ref(variable) matches an argument that references | 
|  | // 'variable'. | 
|  | TEST(RefTest, MatchesSameVariable) { | 
|  | int a = 0; | 
|  | int b = 0; | 
|  | Matcher<int&> m = Ref(a); | 
|  | EXPECT_TRUE(m.Matches(a)); | 
|  | EXPECT_FALSE(m.Matches(b)); | 
|  | } | 
|  |  | 
|  | // Tests that Ref(variable) describes itself properly. | 
|  | TEST(RefTest, CanDescribeSelf) { | 
|  | int n = 5; | 
|  | Matcher<int&> m = Ref(n); | 
|  | stringstream ss; | 
|  | ss << "references the variable @" << &n << " 5"; | 
|  | EXPECT_EQ(ss.str(), Describe(m)); | 
|  | } | 
|  |  | 
|  | // Test that Ref(non_const_varialbe) can be used as a matcher for a | 
|  | // const reference. | 
|  | TEST(RefTest, CanBeUsedAsMatcherForConstReference) { | 
|  | int a = 0; | 
|  | int b = 0; | 
|  | Matcher<const int&> m = Ref(a); | 
|  | EXPECT_TRUE(m.Matches(a)); | 
|  | EXPECT_FALSE(m.Matches(b)); | 
|  | } | 
|  |  | 
|  | // Tests that Ref(variable) is covariant, i.e. Ref(derived) can be | 
|  | // used wherever Ref(base) can be used (Ref(derived) is a sub-type | 
|  | // of Ref(base), but not vice versa. | 
|  |  | 
|  | TEST(RefTest, IsCovariant) { | 
|  | Base base, base2; | 
|  | Derived derived; | 
|  | Matcher<const Base&> m1 = Ref(base); | 
|  | EXPECT_TRUE(m1.Matches(base)); | 
|  | EXPECT_FALSE(m1.Matches(base2)); | 
|  | EXPECT_FALSE(m1.Matches(derived)); | 
|  |  | 
|  | m1 = Ref(derived); | 
|  | EXPECT_TRUE(m1.Matches(derived)); | 
|  | EXPECT_FALSE(m1.Matches(base)); | 
|  | EXPECT_FALSE(m1.Matches(base2)); | 
|  | } | 
|  |  | 
|  | TEST(RefTest, ExplainsResult) { | 
|  | int n = 0; | 
|  | EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), n), | 
|  | StartsWith("which is located @")); | 
|  |  | 
|  | int m = 0; | 
|  | EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), m), | 
|  | StartsWith("which is located @")); | 
|  | } | 
|  |  | 
|  | // Tests string comparison matchers. | 
|  |  | 
|  | TEST(StrEqTest, MatchesEqualString) { | 
|  | Matcher<const char*> m = StrEq(std::string("Hello")); | 
|  | EXPECT_TRUE(m.Matches("Hello")); | 
|  | EXPECT_FALSE(m.Matches("hello")); | 
|  | EXPECT_FALSE(m.Matches(NULL)); | 
|  |  | 
|  | Matcher<const std::string&> m2 = StrEq("Hello"); | 
|  | EXPECT_TRUE(m2.Matches("Hello")); | 
|  | EXPECT_FALSE(m2.Matches("Hi")); | 
|  |  | 
|  | #if GTEST_HAS_ABSL | 
|  | Matcher<const absl::string_view&> m3 = StrEq("Hello"); | 
|  | EXPECT_TRUE(m3.Matches(absl::string_view("Hello"))); | 
|  | EXPECT_FALSE(m3.Matches(absl::string_view("hello"))); | 
|  | EXPECT_FALSE(m3.Matches(absl::string_view())); | 
|  | #endif  // GTEST_HAS_ABSL | 
|  | } | 
|  |  | 
|  | TEST(StrEqTest, CanDescribeSelf) { | 
|  | Matcher<std::string> m = StrEq("Hi-\'\"?\\\a\b\f\n\r\t\v\xD3"); | 
|  | EXPECT_EQ("is equal to \"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\xD3\"", | 
|  | Describe(m)); | 
|  |  | 
|  | std::string str("01204500800"); | 
|  | str[3] = '\0'; | 
|  | Matcher<std::string> m2 = StrEq(str); | 
|  | EXPECT_EQ("is equal to \"012\\04500800\"", Describe(m2)); | 
|  | str[0] = str[6] = str[7] = str[9] = str[10] = '\0'; | 
|  | Matcher<std::string> m3 = StrEq(str); | 
|  | EXPECT_EQ("is equal to \"\\012\\045\\0\\08\\0\\0\"", Describe(m3)); | 
|  | } | 
|  |  | 
|  | TEST(StrNeTest, MatchesUnequalString) { | 
|  | Matcher<const char*> m = StrNe("Hello"); | 
|  | EXPECT_TRUE(m.Matches("")); | 
|  | EXPECT_TRUE(m.Matches(NULL)); | 
|  | EXPECT_FALSE(m.Matches("Hello")); | 
|  |  | 
|  | Matcher<std::string> m2 = StrNe(std::string("Hello")); | 
|  | EXPECT_TRUE(m2.Matches("hello")); | 
|  | EXPECT_FALSE(m2.Matches("Hello")); | 
|  |  | 
|  | #if GTEST_HAS_ABSL | 
|  | Matcher<const absl::string_view> m3 = StrNe("Hello"); | 
|  | EXPECT_TRUE(m3.Matches(absl::string_view(""))); | 
|  | EXPECT_TRUE(m3.Matches(absl::string_view())); | 
|  | EXPECT_FALSE(m3.Matches(absl::string_view("Hello"))); | 
|  | #endif  // GTEST_HAS_ABSL | 
|  | } | 
|  |  | 
|  | TEST(StrNeTest, CanDescribeSelf) { | 
|  | Matcher<const char*> m = StrNe("Hi"); | 
|  | EXPECT_EQ("isn't equal to \"Hi\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | TEST(StrCaseEqTest, MatchesEqualStringIgnoringCase) { | 
|  | Matcher<const char*> m = StrCaseEq(std::string("Hello")); | 
|  | EXPECT_TRUE(m.Matches("Hello")); | 
|  | EXPECT_TRUE(m.Matches("hello")); | 
|  | EXPECT_FALSE(m.Matches("Hi")); | 
|  | EXPECT_FALSE(m.Matches(NULL)); | 
|  |  | 
|  | Matcher<const std::string&> m2 = StrCaseEq("Hello"); | 
|  | EXPECT_TRUE(m2.Matches("hello")); | 
|  | EXPECT_FALSE(m2.Matches("Hi")); | 
|  |  | 
|  | #if GTEST_HAS_ABSL | 
|  | Matcher<const absl::string_view&> m3 = StrCaseEq(std::string("Hello")); | 
|  | EXPECT_TRUE(m3.Matches(absl::string_view("Hello"))); | 
|  | EXPECT_TRUE(m3.Matches(absl::string_view("hello"))); | 
|  | EXPECT_FALSE(m3.Matches(absl::string_view("Hi"))); | 
|  | EXPECT_FALSE(m3.Matches(absl::string_view())); | 
|  | #endif  // GTEST_HAS_ABSL | 
|  | } | 
|  |  | 
|  | TEST(StrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { | 
|  | std::string str1("oabocdooeoo"); | 
|  | std::string str2("OABOCDOOEOO"); | 
|  | Matcher<const std::string&> m0 = StrCaseEq(str1); | 
|  | EXPECT_FALSE(m0.Matches(str2 + std::string(1, '\0'))); | 
|  |  | 
|  | str1[3] = str2[3] = '\0'; | 
|  | Matcher<const std::string&> m1 = StrCaseEq(str1); | 
|  | EXPECT_TRUE(m1.Matches(str2)); | 
|  |  | 
|  | str1[0] = str1[6] = str1[7] = str1[10] = '\0'; | 
|  | str2[0] = str2[6] = str2[7] = str2[10] = '\0'; | 
|  | Matcher<const std::string&> m2 = StrCaseEq(str1); | 
|  | str1[9] = str2[9] = '\0'; | 
|  | EXPECT_FALSE(m2.Matches(str2)); | 
|  |  | 
|  | Matcher<const std::string&> m3 = StrCaseEq(str1); | 
|  | EXPECT_TRUE(m3.Matches(str2)); | 
|  |  | 
|  | EXPECT_FALSE(m3.Matches(str2 + "x")); | 
|  | str2.append(1, '\0'); | 
|  | EXPECT_FALSE(m3.Matches(str2)); | 
|  | EXPECT_FALSE(m3.Matches(std::string(str2, 0, 9))); | 
|  | } | 
|  |  | 
|  | TEST(StrCaseEqTest, CanDescribeSelf) { | 
|  | Matcher<std::string> m = StrCaseEq("Hi"); | 
|  | EXPECT_EQ("is equal to (ignoring case) \"Hi\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | TEST(StrCaseNeTest, MatchesUnequalStringIgnoringCase) { | 
|  | Matcher<const char*> m = StrCaseNe("Hello"); | 
|  | EXPECT_TRUE(m.Matches("Hi")); | 
|  | EXPECT_TRUE(m.Matches(NULL)); | 
|  | EXPECT_FALSE(m.Matches("Hello")); | 
|  | EXPECT_FALSE(m.Matches("hello")); | 
|  |  | 
|  | Matcher<std::string> m2 = StrCaseNe(std::string("Hello")); | 
|  | EXPECT_TRUE(m2.Matches("")); | 
|  | EXPECT_FALSE(m2.Matches("Hello")); | 
|  |  | 
|  | #if GTEST_HAS_ABSL | 
|  | Matcher<const absl::string_view> m3 = StrCaseNe("Hello"); | 
|  | EXPECT_TRUE(m3.Matches(absl::string_view("Hi"))); | 
|  | EXPECT_TRUE(m3.Matches(absl::string_view())); | 
|  | EXPECT_FALSE(m3.Matches(absl::string_view("Hello"))); | 
|  | EXPECT_FALSE(m3.Matches(absl::string_view("hello"))); | 
|  | #endif  // GTEST_HAS_ABSL | 
|  | } | 
|  |  | 
|  | TEST(StrCaseNeTest, CanDescribeSelf) { | 
|  | Matcher<const char*> m = StrCaseNe("Hi"); | 
|  | EXPECT_EQ("isn't equal to (ignoring case) \"Hi\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that HasSubstr() works for matching string-typed values. | 
|  | TEST(HasSubstrTest, WorksForStringClasses) { | 
|  | const Matcher<std::string> m1 = HasSubstr("foo"); | 
|  | EXPECT_TRUE(m1.Matches(std::string("I love food."))); | 
|  | EXPECT_FALSE(m1.Matches(std::string("tofo"))); | 
|  |  | 
|  | const Matcher<const std::string&> m2 = HasSubstr("foo"); | 
|  | EXPECT_TRUE(m2.Matches(std::string("I love food."))); | 
|  | EXPECT_FALSE(m2.Matches(std::string("tofo"))); | 
|  | } | 
|  |  | 
|  | // Tests that HasSubstr() works for matching C-string-typed values. | 
|  | TEST(HasSubstrTest, WorksForCStrings) { | 
|  | const Matcher<char*> m1 = HasSubstr("foo"); | 
|  | EXPECT_TRUE(m1.Matches(const_cast<char*>("I love food."))); | 
|  | EXPECT_FALSE(m1.Matches(const_cast<char*>("tofo"))); | 
|  | EXPECT_FALSE(m1.Matches(NULL)); | 
|  |  | 
|  | const Matcher<const char*> m2 = HasSubstr("foo"); | 
|  | EXPECT_TRUE(m2.Matches("I love food.")); | 
|  | EXPECT_FALSE(m2.Matches("tofo")); | 
|  | EXPECT_FALSE(m2.Matches(NULL)); | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_ABSL | 
|  | // Tests that HasSubstr() works for matching absl::string_view-typed values. | 
|  | TEST(HasSubstrTest, WorksForStringViewClasses) { | 
|  | const Matcher<absl::string_view> m1 = HasSubstr("foo"); | 
|  | EXPECT_TRUE(m1.Matches(absl::string_view("I love food."))); | 
|  | EXPECT_FALSE(m1.Matches(absl::string_view("tofo"))); | 
|  | EXPECT_FALSE(m1.Matches(absl::string_view())); | 
|  |  | 
|  | const Matcher<const absl::string_view&> m2 = HasSubstr("foo"); | 
|  | EXPECT_TRUE(m2.Matches(absl::string_view("I love food."))); | 
|  | EXPECT_FALSE(m2.Matches(absl::string_view("tofo"))); | 
|  | EXPECT_FALSE(m2.Matches(absl::string_view())); | 
|  |  | 
|  | const Matcher<const absl::string_view&> m3 = HasSubstr(""); | 
|  | EXPECT_TRUE(m3.Matches(absl::string_view("foo"))); | 
|  | EXPECT_FALSE(m3.Matches(absl::string_view())); | 
|  | } | 
|  | #endif  // GTEST_HAS_ABSL | 
|  |  | 
|  | // Tests that HasSubstr(s) describes itself properly. | 
|  | TEST(HasSubstrTest, CanDescribeSelf) { | 
|  | Matcher<std::string> m = HasSubstr("foo\n\""); | 
|  | EXPECT_EQ("has substring \"foo\\n\\\"\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | TEST(KeyTest, CanDescribeSelf) { | 
|  | Matcher<const pair<std::string, int>&> m = Key("foo"); | 
|  | EXPECT_EQ("has a key that is equal to \"foo\"", Describe(m)); | 
|  | EXPECT_EQ("doesn't have a key that is equal to \"foo\"", DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | TEST(KeyTest, ExplainsResult) { | 
|  | Matcher<pair<int, bool> > m = Key(GreaterThan(10)); | 
|  | EXPECT_EQ("whose first field is a value which is 5 less than 10", | 
|  | Explain(m, make_pair(5, true))); | 
|  | EXPECT_EQ("whose first field is a value which is 5 more than 10", | 
|  | Explain(m, make_pair(15, true))); | 
|  | } | 
|  |  | 
|  | TEST(KeyTest, MatchesCorrectly) { | 
|  | pair<int, std::string> p(25, "foo"); | 
|  | EXPECT_THAT(p, Key(25)); | 
|  | EXPECT_THAT(p, Not(Key(42))); | 
|  | EXPECT_THAT(p, Key(Ge(20))); | 
|  | EXPECT_THAT(p, Not(Key(Lt(25)))); | 
|  | } | 
|  |  | 
|  | #if GTEST_LANG_CXX11 | 
|  | template <size_t I> | 
|  | struct Tag {}; | 
|  |  | 
|  | struct PairWithGet { | 
|  | int member_1; | 
|  | string member_2; | 
|  | using first_type = int; | 
|  | using second_type = string; | 
|  |  | 
|  | const int& GetImpl(Tag<0>) const { return member_1; } | 
|  | const string& GetImpl(Tag<1>) const { return member_2; } | 
|  | }; | 
|  | template <size_t I> | 
|  | auto get(const PairWithGet& value) -> decltype(value.GetImpl(Tag<I>())) { | 
|  | return value.GetImpl(Tag<I>()); | 
|  | } | 
|  | TEST(PairTest, MatchesPairWithGetCorrectly) { | 
|  | PairWithGet p{25, "foo"}; | 
|  | EXPECT_THAT(p, Key(25)); | 
|  | EXPECT_THAT(p, Not(Key(42))); | 
|  | EXPECT_THAT(p, Key(Ge(20))); | 
|  | EXPECT_THAT(p, Not(Key(Lt(25)))); | 
|  |  | 
|  | std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}}; | 
|  | EXPECT_THAT(v, Contains(Key(29))); | 
|  | } | 
|  | #endif  // GTEST_LANG_CXX11 | 
|  |  | 
|  | TEST(KeyTest, SafelyCastsInnerMatcher) { | 
|  | Matcher<int> is_positive = Gt(0); | 
|  | Matcher<int> is_negative = Lt(0); | 
|  | pair<char, bool> p('a', true); | 
|  | EXPECT_THAT(p, Key(is_positive)); | 
|  | EXPECT_THAT(p, Not(Key(is_negative))); | 
|  | } | 
|  |  | 
|  | TEST(KeyTest, InsideContainsUsingMap) { | 
|  | map<int, char> container; | 
|  | container.insert(make_pair(1, 'a')); | 
|  | container.insert(make_pair(2, 'b')); | 
|  | container.insert(make_pair(4, 'c')); | 
|  | EXPECT_THAT(container, Contains(Key(1))); | 
|  | EXPECT_THAT(container, Not(Contains(Key(3)))); | 
|  | } | 
|  |  | 
|  | TEST(KeyTest, InsideContainsUsingMultimap) { | 
|  | multimap<int, char> container; | 
|  | container.insert(make_pair(1, 'a')); | 
|  | container.insert(make_pair(2, 'b')); | 
|  | container.insert(make_pair(4, 'c')); | 
|  |  | 
|  | EXPECT_THAT(container, Not(Contains(Key(25)))); | 
|  | container.insert(make_pair(25, 'd')); | 
|  | EXPECT_THAT(container, Contains(Key(25))); | 
|  | container.insert(make_pair(25, 'e')); | 
|  | EXPECT_THAT(container, Contains(Key(25))); | 
|  |  | 
|  | EXPECT_THAT(container, Contains(Key(1))); | 
|  | EXPECT_THAT(container, Not(Contains(Key(3)))); | 
|  | } | 
|  |  | 
|  | TEST(PairTest, Typing) { | 
|  | // Test verifies the following type conversions can be compiled. | 
|  | Matcher<const pair<const char*, int>&> m1 = Pair("foo", 42); | 
|  | Matcher<const pair<const char*, int> > m2 = Pair("foo", 42); | 
|  | Matcher<pair<const char*, int> > m3 = Pair("foo", 42); | 
|  |  | 
|  | Matcher<pair<int, const std::string> > m4 = Pair(25, "42"); | 
|  | Matcher<pair<const std::string, int> > m5 = Pair("25", 42); | 
|  | } | 
|  |  | 
|  | TEST(PairTest, CanDescribeSelf) { | 
|  | Matcher<const pair<std::string, int>&> m1 = Pair("foo", 42); | 
|  | EXPECT_EQ("has a first field that is equal to \"foo\"" | 
|  | ", and has a second field that is equal to 42", | 
|  | Describe(m1)); | 
|  | EXPECT_EQ("has a first field that isn't equal to \"foo\"" | 
|  | ", or has a second field that isn't equal to 42", | 
|  | DescribeNegation(m1)); | 
|  | // Double and triple negation (1 or 2 times not and description of negation). | 
|  | Matcher<const pair<int, int>&> m2 = Not(Pair(Not(13), 42)); | 
|  | EXPECT_EQ("has a first field that isn't equal to 13" | 
|  | ", and has a second field that is equal to 42", | 
|  | DescribeNegation(m2)); | 
|  | } | 
|  |  | 
|  | TEST(PairTest, CanExplainMatchResultTo) { | 
|  | // If neither field matches, Pair() should explain about the first | 
|  | // field. | 
|  | const Matcher<pair<int, int> > m = Pair(GreaterThan(0), GreaterThan(0)); | 
|  | EXPECT_EQ("whose first field does not match, which is 1 less than 0", | 
|  | Explain(m, make_pair(-1, -2))); | 
|  |  | 
|  | // If the first field matches but the second doesn't, Pair() should | 
|  | // explain about the second field. | 
|  | EXPECT_EQ("whose second field does not match, which is 2 less than 0", | 
|  | Explain(m, make_pair(1, -2))); | 
|  |  | 
|  | // If the first field doesn't match but the second does, Pair() | 
|  | // should explain about the first field. | 
|  | EXPECT_EQ("whose first field does not match, which is 1 less than 0", | 
|  | Explain(m, make_pair(-1, 2))); | 
|  |  | 
|  | // If both fields match, Pair() should explain about them both. | 
|  | EXPECT_EQ("whose both fields match, where the first field is a value " | 
|  | "which is 1 more than 0, and the second field is a value " | 
|  | "which is 2 more than 0", | 
|  | Explain(m, make_pair(1, 2))); | 
|  |  | 
|  | // If only the first match has an explanation, only this explanation should | 
|  | // be printed. | 
|  | const Matcher<pair<int, int> > explain_first = Pair(GreaterThan(0), 0); | 
|  | EXPECT_EQ("whose both fields match, where the first field is a value " | 
|  | "which is 1 more than 0", | 
|  | Explain(explain_first, make_pair(1, 0))); | 
|  |  | 
|  | // If only the second match has an explanation, only this explanation should | 
|  | // be printed. | 
|  | const Matcher<pair<int, int> > explain_second = Pair(0, GreaterThan(0)); | 
|  | EXPECT_EQ("whose both fields match, where the second field is a value " | 
|  | "which is 1 more than 0", | 
|  | Explain(explain_second, make_pair(0, 1))); | 
|  | } | 
|  |  | 
|  | TEST(PairTest, MatchesCorrectly) { | 
|  | pair<int, std::string> p(25, "foo"); | 
|  |  | 
|  | // Both fields match. | 
|  | EXPECT_THAT(p, Pair(25, "foo")); | 
|  | EXPECT_THAT(p, Pair(Ge(20), HasSubstr("o"))); | 
|  |  | 
|  | // 'first' doesnt' match, but 'second' matches. | 
|  | EXPECT_THAT(p, Not(Pair(42, "foo"))); | 
|  | EXPECT_THAT(p, Not(Pair(Lt(25), "foo"))); | 
|  |  | 
|  | // 'first' matches, but 'second' doesn't match. | 
|  | EXPECT_THAT(p, Not(Pair(25, "bar"))); | 
|  | EXPECT_THAT(p, Not(Pair(25, Not("foo")))); | 
|  |  | 
|  | // Neither field matches. | 
|  | EXPECT_THAT(p, Not(Pair(13, "bar"))); | 
|  | EXPECT_THAT(p, Not(Pair(Lt(13), HasSubstr("a")))); | 
|  | } | 
|  |  | 
|  | TEST(PairTest, SafelyCastsInnerMatchers) { | 
|  | Matcher<int> is_positive = Gt(0); | 
|  | Matcher<int> is_negative = Lt(0); | 
|  | pair<char, bool> p('a', true); | 
|  | EXPECT_THAT(p, Pair(is_positive, _)); | 
|  | EXPECT_THAT(p, Not(Pair(is_negative, _))); | 
|  | EXPECT_THAT(p, Pair(_, is_positive)); | 
|  | EXPECT_THAT(p, Not(Pair(_, is_negative))); | 
|  | } | 
|  |  | 
|  | TEST(PairTest, InsideContainsUsingMap) { | 
|  | map<int, char> container; | 
|  | container.insert(make_pair(1, 'a')); | 
|  | container.insert(make_pair(2, 'b')); | 
|  | container.insert(make_pair(4, 'c')); | 
|  | EXPECT_THAT(container, Contains(Pair(1, 'a'))); | 
|  | EXPECT_THAT(container, Contains(Pair(1, _))); | 
|  | EXPECT_THAT(container, Contains(Pair(_, 'a'))); | 
|  | EXPECT_THAT(container, Not(Contains(Pair(3, _)))); | 
|  | } | 
|  |  | 
|  | #if GTEST_LANG_CXX11 | 
|  | TEST(PairTest, UseGetInsteadOfMembers) { | 
|  | PairWithGet pair{7, "ABC"}; | 
|  | EXPECT_THAT(pair, Pair(7, "ABC")); | 
|  | EXPECT_THAT(pair, Pair(Ge(7), HasSubstr("AB"))); | 
|  | EXPECT_THAT(pair, Not(Pair(Lt(7), "ABC"))); | 
|  |  | 
|  | std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}}; | 
|  | EXPECT_THAT(v, ElementsAre(Pair(11, string("Foo")), Pair(Ge(10), Not("")))); | 
|  | } | 
|  | #endif  // GTEST_LANG_CXX11 | 
|  |  | 
|  | // Tests StartsWith(s). | 
|  |  | 
|  | TEST(StartsWithTest, MatchesStringWithGivenPrefix) { | 
|  | const Matcher<const char*> m1 = StartsWith(std::string("")); | 
|  | EXPECT_TRUE(m1.Matches("Hi")); | 
|  | EXPECT_TRUE(m1.Matches("")); | 
|  | EXPECT_FALSE(m1.Matches(NULL)); | 
|  |  | 
|  | const Matcher<const std::string&> m2 = StartsWith("Hi"); | 
|  | EXPECT_TRUE(m2.Matches("Hi")); | 
|  | EXPECT_TRUE(m2.Matches("Hi Hi!")); | 
|  | EXPECT_TRUE(m2.Matches("High")); | 
|  | EXPECT_FALSE(m2.Matches("H")); | 
|  | EXPECT_FALSE(m2.Matches(" Hi")); | 
|  | } | 
|  |  | 
|  | TEST(StartsWithTest, CanDescribeSelf) { | 
|  | Matcher<const std::string> m = StartsWith("Hi"); | 
|  | EXPECT_EQ("starts with \"Hi\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests EndsWith(s). | 
|  |  | 
|  | TEST(EndsWithTest, MatchesStringWithGivenSuffix) { | 
|  | const Matcher<const char*> m1 = EndsWith(""); | 
|  | EXPECT_TRUE(m1.Matches("Hi")); | 
|  | EXPECT_TRUE(m1.Matches("")); | 
|  | EXPECT_FALSE(m1.Matches(NULL)); | 
|  |  | 
|  | const Matcher<const std::string&> m2 = EndsWith(std::string("Hi")); | 
|  | EXPECT_TRUE(m2.Matches("Hi")); | 
|  | EXPECT_TRUE(m2.Matches("Wow Hi Hi")); | 
|  | EXPECT_TRUE(m2.Matches("Super Hi")); | 
|  | EXPECT_FALSE(m2.Matches("i")); | 
|  | EXPECT_FALSE(m2.Matches("Hi ")); | 
|  |  | 
|  | #if GTEST_HAS_GLOBAL_STRING | 
|  | const Matcher<const ::string&> m3 = EndsWith(::string("Hi")); | 
|  | EXPECT_TRUE(m3.Matches("Hi")); | 
|  | EXPECT_TRUE(m3.Matches("Wow Hi Hi")); | 
|  | EXPECT_TRUE(m3.Matches("Super Hi")); | 
|  | EXPECT_FALSE(m3.Matches("i")); | 
|  | EXPECT_FALSE(m3.Matches("Hi ")); | 
|  | #endif  // GTEST_HAS_GLOBAL_STRING | 
|  |  | 
|  | #if GTEST_HAS_ABSL | 
|  | const Matcher<const absl::string_view&> m4 = EndsWith(""); | 
|  | EXPECT_TRUE(m4.Matches("Hi")); | 
|  | EXPECT_TRUE(m4.Matches("")); | 
|  | // Default-constructed absl::string_view should not match anything, in order | 
|  | // to distinguish it from an empty string. | 
|  | EXPECT_FALSE(m4.Matches(absl::string_view())); | 
|  | #endif  // GTEST_HAS_ABSL | 
|  | } | 
|  |  | 
|  | TEST(EndsWithTest, CanDescribeSelf) { | 
|  | Matcher<const std::string> m = EndsWith("Hi"); | 
|  | EXPECT_EQ("ends with \"Hi\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests MatchesRegex(). | 
|  |  | 
|  | TEST(MatchesRegexTest, MatchesStringMatchingGivenRegex) { | 
|  | const Matcher<const char*> m1 = MatchesRegex("a.*z"); | 
|  | EXPECT_TRUE(m1.Matches("az")); | 
|  | EXPECT_TRUE(m1.Matches("abcz")); | 
|  | EXPECT_FALSE(m1.Matches(NULL)); | 
|  |  | 
|  | const Matcher<const std::string&> m2 = MatchesRegex(new RE("a.*z")); | 
|  | EXPECT_TRUE(m2.Matches("azbz")); | 
|  | EXPECT_FALSE(m2.Matches("az1")); | 
|  | EXPECT_FALSE(m2.Matches("1az")); | 
|  |  | 
|  | #if GTEST_HAS_ABSL | 
|  | const Matcher<const absl::string_view&> m3 = MatchesRegex("a.*z"); | 
|  | EXPECT_TRUE(m3.Matches(absl::string_view("az"))); | 
|  | EXPECT_TRUE(m3.Matches(absl::string_view("abcz"))); | 
|  | EXPECT_FALSE(m3.Matches(absl::string_view("1az"))); | 
|  | // Default-constructed absl::string_view should not match anything, in order | 
|  | // to distinguish it from an empty string. | 
|  | EXPECT_FALSE(m3.Matches(absl::string_view())); | 
|  | const Matcher<const absl::string_view&> m4 = MatchesRegex(""); | 
|  | EXPECT_FALSE(m4.Matches(absl::string_view())); | 
|  | #endif  // GTEST_HAS_ABSL | 
|  | } | 
|  |  | 
|  | TEST(MatchesRegexTest, CanDescribeSelf) { | 
|  | Matcher<const std::string> m1 = MatchesRegex(std::string("Hi.*")); | 
|  | EXPECT_EQ("matches regular expression \"Hi.*\"", Describe(m1)); | 
|  |  | 
|  | Matcher<const char*> m2 = MatchesRegex(new RE("a.*")); | 
|  | EXPECT_EQ("matches regular expression \"a.*\"", Describe(m2)); | 
|  |  | 
|  | #if GTEST_HAS_ABSL | 
|  | Matcher<const absl::string_view> m3 = MatchesRegex(new RE("0.*")); | 
|  | EXPECT_EQ("matches regular expression \"0.*\"", Describe(m3)); | 
|  | #endif  // GTEST_HAS_ABSL | 
|  | } | 
|  |  | 
|  | // Tests ContainsRegex(). | 
|  |  | 
|  | TEST(ContainsRegexTest, MatchesStringContainingGivenRegex) { | 
|  | const Matcher<const char*> m1 = ContainsRegex(std::string("a.*z")); | 
|  | EXPECT_TRUE(m1.Matches("az")); | 
|  | EXPECT_TRUE(m1.Matches("0abcz1")); | 
|  | EXPECT_FALSE(m1.Matches(NULL)); | 
|  |  | 
|  | const Matcher<const std::string&> m2 = ContainsRegex(new RE("a.*z")); | 
|  | EXPECT_TRUE(m2.Matches("azbz")); | 
|  | EXPECT_TRUE(m2.Matches("az1")); | 
|  | EXPECT_FALSE(m2.Matches("1a")); | 
|  |  | 
|  | #if GTEST_HAS_ABSL | 
|  | const Matcher<const absl::string_view&> m3 = ContainsRegex(new RE("a.*z")); | 
|  | EXPECT_TRUE(m3.Matches(absl::string_view("azbz"))); | 
|  | EXPECT_TRUE(m3.Matches(absl::string_view("az1"))); | 
|  | EXPECT_FALSE(m3.Matches(absl::string_view("1a"))); | 
|  | // Default-constructed absl::string_view should not match anything, in order | 
|  | // to distinguish it from an empty string. | 
|  | EXPECT_FALSE(m3.Matches(absl::string_view())); | 
|  | const Matcher<const absl::string_view&> m4 = ContainsRegex(""); | 
|  | EXPECT_FALSE(m4.Matches(absl::string_view())); | 
|  | #endif  // GTEST_HAS_ABSL | 
|  | } | 
|  |  | 
|  | TEST(ContainsRegexTest, CanDescribeSelf) { | 
|  | Matcher<const std::string> m1 = ContainsRegex("Hi.*"); | 
|  | EXPECT_EQ("contains regular expression \"Hi.*\"", Describe(m1)); | 
|  |  | 
|  | Matcher<const char*> m2 = ContainsRegex(new RE("a.*")); | 
|  | EXPECT_EQ("contains regular expression \"a.*\"", Describe(m2)); | 
|  |  | 
|  | #if GTEST_HAS_ABSL | 
|  | Matcher<const absl::string_view> m3 = ContainsRegex(new RE("0.*")); | 
|  | EXPECT_EQ("contains regular expression \"0.*\"", Describe(m3)); | 
|  | #endif  // GTEST_HAS_ABSL | 
|  | } | 
|  |  | 
|  | // Tests for wide strings. | 
|  | #if GTEST_HAS_STD_WSTRING | 
|  | TEST(StdWideStrEqTest, MatchesEqual) { | 
|  | Matcher<const wchar_t*> m = StrEq(::std::wstring(L"Hello")); | 
|  | EXPECT_TRUE(m.Matches(L"Hello")); | 
|  | EXPECT_FALSE(m.Matches(L"hello")); | 
|  | EXPECT_FALSE(m.Matches(NULL)); | 
|  |  | 
|  | Matcher<const ::std::wstring&> m2 = StrEq(L"Hello"); | 
|  | EXPECT_TRUE(m2.Matches(L"Hello")); | 
|  | EXPECT_FALSE(m2.Matches(L"Hi")); | 
|  |  | 
|  | Matcher<const ::std::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D"); | 
|  | EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D")); | 
|  | EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E")); | 
|  |  | 
|  | ::std::wstring str(L"01204500800"); | 
|  | str[3] = L'\0'; | 
|  | Matcher<const ::std::wstring&> m4 = StrEq(str); | 
|  | EXPECT_TRUE(m4.Matches(str)); | 
|  | str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; | 
|  | Matcher<const ::std::wstring&> m5 = StrEq(str); | 
|  | EXPECT_TRUE(m5.Matches(str)); | 
|  | } | 
|  |  | 
|  | TEST(StdWideStrEqTest, CanDescribeSelf) { | 
|  | Matcher< ::std::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v"); | 
|  | EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"", | 
|  | Describe(m)); | 
|  |  | 
|  | Matcher< ::std::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D"); | 
|  | EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"", | 
|  | Describe(m2)); | 
|  |  | 
|  | ::std::wstring str(L"01204500800"); | 
|  | str[3] = L'\0'; | 
|  | Matcher<const ::std::wstring&> m4 = StrEq(str); | 
|  | EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4)); | 
|  | str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; | 
|  | Matcher<const ::std::wstring&> m5 = StrEq(str); | 
|  | EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5)); | 
|  | } | 
|  |  | 
|  | TEST(StdWideStrNeTest, MatchesUnequalString) { | 
|  | Matcher<const wchar_t*> m = StrNe(L"Hello"); | 
|  | EXPECT_TRUE(m.Matches(L"")); | 
|  | EXPECT_TRUE(m.Matches(NULL)); | 
|  | EXPECT_FALSE(m.Matches(L"Hello")); | 
|  |  | 
|  | Matcher< ::std::wstring> m2 = StrNe(::std::wstring(L"Hello")); | 
|  | EXPECT_TRUE(m2.Matches(L"hello")); | 
|  | EXPECT_FALSE(m2.Matches(L"Hello")); | 
|  | } | 
|  |  | 
|  | TEST(StdWideStrNeTest, CanDescribeSelf) { | 
|  | Matcher<const wchar_t*> m = StrNe(L"Hi"); | 
|  | EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | TEST(StdWideStrCaseEqTest, MatchesEqualStringIgnoringCase) { | 
|  | Matcher<const wchar_t*> m = StrCaseEq(::std::wstring(L"Hello")); | 
|  | EXPECT_TRUE(m.Matches(L"Hello")); | 
|  | EXPECT_TRUE(m.Matches(L"hello")); | 
|  | EXPECT_FALSE(m.Matches(L"Hi")); | 
|  | EXPECT_FALSE(m.Matches(NULL)); | 
|  |  | 
|  | Matcher<const ::std::wstring&> m2 = StrCaseEq(L"Hello"); | 
|  | EXPECT_TRUE(m2.Matches(L"hello")); | 
|  | EXPECT_FALSE(m2.Matches(L"Hi")); | 
|  | } | 
|  |  | 
|  | TEST(StdWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { | 
|  | ::std::wstring str1(L"oabocdooeoo"); | 
|  | ::std::wstring str2(L"OABOCDOOEOO"); | 
|  | Matcher<const ::std::wstring&> m0 = StrCaseEq(str1); | 
|  | EXPECT_FALSE(m0.Matches(str2 + ::std::wstring(1, L'\0'))); | 
|  |  | 
|  | str1[3] = str2[3] = L'\0'; | 
|  | Matcher<const ::std::wstring&> m1 = StrCaseEq(str1); | 
|  | EXPECT_TRUE(m1.Matches(str2)); | 
|  |  | 
|  | str1[0] = str1[6] = str1[7] = str1[10] = L'\0'; | 
|  | str2[0] = str2[6] = str2[7] = str2[10] = L'\0'; | 
|  | Matcher<const ::std::wstring&> m2 = StrCaseEq(str1); | 
|  | str1[9] = str2[9] = L'\0'; | 
|  | EXPECT_FALSE(m2.Matches(str2)); | 
|  |  | 
|  | Matcher<const ::std::wstring&> m3 = StrCaseEq(str1); | 
|  | EXPECT_TRUE(m3.Matches(str2)); | 
|  |  | 
|  | EXPECT_FALSE(m3.Matches(str2 + L"x")); | 
|  | str2.append(1, L'\0'); | 
|  | EXPECT_FALSE(m3.Matches(str2)); | 
|  | EXPECT_FALSE(m3.Matches(::std::wstring(str2, 0, 9))); | 
|  | } | 
|  |  | 
|  | TEST(StdWideStrCaseEqTest, CanDescribeSelf) { | 
|  | Matcher< ::std::wstring> m = StrCaseEq(L"Hi"); | 
|  | EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | TEST(StdWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) { | 
|  | Matcher<const wchar_t*> m = StrCaseNe(L"Hello"); | 
|  | EXPECT_TRUE(m.Matches(L"Hi")); | 
|  | EXPECT_TRUE(m.Matches(NULL)); | 
|  | EXPECT_FALSE(m.Matches(L"Hello")); | 
|  | EXPECT_FALSE(m.Matches(L"hello")); | 
|  |  | 
|  | Matcher< ::std::wstring> m2 = StrCaseNe(::std::wstring(L"Hello")); | 
|  | EXPECT_TRUE(m2.Matches(L"")); | 
|  | EXPECT_FALSE(m2.Matches(L"Hello")); | 
|  | } | 
|  |  | 
|  | TEST(StdWideStrCaseNeTest, CanDescribeSelf) { | 
|  | Matcher<const wchar_t*> m = StrCaseNe(L"Hi"); | 
|  | EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that HasSubstr() works for matching wstring-typed values. | 
|  | TEST(StdWideHasSubstrTest, WorksForStringClasses) { | 
|  | const Matcher< ::std::wstring> m1 = HasSubstr(L"foo"); | 
|  | EXPECT_TRUE(m1.Matches(::std::wstring(L"I love food."))); | 
|  | EXPECT_FALSE(m1.Matches(::std::wstring(L"tofo"))); | 
|  |  | 
|  | const Matcher<const ::std::wstring&> m2 = HasSubstr(L"foo"); | 
|  | EXPECT_TRUE(m2.Matches(::std::wstring(L"I love food."))); | 
|  | EXPECT_FALSE(m2.Matches(::std::wstring(L"tofo"))); | 
|  | } | 
|  |  | 
|  | // Tests that HasSubstr() works for matching C-wide-string-typed values. | 
|  | TEST(StdWideHasSubstrTest, WorksForCStrings) { | 
|  | const Matcher<wchar_t*> m1 = HasSubstr(L"foo"); | 
|  | EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food."))); | 
|  | EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo"))); | 
|  | EXPECT_FALSE(m1.Matches(NULL)); | 
|  |  | 
|  | const Matcher<const wchar_t*> m2 = HasSubstr(L"foo"); | 
|  | EXPECT_TRUE(m2.Matches(L"I love food.")); | 
|  | EXPECT_FALSE(m2.Matches(L"tofo")); | 
|  | EXPECT_FALSE(m2.Matches(NULL)); | 
|  | } | 
|  |  | 
|  | // Tests that HasSubstr(s) describes itself properly. | 
|  | TEST(StdWideHasSubstrTest, CanDescribeSelf) { | 
|  | Matcher< ::std::wstring> m = HasSubstr(L"foo\n\""); | 
|  | EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests StartsWith(s). | 
|  |  | 
|  | TEST(StdWideStartsWithTest, MatchesStringWithGivenPrefix) { | 
|  | const Matcher<const wchar_t*> m1 = StartsWith(::std::wstring(L"")); | 
|  | EXPECT_TRUE(m1.Matches(L"Hi")); | 
|  | EXPECT_TRUE(m1.Matches(L"")); | 
|  | EXPECT_FALSE(m1.Matches(NULL)); | 
|  |  | 
|  | const Matcher<const ::std::wstring&> m2 = StartsWith(L"Hi"); | 
|  | EXPECT_TRUE(m2.Matches(L"Hi")); | 
|  | EXPECT_TRUE(m2.Matches(L"Hi Hi!")); | 
|  | EXPECT_TRUE(m2.Matches(L"High")); | 
|  | EXPECT_FALSE(m2.Matches(L"H")); | 
|  | EXPECT_FALSE(m2.Matches(L" Hi")); | 
|  | } | 
|  |  | 
|  | TEST(StdWideStartsWithTest, CanDescribeSelf) { | 
|  | Matcher<const ::std::wstring> m = StartsWith(L"Hi"); | 
|  | EXPECT_EQ("starts with L\"Hi\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests EndsWith(s). | 
|  |  | 
|  | TEST(StdWideEndsWithTest, MatchesStringWithGivenSuffix) { | 
|  | const Matcher<const wchar_t*> m1 = EndsWith(L""); | 
|  | EXPECT_TRUE(m1.Matches(L"Hi")); | 
|  | EXPECT_TRUE(m1.Matches(L"")); | 
|  | EXPECT_FALSE(m1.Matches(NULL)); | 
|  |  | 
|  | const Matcher<const ::std::wstring&> m2 = EndsWith(::std::wstring(L"Hi")); | 
|  | EXPECT_TRUE(m2.Matches(L"Hi")); | 
|  | EXPECT_TRUE(m2.Matches(L"Wow Hi Hi")); | 
|  | EXPECT_TRUE(m2.Matches(L"Super Hi")); | 
|  | EXPECT_FALSE(m2.Matches(L"i")); | 
|  | EXPECT_FALSE(m2.Matches(L"Hi ")); | 
|  | } | 
|  |  | 
|  | TEST(StdWideEndsWithTest, CanDescribeSelf) { | 
|  | Matcher<const ::std::wstring> m = EndsWith(L"Hi"); | 
|  | EXPECT_EQ("ends with L\"Hi\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | #endif  // GTEST_HAS_STD_WSTRING | 
|  |  | 
|  | #if GTEST_HAS_GLOBAL_WSTRING | 
|  | TEST(GlobalWideStrEqTest, MatchesEqual) { | 
|  | Matcher<const wchar_t*> m = StrEq(::wstring(L"Hello")); | 
|  | EXPECT_TRUE(m.Matches(L"Hello")); | 
|  | EXPECT_FALSE(m.Matches(L"hello")); | 
|  | EXPECT_FALSE(m.Matches(NULL)); | 
|  |  | 
|  | Matcher<const ::wstring&> m2 = StrEq(L"Hello"); | 
|  | EXPECT_TRUE(m2.Matches(L"Hello")); | 
|  | EXPECT_FALSE(m2.Matches(L"Hi")); | 
|  |  | 
|  | Matcher<const ::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D"); | 
|  | EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D")); | 
|  | EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E")); | 
|  |  | 
|  | ::wstring str(L"01204500800"); | 
|  | str[3] = L'\0'; | 
|  | Matcher<const ::wstring&> m4 = StrEq(str); | 
|  | EXPECT_TRUE(m4.Matches(str)); | 
|  | str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; | 
|  | Matcher<const ::wstring&> m5 = StrEq(str); | 
|  | EXPECT_TRUE(m5.Matches(str)); | 
|  | } | 
|  |  | 
|  | TEST(GlobalWideStrEqTest, CanDescribeSelf) { | 
|  | Matcher< ::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v"); | 
|  | EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"", | 
|  | Describe(m)); | 
|  |  | 
|  | Matcher< ::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D"); | 
|  | EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"", | 
|  | Describe(m2)); | 
|  |  | 
|  | ::wstring str(L"01204500800"); | 
|  | str[3] = L'\0'; | 
|  | Matcher<const ::wstring&> m4 = StrEq(str); | 
|  | EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4)); | 
|  | str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; | 
|  | Matcher<const ::wstring&> m5 = StrEq(str); | 
|  | EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5)); | 
|  | } | 
|  |  | 
|  | TEST(GlobalWideStrNeTest, MatchesUnequalString) { | 
|  | Matcher<const wchar_t*> m = StrNe(L"Hello"); | 
|  | EXPECT_TRUE(m.Matches(L"")); | 
|  | EXPECT_TRUE(m.Matches(NULL)); | 
|  | EXPECT_FALSE(m.Matches(L"Hello")); | 
|  |  | 
|  | Matcher< ::wstring> m2 = StrNe(::wstring(L"Hello")); | 
|  | EXPECT_TRUE(m2.Matches(L"hello")); | 
|  | EXPECT_FALSE(m2.Matches(L"Hello")); | 
|  | } | 
|  |  | 
|  | TEST(GlobalWideStrNeTest, CanDescribeSelf) { | 
|  | Matcher<const wchar_t*> m = StrNe(L"Hi"); | 
|  | EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | TEST(GlobalWideStrCaseEqTest, MatchesEqualStringIgnoringCase) { | 
|  | Matcher<const wchar_t*> m = StrCaseEq(::wstring(L"Hello")); | 
|  | EXPECT_TRUE(m.Matches(L"Hello")); | 
|  | EXPECT_TRUE(m.Matches(L"hello")); | 
|  | EXPECT_FALSE(m.Matches(L"Hi")); | 
|  | EXPECT_FALSE(m.Matches(NULL)); | 
|  |  | 
|  | Matcher<const ::wstring&> m2 = StrCaseEq(L"Hello"); | 
|  | EXPECT_TRUE(m2.Matches(L"hello")); | 
|  | EXPECT_FALSE(m2.Matches(L"Hi")); | 
|  | } | 
|  |  | 
|  | TEST(GlobalWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { | 
|  | ::wstring str1(L"oabocdooeoo"); | 
|  | ::wstring str2(L"OABOCDOOEOO"); | 
|  | Matcher<const ::wstring&> m0 = StrCaseEq(str1); | 
|  | EXPECT_FALSE(m0.Matches(str2 + ::wstring(1, L'\0'))); | 
|  |  | 
|  | str1[3] = str2[3] = L'\0'; | 
|  | Matcher<const ::wstring&> m1 = StrCaseEq(str1); | 
|  | EXPECT_TRUE(m1.Matches(str2)); | 
|  |  | 
|  | str1[0] = str1[6] = str1[7] = str1[10] = L'\0'; | 
|  | str2[0] = str2[6] = str2[7] = str2[10] = L'\0'; | 
|  | Matcher<const ::wstring&> m2 = StrCaseEq(str1); | 
|  | str1[9] = str2[9] = L'\0'; | 
|  | EXPECT_FALSE(m2.Matches(str2)); | 
|  |  | 
|  | Matcher<const ::wstring&> m3 = StrCaseEq(str1); | 
|  | EXPECT_TRUE(m3.Matches(str2)); | 
|  |  | 
|  | EXPECT_FALSE(m3.Matches(str2 + L"x")); | 
|  | str2.append(1, L'\0'); | 
|  | EXPECT_FALSE(m3.Matches(str2)); | 
|  | EXPECT_FALSE(m3.Matches(::wstring(str2, 0, 9))); | 
|  | } | 
|  |  | 
|  | TEST(GlobalWideStrCaseEqTest, CanDescribeSelf) { | 
|  | Matcher< ::wstring> m = StrCaseEq(L"Hi"); | 
|  | EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | TEST(GlobalWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) { | 
|  | Matcher<const wchar_t*> m = StrCaseNe(L"Hello"); | 
|  | EXPECT_TRUE(m.Matches(L"Hi")); | 
|  | EXPECT_TRUE(m.Matches(NULL)); | 
|  | EXPECT_FALSE(m.Matches(L"Hello")); | 
|  | EXPECT_FALSE(m.Matches(L"hello")); | 
|  |  | 
|  | Matcher< ::wstring> m2 = StrCaseNe(::wstring(L"Hello")); | 
|  | EXPECT_TRUE(m2.Matches(L"")); | 
|  | EXPECT_FALSE(m2.Matches(L"Hello")); | 
|  | } | 
|  |  | 
|  | TEST(GlobalWideStrCaseNeTest, CanDescribeSelf) { | 
|  | Matcher<const wchar_t*> m = StrCaseNe(L"Hi"); | 
|  | EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that HasSubstr() works for matching wstring-typed values. | 
|  | TEST(GlobalWideHasSubstrTest, WorksForStringClasses) { | 
|  | const Matcher< ::wstring> m1 = HasSubstr(L"foo"); | 
|  | EXPECT_TRUE(m1.Matches(::wstring(L"I love food."))); | 
|  | EXPECT_FALSE(m1.Matches(::wstring(L"tofo"))); | 
|  |  | 
|  | const Matcher<const ::wstring&> m2 = HasSubstr(L"foo"); | 
|  | EXPECT_TRUE(m2.Matches(::wstring(L"I love food."))); | 
|  | EXPECT_FALSE(m2.Matches(::wstring(L"tofo"))); | 
|  | } | 
|  |  | 
|  | // Tests that HasSubstr() works for matching C-wide-string-typed values. | 
|  | TEST(GlobalWideHasSubstrTest, WorksForCStrings) { | 
|  | const Matcher<wchar_t*> m1 = HasSubstr(L"foo"); | 
|  | EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food."))); | 
|  | EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo"))); | 
|  | EXPECT_FALSE(m1.Matches(NULL)); | 
|  |  | 
|  | const Matcher<const wchar_t*> m2 = HasSubstr(L"foo"); | 
|  | EXPECT_TRUE(m2.Matches(L"I love food.")); | 
|  | EXPECT_FALSE(m2.Matches(L"tofo")); | 
|  | EXPECT_FALSE(m2.Matches(NULL)); | 
|  | } | 
|  |  | 
|  | // Tests that HasSubstr(s) describes itself properly. | 
|  | TEST(GlobalWideHasSubstrTest, CanDescribeSelf) { | 
|  | Matcher< ::wstring> m = HasSubstr(L"foo\n\""); | 
|  | EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests StartsWith(s). | 
|  |  | 
|  | TEST(GlobalWideStartsWithTest, MatchesStringWithGivenPrefix) { | 
|  | const Matcher<const wchar_t*> m1 = StartsWith(::wstring(L"")); | 
|  | EXPECT_TRUE(m1.Matches(L"Hi")); | 
|  | EXPECT_TRUE(m1.Matches(L"")); | 
|  | EXPECT_FALSE(m1.Matches(NULL)); | 
|  |  | 
|  | const Matcher<const ::wstring&> m2 = StartsWith(L"Hi"); | 
|  | EXPECT_TRUE(m2.Matches(L"Hi")); | 
|  | EXPECT_TRUE(m2.Matches(L"Hi Hi!")); | 
|  | EXPECT_TRUE(m2.Matches(L"High")); | 
|  | EXPECT_FALSE(m2.Matches(L"H")); | 
|  | EXPECT_FALSE(m2.Matches(L" Hi")); | 
|  | } | 
|  |  | 
|  | TEST(GlobalWideStartsWithTest, CanDescribeSelf) { | 
|  | Matcher<const ::wstring> m = StartsWith(L"Hi"); | 
|  | EXPECT_EQ("starts with L\"Hi\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests EndsWith(s). | 
|  |  | 
|  | TEST(GlobalWideEndsWithTest, MatchesStringWithGivenSuffix) { | 
|  | const Matcher<const wchar_t*> m1 = EndsWith(L""); | 
|  | EXPECT_TRUE(m1.Matches(L"Hi")); | 
|  | EXPECT_TRUE(m1.Matches(L"")); | 
|  | EXPECT_FALSE(m1.Matches(NULL)); | 
|  |  | 
|  | const Matcher<const ::wstring&> m2 = EndsWith(::wstring(L"Hi")); | 
|  | EXPECT_TRUE(m2.Matches(L"Hi")); | 
|  | EXPECT_TRUE(m2.Matches(L"Wow Hi Hi")); | 
|  | EXPECT_TRUE(m2.Matches(L"Super Hi")); | 
|  | EXPECT_FALSE(m2.Matches(L"i")); | 
|  | EXPECT_FALSE(m2.Matches(L"Hi ")); | 
|  | } | 
|  |  | 
|  | TEST(GlobalWideEndsWithTest, CanDescribeSelf) { | 
|  | Matcher<const ::wstring> m = EndsWith(L"Hi"); | 
|  | EXPECT_EQ("ends with L\"Hi\"", Describe(m)); | 
|  | } | 
|  |  | 
|  | #endif  // GTEST_HAS_GLOBAL_WSTRING | 
|  |  | 
|  |  | 
|  | typedef ::testing::tuple<long, int> Tuple2;  // NOLINT | 
|  |  | 
|  | // Tests that Eq() matches a 2-tuple where the first field == the | 
|  | // second field. | 
|  | TEST(Eq2Test, MatchesEqualArguments) { | 
|  | Matcher<const Tuple2&> m = Eq(); | 
|  | EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); | 
|  | EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); | 
|  | } | 
|  |  | 
|  | // Tests that Eq() describes itself properly. | 
|  | TEST(Eq2Test, CanDescribeSelf) { | 
|  | Matcher<const Tuple2&> m = Eq(); | 
|  | EXPECT_EQ("are an equal pair", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Ge() matches a 2-tuple where the first field >= the | 
|  | // second field. | 
|  | TEST(Ge2Test, MatchesGreaterThanOrEqualArguments) { | 
|  | Matcher<const Tuple2&> m = Ge(); | 
|  | EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); | 
|  | EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); | 
|  | EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); | 
|  | } | 
|  |  | 
|  | // Tests that Ge() describes itself properly. | 
|  | TEST(Ge2Test, CanDescribeSelf) { | 
|  | Matcher<const Tuple2&> m = Ge(); | 
|  | EXPECT_EQ("are a pair where the first >= the second", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Gt() matches a 2-tuple where the first field > the | 
|  | // second field. | 
|  | TEST(Gt2Test, MatchesGreaterThanArguments) { | 
|  | Matcher<const Tuple2&> m = Gt(); | 
|  | EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); | 
|  | EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); | 
|  | EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); | 
|  | } | 
|  |  | 
|  | // Tests that Gt() describes itself properly. | 
|  | TEST(Gt2Test, CanDescribeSelf) { | 
|  | Matcher<const Tuple2&> m = Gt(); | 
|  | EXPECT_EQ("are a pair where the first > the second", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Le() matches a 2-tuple where the first field <= the | 
|  | // second field. | 
|  | TEST(Le2Test, MatchesLessThanOrEqualArguments) { | 
|  | Matcher<const Tuple2&> m = Le(); | 
|  | EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); | 
|  | EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); | 
|  | EXPECT_FALSE(m.Matches(Tuple2(5L, 4))); | 
|  | } | 
|  |  | 
|  | // Tests that Le() describes itself properly. | 
|  | TEST(Le2Test, CanDescribeSelf) { | 
|  | Matcher<const Tuple2&> m = Le(); | 
|  | EXPECT_EQ("are a pair where the first <= the second", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Lt() matches a 2-tuple where the first field < the | 
|  | // second field. | 
|  | TEST(Lt2Test, MatchesLessThanArguments) { | 
|  | Matcher<const Tuple2&> m = Lt(); | 
|  | EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); | 
|  | EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); | 
|  | EXPECT_FALSE(m.Matches(Tuple2(5L, 4))); | 
|  | } | 
|  |  | 
|  | // Tests that Lt() describes itself properly. | 
|  | TEST(Lt2Test, CanDescribeSelf) { | 
|  | Matcher<const Tuple2&> m = Lt(); | 
|  | EXPECT_EQ("are a pair where the first < the second", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Ne() matches a 2-tuple where the first field != the | 
|  | // second field. | 
|  | TEST(Ne2Test, MatchesUnequalArguments) { | 
|  | Matcher<const Tuple2&> m = Ne(); | 
|  | EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); | 
|  | EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); | 
|  | EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); | 
|  | } | 
|  |  | 
|  | // Tests that Ne() describes itself properly. | 
|  | TEST(Ne2Test, CanDescribeSelf) { | 
|  | Matcher<const Tuple2&> m = Ne(); | 
|  | EXPECT_EQ("are an unequal pair", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that FloatEq() matches a 2-tuple where | 
|  | // FloatEq(first field) matches the second field. | 
|  | TEST(FloatEq2Test, MatchesEqualArguments) { | 
|  | typedef ::testing::tuple<float, float> Tpl; | 
|  | Matcher<const Tpl&> m = FloatEq(); | 
|  | EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); | 
|  | EXPECT_TRUE(m.Matches(Tpl(0.3f, 0.1f + 0.1f + 0.1f))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f))); | 
|  | } | 
|  |  | 
|  | // Tests that FloatEq() describes itself properly. | 
|  | TEST(FloatEq2Test, CanDescribeSelf) { | 
|  | Matcher<const ::testing::tuple<float, float>&> m = FloatEq(); | 
|  | EXPECT_EQ("are an almost-equal pair", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that NanSensitiveFloatEq() matches a 2-tuple where | 
|  | // NanSensitiveFloatEq(first field) matches the second field. | 
|  | TEST(NanSensitiveFloatEqTest, MatchesEqualArgumentsWithNaN) { | 
|  | typedef ::testing::tuple<float, float> Tpl; | 
|  | Matcher<const Tpl&> m = NanSensitiveFloatEq(); | 
|  | EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); | 
|  | EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), | 
|  | std::numeric_limits<float>::quiet_NaN()))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<float>::quiet_NaN()))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), 1.0f))); | 
|  | } | 
|  |  | 
|  | // Tests that NanSensitiveFloatEq() describes itself properly. | 
|  | TEST(NanSensitiveFloatEqTest, CanDescribeSelfWithNaNs) { | 
|  | Matcher<const ::testing::tuple<float, float>&> m = NanSensitiveFloatEq(); | 
|  | EXPECT_EQ("are an almost-equal pair", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that DoubleEq() matches a 2-tuple where | 
|  | // DoubleEq(first field) matches the second field. | 
|  | TEST(DoubleEq2Test, MatchesEqualArguments) { | 
|  | typedef ::testing::tuple<double, double> Tpl; | 
|  | Matcher<const Tpl&> m = DoubleEq(); | 
|  | EXPECT_TRUE(m.Matches(Tpl(1.0, 1.0))); | 
|  | EXPECT_TRUE(m.Matches(Tpl(0.3, 0.1 + 0.1 + 0.1))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(1.1, 1.0))); | 
|  | } | 
|  |  | 
|  | // Tests that DoubleEq() describes itself properly. | 
|  | TEST(DoubleEq2Test, CanDescribeSelf) { | 
|  | Matcher<const ::testing::tuple<double, double>&> m = DoubleEq(); | 
|  | EXPECT_EQ("are an almost-equal pair", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that NanSensitiveDoubleEq() matches a 2-tuple where | 
|  | // NanSensitiveDoubleEq(first field) matches the second field. | 
|  | TEST(NanSensitiveDoubleEqTest, MatchesEqualArgumentsWithNaN) { | 
|  | typedef ::testing::tuple<double, double> Tpl; | 
|  | Matcher<const Tpl&> m = NanSensitiveDoubleEq(); | 
|  | EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); | 
|  | EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), | 
|  | std::numeric_limits<double>::quiet_NaN()))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<double>::quiet_NaN()))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), 1.0f))); | 
|  | } | 
|  |  | 
|  | // Tests that DoubleEq() describes itself properly. | 
|  | TEST(NanSensitiveDoubleEqTest, CanDescribeSelfWithNaNs) { | 
|  | Matcher<const ::testing::tuple<double, double>&> m = NanSensitiveDoubleEq(); | 
|  | EXPECT_EQ("are an almost-equal pair", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that FloatEq() matches a 2-tuple where | 
|  | // FloatNear(first field, max_abs_error) matches the second field. | 
|  | TEST(FloatNear2Test, MatchesEqualArguments) { | 
|  | typedef ::testing::tuple<float, float> Tpl; | 
|  | Matcher<const Tpl&> m = FloatNear(0.5f); | 
|  | EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); | 
|  | EXPECT_TRUE(m.Matches(Tpl(1.3f, 1.0f))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(1.8f, 1.0f))); | 
|  | } | 
|  |  | 
|  | // Tests that FloatNear() describes itself properly. | 
|  | TEST(FloatNear2Test, CanDescribeSelf) { | 
|  | Matcher<const ::testing::tuple<float, float>&> m = FloatNear(0.5f); | 
|  | EXPECT_EQ("are an almost-equal pair", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that NanSensitiveFloatNear() matches a 2-tuple where | 
|  | // NanSensitiveFloatNear(first field) matches the second field. | 
|  | TEST(NanSensitiveFloatNearTest, MatchesNearbyArgumentsWithNaN) { | 
|  | typedef ::testing::tuple<float, float> Tpl; | 
|  | Matcher<const Tpl&> m = NanSensitiveFloatNear(0.5f); | 
|  | EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); | 
|  | EXPECT_TRUE(m.Matches(Tpl(1.1f, 1.0f))); | 
|  | EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), | 
|  | std::numeric_limits<float>::quiet_NaN()))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(1.6f, 1.0f))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<float>::quiet_NaN()))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), 1.0f))); | 
|  | } | 
|  |  | 
|  | // Tests that NanSensitiveFloatNear() describes itself properly. | 
|  | TEST(NanSensitiveFloatNearTest, CanDescribeSelfWithNaNs) { | 
|  | Matcher<const ::testing::tuple<float, float>&> m = | 
|  | NanSensitiveFloatNear(0.5f); | 
|  | EXPECT_EQ("are an almost-equal pair", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that FloatEq() matches a 2-tuple where | 
|  | // DoubleNear(first field, max_abs_error) matches the second field. | 
|  | TEST(DoubleNear2Test, MatchesEqualArguments) { | 
|  | typedef ::testing::tuple<double, double> Tpl; | 
|  | Matcher<const Tpl&> m = DoubleNear(0.5); | 
|  | EXPECT_TRUE(m.Matches(Tpl(1.0, 1.0))); | 
|  | EXPECT_TRUE(m.Matches(Tpl(1.3, 1.0))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(1.8, 1.0))); | 
|  | } | 
|  |  | 
|  | // Tests that DoubleNear() describes itself properly. | 
|  | TEST(DoubleNear2Test, CanDescribeSelf) { | 
|  | Matcher<const ::testing::tuple<double, double>&> m = DoubleNear(0.5); | 
|  | EXPECT_EQ("are an almost-equal pair", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that NanSensitiveDoubleNear() matches a 2-tuple where | 
|  | // NanSensitiveDoubleNear(first field) matches the second field. | 
|  | TEST(NanSensitiveDoubleNearTest, MatchesNearbyArgumentsWithNaN) { | 
|  | typedef ::testing::tuple<double, double> Tpl; | 
|  | Matcher<const Tpl&> m = NanSensitiveDoubleNear(0.5f); | 
|  | EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); | 
|  | EXPECT_TRUE(m.Matches(Tpl(1.1f, 1.0f))); | 
|  | EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), | 
|  | std::numeric_limits<double>::quiet_NaN()))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(1.6f, 1.0f))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<double>::quiet_NaN()))); | 
|  | EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), 1.0f))); | 
|  | } | 
|  |  | 
|  | // Tests that NanSensitiveDoubleNear() describes itself properly. | 
|  | TEST(NanSensitiveDoubleNearTest, CanDescribeSelfWithNaNs) { | 
|  | Matcher<const ::testing::tuple<double, double>&> m = | 
|  | NanSensitiveDoubleNear(0.5f); | 
|  | EXPECT_EQ("are an almost-equal pair", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Not(m) matches any value that doesn't match m. | 
|  | TEST(NotTest, NegatesMatcher) { | 
|  | Matcher<int> m; | 
|  | m = Not(Eq(2)); | 
|  | EXPECT_TRUE(m.Matches(3)); | 
|  | EXPECT_FALSE(m.Matches(2)); | 
|  | } | 
|  |  | 
|  | // Tests that Not(m) describes itself properly. | 
|  | TEST(NotTest, CanDescribeSelf) { | 
|  | Matcher<int> m = Not(Eq(5)); | 
|  | EXPECT_EQ("isn't equal to 5", Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that monomorphic matchers are safely cast by the Not matcher. | 
|  | TEST(NotTest, NotMatcherSafelyCastsMonomorphicMatchers) { | 
|  | // greater_than_5 is a monomorphic matcher. | 
|  | Matcher<int> greater_than_5 = Gt(5); | 
|  |  | 
|  | Matcher<const int&> m = Not(greater_than_5); | 
|  | Matcher<int&> m2 = Not(greater_than_5); | 
|  | Matcher<int&> m3 = Not(m); | 
|  | } | 
|  |  | 
|  | // Helper to allow easy testing of AllOf matchers with num parameters. | 
|  | void AllOfMatches(int num, const Matcher<int>& m) { | 
|  | SCOPED_TRACE(Describe(m)); | 
|  | EXPECT_TRUE(m.Matches(0)); | 
|  | for (int i = 1; i <= num; ++i) { | 
|  | EXPECT_FALSE(m.Matches(i)); | 
|  | } | 
|  | EXPECT_TRUE(m.Matches(num + 1)); | 
|  | } | 
|  |  | 
|  | // Tests that AllOf(m1, ..., mn) matches any value that matches all of | 
|  | // the given matchers. | 
|  | TEST(AllOfTest, MatchesWhenAllMatch) { | 
|  | Matcher<int> m; | 
|  | m = AllOf(Le(2), Ge(1)); | 
|  | EXPECT_TRUE(m.Matches(1)); | 
|  | EXPECT_TRUE(m.Matches(2)); | 
|  | EXPECT_FALSE(m.Matches(0)); | 
|  | EXPECT_FALSE(m.Matches(3)); | 
|  |  | 
|  | m = AllOf(Gt(0), Ne(1), Ne(2)); | 
|  | EXPECT_TRUE(m.Matches(3)); | 
|  | EXPECT_FALSE(m.Matches(2)); | 
|  | EXPECT_FALSE(m.Matches(1)); | 
|  | EXPECT_FALSE(m.Matches(0)); | 
|  |  | 
|  | m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); | 
|  | EXPECT_TRUE(m.Matches(4)); | 
|  | EXPECT_FALSE(m.Matches(3)); | 
|  | EXPECT_FALSE(m.Matches(2)); | 
|  | EXPECT_FALSE(m.Matches(1)); | 
|  | EXPECT_FALSE(m.Matches(0)); | 
|  |  | 
|  | m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); | 
|  | EXPECT_TRUE(m.Matches(0)); | 
|  | EXPECT_TRUE(m.Matches(1)); | 
|  | EXPECT_FALSE(m.Matches(3)); | 
|  |  | 
|  | // The following tests for varying number of sub-matchers. Due to the way | 
|  | // the sub-matchers are handled it is enough to test every sub-matcher once | 
|  | // with sub-matchers using the same matcher type. Varying matcher types are | 
|  | // checked for above. | 
|  | AllOfMatches(2, AllOf(Ne(1), Ne(2))); | 
|  | AllOfMatches(3, AllOf(Ne(1), Ne(2), Ne(3))); | 
|  | AllOfMatches(4, AllOf(Ne(1), Ne(2), Ne(3), Ne(4))); | 
|  | AllOfMatches(5, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5))); | 
|  | AllOfMatches(6, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6))); | 
|  | AllOfMatches(7, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7))); | 
|  | AllOfMatches(8, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), | 
|  | Ne(8))); | 
|  | AllOfMatches(9, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), | 
|  | Ne(8), Ne(9))); | 
|  | AllOfMatches(10, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), | 
|  | Ne(9), Ne(10))); | 
|  | } | 
|  |  | 
|  | #if GTEST_LANG_CXX11 | 
|  | // Tests the variadic version of the AllOfMatcher. | 
|  | TEST(AllOfTest, VariadicMatchesWhenAllMatch) { | 
|  | // Make sure AllOf is defined in the right namespace and does not depend on | 
|  | // ADL. | 
|  | ::testing::AllOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); | 
|  | Matcher<int> m = AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), | 
|  | Ne(9), Ne(10), Ne(11)); | 
|  | EXPECT_THAT(Describe(m), EndsWith("and (isn't equal to 11)")); | 
|  | AllOfMatches(11, m); | 
|  | AllOfMatches(50, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), | 
|  | Ne(9), Ne(10), Ne(11), Ne(12), Ne(13), Ne(14), Ne(15), | 
|  | Ne(16), Ne(17), Ne(18), Ne(19), Ne(20), Ne(21), Ne(22), | 
|  | Ne(23), Ne(24), Ne(25), Ne(26), Ne(27), Ne(28), Ne(29), | 
|  | Ne(30), Ne(31), Ne(32), Ne(33), Ne(34), Ne(35), Ne(36), | 
|  | Ne(37), Ne(38), Ne(39), Ne(40), Ne(41), Ne(42), Ne(43), | 
|  | Ne(44), Ne(45), Ne(46), Ne(47), Ne(48), Ne(49), | 
|  | Ne(50))); | 
|  | } | 
|  |  | 
|  | #endif  // GTEST_LANG_CXX11 | 
|  |  | 
|  | // Tests that AllOf(m1, ..., mn) describes itself properly. | 
|  | TEST(AllOfTest, CanDescribeSelf) { | 
|  | Matcher<int> m; | 
|  | m = AllOf(Le(2), Ge(1)); | 
|  | EXPECT_EQ("(is <= 2) and (is >= 1)", Describe(m)); | 
|  |  | 
|  | m = AllOf(Gt(0), Ne(1), Ne(2)); | 
|  | EXPECT_EQ("(is > 0) and " | 
|  | "((isn't equal to 1) and " | 
|  | "(isn't equal to 2))", | 
|  | Describe(m)); | 
|  |  | 
|  |  | 
|  | m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); | 
|  | EXPECT_EQ("((is > 0) and " | 
|  | "(isn't equal to 1)) and " | 
|  | "((isn't equal to 2) and " | 
|  | "(isn't equal to 3))", | 
|  | Describe(m)); | 
|  |  | 
|  |  | 
|  | m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); | 
|  | EXPECT_EQ("((is >= 0) and " | 
|  | "(is < 10)) and " | 
|  | "((isn't equal to 3) and " | 
|  | "((isn't equal to 5) and " | 
|  | "(isn't equal to 7)))", | 
|  | Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that AllOf(m1, ..., mn) describes its negation properly. | 
|  | TEST(AllOfTest, CanDescribeNegation) { | 
|  | Matcher<int> m; | 
|  | m = AllOf(Le(2), Ge(1)); | 
|  | EXPECT_EQ("(isn't <= 2) or " | 
|  | "(isn't >= 1)", | 
|  | DescribeNegation(m)); | 
|  |  | 
|  | m = AllOf(Gt(0), Ne(1), Ne(2)); | 
|  | EXPECT_EQ("(isn't > 0) or " | 
|  | "((is equal to 1) or " | 
|  | "(is equal to 2))", | 
|  | DescribeNegation(m)); | 
|  |  | 
|  |  | 
|  | m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); | 
|  | EXPECT_EQ("((isn't > 0) or " | 
|  | "(is equal to 1)) or " | 
|  | "((is equal to 2) or " | 
|  | "(is equal to 3))", | 
|  | DescribeNegation(m)); | 
|  |  | 
|  |  | 
|  | m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); | 
|  | EXPECT_EQ("((isn't >= 0) or " | 
|  | "(isn't < 10)) or " | 
|  | "((is equal to 3) or " | 
|  | "((is equal to 5) or " | 
|  | "(is equal to 7)))", | 
|  | DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | // Tests that monomorphic matchers are safely cast by the AllOf matcher. | 
|  | TEST(AllOfTest, AllOfMatcherSafelyCastsMonomorphicMatchers) { | 
|  | // greater_than_5 and less_than_10 are monomorphic matchers. | 
|  | Matcher<int> greater_than_5 = Gt(5); | 
|  | Matcher<int> less_than_10 = Lt(10); | 
|  |  | 
|  | Matcher<const int&> m = AllOf(greater_than_5, less_than_10); | 
|  | Matcher<int&> m2 = AllOf(greater_than_5, less_than_10); | 
|  | Matcher<int&> m3 = AllOf(greater_than_5, m2); | 
|  |  | 
|  | // Tests that BothOf works when composing itself. | 
|  | Matcher<const int&> m4 = AllOf(greater_than_5, less_than_10, less_than_10); | 
|  | Matcher<int&> m5 = AllOf(greater_than_5, less_than_10, less_than_10); | 
|  | } | 
|  |  | 
|  | TEST(AllOfTest, ExplainsResult) { | 
|  | Matcher<int> m; | 
|  |  | 
|  | // Successful match.  Both matchers need to explain.  The second | 
|  | // matcher doesn't give an explanation, so only the first matcher's | 
|  | // explanation is printed. | 
|  | m = AllOf(GreaterThan(10), Lt(30)); | 
|  | EXPECT_EQ("which is 15 more than 10", Explain(m, 25)); | 
|  |  | 
|  | // Successful match.  Both matchers need to explain. | 
|  | m = AllOf(GreaterThan(10), GreaterThan(20)); | 
|  | EXPECT_EQ("which is 20 more than 10, and which is 10 more than 20", | 
|  | Explain(m, 30)); | 
|  |  | 
|  | // Successful match.  All matchers need to explain.  The second | 
|  | // matcher doesn't given an explanation. | 
|  | m = AllOf(GreaterThan(10), Lt(30), GreaterThan(20)); | 
|  | EXPECT_EQ("which is 15 more than 10, and which is 5 more than 20", | 
|  | Explain(m, 25)); | 
|  |  | 
|  | // Successful match.  All matchers need to explain. | 
|  | m = AllOf(GreaterThan(10), GreaterThan(20), GreaterThan(30)); | 
|  | EXPECT_EQ("which is 30 more than 10, and which is 20 more than 20, " | 
|  | "and which is 10 more than 30", | 
|  | Explain(m, 40)); | 
|  |  | 
|  | // Failed match.  The first matcher, which failed, needs to | 
|  | // explain. | 
|  | m = AllOf(GreaterThan(10), GreaterThan(20)); | 
|  | EXPECT_EQ("which is 5 less than 10", Explain(m, 5)); | 
|  |  | 
|  | // Failed match.  The second matcher, which failed, needs to | 
|  | // explain.  Since it doesn't given an explanation, nothing is | 
|  | // printed. | 
|  | m = AllOf(GreaterThan(10), Lt(30)); | 
|  | EXPECT_EQ("", Explain(m, 40)); | 
|  |  | 
|  | // Failed match.  The second matcher, which failed, needs to | 
|  | // explain. | 
|  | m = AllOf(GreaterThan(10), GreaterThan(20)); | 
|  | EXPECT_EQ("which is 5 less than 20", Explain(m, 15)); | 
|  | } | 
|  |  | 
|  | // Helper to allow easy testing of AnyOf matchers with num parameters. | 
|  | void AnyOfMatches(int num, const Matcher<int>& m) { | 
|  | SCOPED_TRACE(Describe(m)); | 
|  | EXPECT_FALSE(m.Matches(0)); | 
|  | for (int i = 1; i <= num; ++i) { | 
|  | EXPECT_TRUE(m.Matches(i)); | 
|  | } | 
|  | EXPECT_FALSE(m.Matches(num + 1)); | 
|  | } | 
|  |  | 
|  | // Tests that AnyOf(m1, ..., mn) matches any value that matches at | 
|  | // least one of the given matchers. | 
|  | TEST(AnyOfTest, MatchesWhenAnyMatches) { | 
|  | Matcher<int> m; | 
|  | m = AnyOf(Le(1), Ge(3)); | 
|  | EXPECT_TRUE(m.Matches(1)); | 
|  | EXPECT_TRUE(m.Matches(4)); | 
|  | EXPECT_FALSE(m.Matches(2)); | 
|  |  | 
|  | m = AnyOf(Lt(0), Eq(1), Eq(2)); | 
|  | EXPECT_TRUE(m.Matches(-1)); | 
|  | EXPECT_TRUE(m.Matches(1)); | 
|  | EXPECT_TRUE(m.Matches(2)); | 
|  | EXPECT_FALSE(m.Matches(0)); | 
|  |  | 
|  | m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); | 
|  | EXPECT_TRUE(m.Matches(-1)); | 
|  | EXPECT_TRUE(m.Matches(1)); | 
|  | EXPECT_TRUE(m.Matches(2)); | 
|  | EXPECT_TRUE(m.Matches(3)); | 
|  | EXPECT_FALSE(m.Matches(0)); | 
|  |  | 
|  | m = AnyOf(Le(0), Gt(10), 3, 5, 7); | 
|  | EXPECT_TRUE(m.Matches(0)); | 
|  | EXPECT_TRUE(m.Matches(11)); | 
|  | EXPECT_TRUE(m.Matches(3)); | 
|  | EXPECT_FALSE(m.Matches(2)); | 
|  |  | 
|  | // The following tests for varying number of sub-matchers. Due to the way | 
|  | // the sub-matchers are handled it is enough to test every sub-matcher once | 
|  | // with sub-matchers using the same matcher type. Varying matcher types are | 
|  | // checked for above. | 
|  | AnyOfMatches(2, AnyOf(1, 2)); | 
|  | AnyOfMatches(3, AnyOf(1, 2, 3)); | 
|  | AnyOfMatches(4, AnyOf(1, 2, 3, 4)); | 
|  | AnyOfMatches(5, AnyOf(1, 2, 3, 4, 5)); | 
|  | AnyOfMatches(6, AnyOf(1, 2, 3, 4, 5, 6)); | 
|  | AnyOfMatches(7, AnyOf(1, 2, 3, 4, 5, 6, 7)); | 
|  | AnyOfMatches(8, AnyOf(1, 2, 3, 4, 5, 6, 7, 8)); | 
|  | AnyOfMatches(9, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9)); | 
|  | AnyOfMatches(10, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)); | 
|  | } | 
|  |  | 
|  | #if GTEST_LANG_CXX11 | 
|  | // Tests the variadic version of the AnyOfMatcher. | 
|  | TEST(AnyOfTest, VariadicMatchesWhenAnyMatches) { | 
|  | // Also make sure AnyOf is defined in the right namespace and does not depend | 
|  | // on ADL. | 
|  | Matcher<int> m = ::testing::AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); | 
|  |  | 
|  | EXPECT_THAT(Describe(m), EndsWith("or (is equal to 11)")); | 
|  | AnyOfMatches(11, m); | 
|  | AnyOfMatches(50, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, | 
|  | 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, | 
|  | 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, | 
|  | 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, | 
|  | 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)); | 
|  | } | 
|  |  | 
|  | // Tests the variadic version of the ElementsAreMatcher | 
|  | TEST(ElementsAreTest, HugeMatcher) { | 
|  | vector<int> test_vector{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; | 
|  |  | 
|  | EXPECT_THAT(test_vector, | 
|  | ElementsAre(Eq(1), Eq(2), Lt(13), Eq(4), Eq(5), Eq(6), Eq(7), | 
|  | Eq(8), Eq(9), Eq(10), Gt(1), Eq(12))); | 
|  | } | 
|  |  | 
|  | // Tests the variadic version of the UnorderedElementsAreMatcher | 
|  | TEST(ElementsAreTest, HugeMatcherStr) { | 
|  | vector<string> test_vector{ | 
|  | "literal_string", "", "", "", "", "", "", "", "", "", "", ""}; | 
|  |  | 
|  | EXPECT_THAT(test_vector, UnorderedElementsAre("literal_string", _, _, _, _, _, | 
|  | _, _, _, _, _, _)); | 
|  | } | 
|  |  | 
|  | // Tests the variadic version of the UnorderedElementsAreMatcher | 
|  | TEST(ElementsAreTest, HugeMatcherUnordered) { | 
|  | vector<int> test_vector{2, 1, 8, 5, 4, 6, 7, 3, 9, 12, 11, 10}; | 
|  |  | 
|  | EXPECT_THAT(test_vector, UnorderedElementsAre( | 
|  | Eq(2), Eq(1), Gt(7), Eq(5), Eq(4), Eq(6), Eq(7), | 
|  | Eq(3), Eq(9), Eq(12), Eq(11), Ne(122))); | 
|  | } | 
|  |  | 
|  | #endif  // GTEST_LANG_CXX11 | 
|  |  | 
|  | // Tests that AnyOf(m1, ..., mn) describes itself properly. | 
|  | TEST(AnyOfTest, CanDescribeSelf) { | 
|  | Matcher<int> m; | 
|  | m = AnyOf(Le(1), Ge(3)); | 
|  | EXPECT_EQ("(is <= 1) or (is >= 3)", | 
|  | Describe(m)); | 
|  |  | 
|  | m = AnyOf(Lt(0), Eq(1), Eq(2)); | 
|  | EXPECT_EQ("(is < 0) or " | 
|  | "((is equal to 1) or (is equal to 2))", | 
|  | Describe(m)); | 
|  |  | 
|  | m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); | 
|  | EXPECT_EQ("((is < 0) or " | 
|  | "(is equal to 1)) or " | 
|  | "((is equal to 2) or " | 
|  | "(is equal to 3))", | 
|  | Describe(m)); | 
|  |  | 
|  | m = AnyOf(Le(0), Gt(10), 3, 5, 7); | 
|  | EXPECT_EQ("((is <= 0) or " | 
|  | "(is > 10)) or " | 
|  | "((is equal to 3) or " | 
|  | "((is equal to 5) or " | 
|  | "(is equal to 7)))", | 
|  | Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that AnyOf(m1, ..., mn) describes its negation properly. | 
|  | TEST(AnyOfTest, CanDescribeNegation) { | 
|  | Matcher<int> m; | 
|  | m = AnyOf(Le(1), Ge(3)); | 
|  | EXPECT_EQ("(isn't <= 1) and (isn't >= 3)", | 
|  | DescribeNegation(m)); | 
|  |  | 
|  | m = AnyOf(Lt(0), Eq(1), Eq(2)); | 
|  | EXPECT_EQ("(isn't < 0) and " | 
|  | "((isn't equal to 1) and (isn't equal to 2))", | 
|  | DescribeNegation(m)); | 
|  |  | 
|  | m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); | 
|  | EXPECT_EQ("((isn't < 0) and " | 
|  | "(isn't equal to 1)) and " | 
|  | "((isn't equal to 2) and " | 
|  | "(isn't equal to 3))", | 
|  | DescribeNegation(m)); | 
|  |  | 
|  | m = AnyOf(Le(0), Gt(10), 3, 5, 7); | 
|  | EXPECT_EQ("((isn't <= 0) and " | 
|  | "(isn't > 10)) and " | 
|  | "((isn't equal to 3) and " | 
|  | "((isn't equal to 5) and " | 
|  | "(isn't equal to 7)))", | 
|  | DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | // Tests that monomorphic matchers are safely cast by the AnyOf matcher. | 
|  | TEST(AnyOfTest, AnyOfMatcherSafelyCastsMonomorphicMatchers) { | 
|  | // greater_than_5 and less_than_10 are monomorphic matchers. | 
|  | Matcher<int> greater_than_5 = Gt(5); | 
|  | Matcher<int> less_than_10 = Lt(10); | 
|  |  | 
|  | Matcher<const int&> m = AnyOf(greater_than_5, less_than_10); | 
|  | Matcher<int&> m2 = AnyOf(greater_than_5, less_than_10); | 
|  | Matcher<int&> m3 = AnyOf(greater_than_5, m2); | 
|  |  | 
|  | // Tests that EitherOf works when composing itself. | 
|  | Matcher<const int&> m4 = AnyOf(greater_than_5, less_than_10, less_than_10); | 
|  | Matcher<int&> m5 = AnyOf(greater_than_5, less_than_10, less_than_10); | 
|  | } | 
|  |  | 
|  | TEST(AnyOfTest, ExplainsResult) { | 
|  | Matcher<int> m; | 
|  |  | 
|  | // Failed match.  Both matchers need to explain.  The second | 
|  | // matcher doesn't give an explanation, so only the first matcher's | 
|  | // explanation is printed. | 
|  | m = AnyOf(GreaterThan(10), Lt(0)); | 
|  | EXPECT_EQ("which is 5 less than 10", Explain(m, 5)); | 
|  |  | 
|  | // Failed match.  Both matchers need to explain. | 
|  | m = AnyOf(GreaterThan(10), GreaterThan(20)); | 
|  | EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20", | 
|  | Explain(m, 5)); | 
|  |  | 
|  | // Failed match.  All matchers need to explain.  The second | 
|  | // matcher doesn't given an explanation. | 
|  | m = AnyOf(GreaterThan(10), Gt(20), GreaterThan(30)); | 
|  | EXPECT_EQ("which is 5 less than 10, and which is 25 less than 30", | 
|  | Explain(m, 5)); | 
|  |  | 
|  | // Failed match.  All matchers need to explain. | 
|  | m = AnyOf(GreaterThan(10), GreaterThan(20), GreaterThan(30)); | 
|  | EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20, " | 
|  | "and which is 25 less than 30", | 
|  | Explain(m, 5)); | 
|  |  | 
|  | // Successful match.  The first matcher, which succeeded, needs to | 
|  | // explain. | 
|  | m = AnyOf(GreaterThan(10), GreaterThan(20)); | 
|  | EXPECT_EQ("which is 5 more than 10", Explain(m, 15)); | 
|  |  | 
|  | // Successful match.  The second matcher, which succeeded, needs to | 
|  | // explain.  Since it doesn't given an explanation, nothing is | 
|  | // printed. | 
|  | m = AnyOf(GreaterThan(10), Lt(30)); | 
|  | EXPECT_EQ("", Explain(m, 0)); | 
|  |  | 
|  | // Successful match.  The second matcher, which succeeded, needs to | 
|  | // explain. | 
|  | m = AnyOf(GreaterThan(30), GreaterThan(20)); | 
|  | EXPECT_EQ("which is 5 more than 20", Explain(m, 25)); | 
|  | } | 
|  |  | 
|  | // The following predicate function and predicate functor are for | 
|  | // testing the Truly(predicate) matcher. | 
|  |  | 
|  | // Returns non-zero if the input is positive.  Note that the return | 
|  | // type of this function is not bool.  It's OK as Truly() accepts any | 
|  | // unary function or functor whose return type can be implicitly | 
|  | // converted to bool. | 
|  | int IsPositive(double x) { | 
|  | return x > 0 ? 1 : 0; | 
|  | } | 
|  |  | 
|  | // This functor returns true if the input is greater than the given | 
|  | // number. | 
|  | class IsGreaterThan { | 
|  | public: | 
|  | explicit IsGreaterThan(int threshold) : threshold_(threshold) {} | 
|  |  | 
|  | bool operator()(int n) const { return n > threshold_; } | 
|  |  | 
|  | private: | 
|  | int threshold_; | 
|  | }; | 
|  |  | 
|  | // For testing Truly(). | 
|  | const int foo = 0; | 
|  |  | 
|  | // This predicate returns true iff the argument references foo and has | 
|  | // a zero value. | 
|  | bool ReferencesFooAndIsZero(const int& n) { | 
|  | return (&n == &foo) && (n == 0); | 
|  | } | 
|  |  | 
|  | // Tests that Truly(predicate) matches what satisfies the given | 
|  | // predicate. | 
|  | TEST(TrulyTest, MatchesWhatSatisfiesThePredicate) { | 
|  | Matcher<double> m = Truly(IsPositive); | 
|  | EXPECT_TRUE(m.Matches(2.0)); | 
|  | EXPECT_FALSE(m.Matches(-1.5)); | 
|  | } | 
|  |  | 
|  | // Tests that Truly(predicate_functor) works too. | 
|  | TEST(TrulyTest, CanBeUsedWithFunctor) { | 
|  | Matcher<int> m = Truly(IsGreaterThan(5)); | 
|  | EXPECT_TRUE(m.Matches(6)); | 
|  | EXPECT_FALSE(m.Matches(4)); | 
|  | } | 
|  |  | 
|  | // A class that can be implicitly converted to bool. | 
|  | class ConvertibleToBool { | 
|  | public: | 
|  | explicit ConvertibleToBool(int number) : number_(number) {} | 
|  | operator bool() const { return number_ != 0; } | 
|  |  | 
|  | private: | 
|  | int number_; | 
|  | }; | 
|  |  | 
|  | ConvertibleToBool IsNotZero(int number) { | 
|  | return ConvertibleToBool(number); | 
|  | } | 
|  |  | 
|  | // Tests that the predicate used in Truly() may return a class that's | 
|  | // implicitly convertible to bool, even when the class has no | 
|  | // operator!(). | 
|  | TEST(TrulyTest, PredicateCanReturnAClassConvertibleToBool) { | 
|  | Matcher<int> m = Truly(IsNotZero); | 
|  | EXPECT_TRUE(m.Matches(1)); | 
|  | EXPECT_FALSE(m.Matches(0)); | 
|  | } | 
|  |  | 
|  | // Tests that Truly(predicate) can describe itself properly. | 
|  | TEST(TrulyTest, CanDescribeSelf) { | 
|  | Matcher<double> m = Truly(IsPositive); | 
|  | EXPECT_EQ("satisfies the given predicate", | 
|  | Describe(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Truly(predicate) works when the matcher takes its | 
|  | // argument by reference. | 
|  | TEST(TrulyTest, WorksForByRefArguments) { | 
|  | Matcher<const int&> m = Truly(ReferencesFooAndIsZero); | 
|  | EXPECT_TRUE(m.Matches(foo)); | 
|  | int n = 0; | 
|  | EXPECT_FALSE(m.Matches(n)); | 
|  | } | 
|  |  | 
|  | // Tests that Matches(m) is a predicate satisfied by whatever that | 
|  | // matches matcher m. | 
|  | TEST(MatchesTest, IsSatisfiedByWhatMatchesTheMatcher) { | 
|  | EXPECT_TRUE(Matches(Ge(0))(1)); | 
|  | EXPECT_FALSE(Matches(Eq('a'))('b')); | 
|  | } | 
|  |  | 
|  | // Tests that Matches(m) works when the matcher takes its argument by | 
|  | // reference. | 
|  | TEST(MatchesTest, WorksOnByRefArguments) { | 
|  | int m = 0, n = 0; | 
|  | EXPECT_TRUE(Matches(AllOf(Ref(n), Eq(0)))(n)); | 
|  | EXPECT_FALSE(Matches(Ref(m))(n)); | 
|  | } | 
|  |  | 
|  | // Tests that a Matcher on non-reference type can be used in | 
|  | // Matches(). | 
|  | TEST(MatchesTest, WorksWithMatcherOnNonRefType) { | 
|  | Matcher<int> eq5 = Eq(5); | 
|  | EXPECT_TRUE(Matches(eq5)(5)); | 
|  | EXPECT_FALSE(Matches(eq5)(2)); | 
|  | } | 
|  |  | 
|  | // Tests Value(value, matcher).  Since Value() is a simple wrapper for | 
|  | // Matches(), which has been tested already, we don't spend a lot of | 
|  | // effort on testing Value(). | 
|  | TEST(ValueTest, WorksWithPolymorphicMatcher) { | 
|  | EXPECT_TRUE(Value("hi", StartsWith("h"))); | 
|  | EXPECT_FALSE(Value(5, Gt(10))); | 
|  | } | 
|  |  | 
|  | TEST(ValueTest, WorksWithMonomorphicMatcher) { | 
|  | const Matcher<int> is_zero = Eq(0); | 
|  | EXPECT_TRUE(Value(0, is_zero)); | 
|  | EXPECT_FALSE(Value('a', is_zero)); | 
|  |  | 
|  | int n = 0; | 
|  | const Matcher<const int&> ref_n = Ref(n); | 
|  | EXPECT_TRUE(Value(n, ref_n)); | 
|  | EXPECT_FALSE(Value(1, ref_n)); | 
|  | } | 
|  |  | 
|  | TEST(ExplainMatchResultTest, WorksWithPolymorphicMatcher) { | 
|  | StringMatchResultListener listener1; | 
|  | EXPECT_TRUE(ExplainMatchResult(PolymorphicIsEven(), 42, &listener1)); | 
|  | EXPECT_EQ("% 2 == 0", listener1.str()); | 
|  |  | 
|  | StringMatchResultListener listener2; | 
|  | EXPECT_FALSE(ExplainMatchResult(Ge(42), 1.5, &listener2)); | 
|  | EXPECT_EQ("", listener2.str()); | 
|  | } | 
|  |  | 
|  | TEST(ExplainMatchResultTest, WorksWithMonomorphicMatcher) { | 
|  | const Matcher<int> is_even = PolymorphicIsEven(); | 
|  | StringMatchResultListener listener1; | 
|  | EXPECT_TRUE(ExplainMatchResult(is_even, 42, &listener1)); | 
|  | EXPECT_EQ("% 2 == 0", listener1.str()); | 
|  |  | 
|  | const Matcher<const double&> is_zero = Eq(0); | 
|  | StringMatchResultListener listener2; | 
|  | EXPECT_FALSE(ExplainMatchResult(is_zero, 1.5, &listener2)); | 
|  | EXPECT_EQ("", listener2.str()); | 
|  | } | 
|  |  | 
|  | MATCHER_P(Really, inner_matcher, "") { | 
|  | return ExplainMatchResult(inner_matcher, arg, result_listener); | 
|  | } | 
|  |  | 
|  | TEST(ExplainMatchResultTest, WorksInsideMATCHER) { | 
|  | EXPECT_THAT(0, Really(Eq(0))); | 
|  | } | 
|  |  | 
|  | TEST(DescribeMatcherTest, WorksWithValue) { | 
|  | EXPECT_EQ("is equal to 42", DescribeMatcher<int>(42)); | 
|  | EXPECT_EQ("isn't equal to 42", DescribeMatcher<int>(42, true)); | 
|  | } | 
|  |  | 
|  | TEST(DescribeMatcherTest, WorksWithMonomorphicMatcher) { | 
|  | const Matcher<int> monomorphic = Le(0); | 
|  | EXPECT_EQ("is <= 0", DescribeMatcher<int>(monomorphic)); | 
|  | EXPECT_EQ("isn't <= 0", DescribeMatcher<int>(monomorphic, true)); | 
|  | } | 
|  |  | 
|  | TEST(DescribeMatcherTest, WorksWithPolymorphicMatcher) { | 
|  | EXPECT_EQ("is even", DescribeMatcher<int>(PolymorphicIsEven())); | 
|  | EXPECT_EQ("is odd", DescribeMatcher<int>(PolymorphicIsEven(), true)); | 
|  | } | 
|  |  | 
|  | TEST(AllArgsTest, WorksForTuple) { | 
|  | EXPECT_THAT(make_tuple(1, 2L), AllArgs(Lt())); | 
|  | EXPECT_THAT(make_tuple(2L, 1), Not(AllArgs(Lt()))); | 
|  | } | 
|  |  | 
|  | TEST(AllArgsTest, WorksForNonTuple) { | 
|  | EXPECT_THAT(42, AllArgs(Gt(0))); | 
|  | EXPECT_THAT('a', Not(AllArgs(Eq('b')))); | 
|  | } | 
|  |  | 
|  | class AllArgsHelper { | 
|  | public: | 
|  | AllArgsHelper() {} | 
|  |  | 
|  | MOCK_METHOD2(Helper, int(char x, int y)); | 
|  |  | 
|  | private: | 
|  | GTEST_DISALLOW_COPY_AND_ASSIGN_(AllArgsHelper); | 
|  | }; | 
|  |  | 
|  | TEST(AllArgsTest, WorksInWithClause) { | 
|  | AllArgsHelper helper; | 
|  | ON_CALL(helper, Helper(_, _)) | 
|  | .With(AllArgs(Lt())) | 
|  | .WillByDefault(Return(1)); | 
|  | EXPECT_CALL(helper, Helper(_, _)); | 
|  | EXPECT_CALL(helper, Helper(_, _)) | 
|  | .With(AllArgs(Gt())) | 
|  | .WillOnce(Return(2)); | 
|  |  | 
|  | EXPECT_EQ(1, helper.Helper('\1', 2)); | 
|  | EXPECT_EQ(2, helper.Helper('a', 1)); | 
|  | } | 
|  |  | 
|  | class OptionalMatchersHelper { | 
|  | public: | 
|  | OptionalMatchersHelper() {} | 
|  |  | 
|  | MOCK_METHOD0(NoArgs, int()); | 
|  |  | 
|  | MOCK_METHOD1(OneArg, int(int y)); | 
|  |  | 
|  | MOCK_METHOD2(TwoArgs, int(char x, int y)); | 
|  |  | 
|  | MOCK_METHOD1(Overloaded, int(char x)); | 
|  | MOCK_METHOD2(Overloaded, int(char x, int y)); | 
|  |  | 
|  | private: | 
|  | GTEST_DISALLOW_COPY_AND_ASSIGN_(OptionalMatchersHelper); | 
|  | }; | 
|  |  | 
|  | TEST(AllArgsTest, WorksWithoutMatchers) { | 
|  | OptionalMatchersHelper helper; | 
|  |  | 
|  | ON_CALL(helper, NoArgs).WillByDefault(Return(10)); | 
|  | ON_CALL(helper, OneArg).WillByDefault(Return(20)); | 
|  | ON_CALL(helper, TwoArgs).WillByDefault(Return(30)); | 
|  |  | 
|  | EXPECT_EQ(10, helper.NoArgs()); | 
|  | EXPECT_EQ(20, helper.OneArg(1)); | 
|  | EXPECT_EQ(30, helper.TwoArgs('\1', 2)); | 
|  |  | 
|  | EXPECT_CALL(helper, NoArgs).Times(1); | 
|  | EXPECT_CALL(helper, OneArg).WillOnce(Return(100)); | 
|  | EXPECT_CALL(helper, OneArg(17)).WillOnce(Return(200)); | 
|  | EXPECT_CALL(helper, TwoArgs).Times(0); | 
|  |  | 
|  | EXPECT_EQ(10, helper.NoArgs()); | 
|  | EXPECT_EQ(100, helper.OneArg(1)); | 
|  | EXPECT_EQ(200, helper.OneArg(17)); | 
|  | } | 
|  |  | 
|  | // Tests that ASSERT_THAT() and EXPECT_THAT() work when the value | 
|  | // matches the matcher. | 
|  | TEST(MatcherAssertionTest, WorksWhenMatcherIsSatisfied) { | 
|  | ASSERT_THAT(5, Ge(2)) << "This should succeed."; | 
|  | ASSERT_THAT("Foo", EndsWith("oo")); | 
|  | EXPECT_THAT(2, AllOf(Le(7), Ge(0))) << "This should succeed too."; | 
|  | EXPECT_THAT("Hello", StartsWith("Hell")); | 
|  | } | 
|  |  | 
|  | // Tests that ASSERT_THAT() and EXPECT_THAT() work when the value | 
|  | // doesn't match the matcher. | 
|  | TEST(MatcherAssertionTest, WorksWhenMatcherIsNotSatisfied) { | 
|  | // 'n' must be static as it is used in an EXPECT_FATAL_FAILURE(), | 
|  | // which cannot reference auto variables. | 
|  | static unsigned short n;  // NOLINT | 
|  | n = 5; | 
|  |  | 
|  | // VC++ prior to version 8.0 SP1 has a bug where it will not see any | 
|  | // functions declared in the namespace scope from within nested classes. | 
|  | // EXPECT/ASSERT_(NON)FATAL_FAILURE macros use nested classes so that all | 
|  | // namespace-level functions invoked inside them need to be explicitly | 
|  | // resolved. | 
|  | EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Gt(10)), | 
|  | "Value of: n\n" | 
|  | "Expected: is > 10\n" | 
|  | "  Actual: 5" + OfType("unsigned short")); | 
|  | n = 0; | 
|  | EXPECT_NONFATAL_FAILURE( | 
|  | EXPECT_THAT(n, ::testing::AllOf(::testing::Le(7), ::testing::Ge(5))), | 
|  | "Value of: n\n" | 
|  | "Expected: (is <= 7) and (is >= 5)\n" | 
|  | "  Actual: 0" + OfType("unsigned short")); | 
|  | } | 
|  |  | 
|  | // Tests that ASSERT_THAT() and EXPECT_THAT() work when the argument | 
|  | // has a reference type. | 
|  | TEST(MatcherAssertionTest, WorksForByRefArguments) { | 
|  | // We use a static variable here as EXPECT_FATAL_FAILURE() cannot | 
|  | // reference auto variables. | 
|  | static int n; | 
|  | n = 0; | 
|  | EXPECT_THAT(n, AllOf(Le(7), Ref(n))); | 
|  | EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))), | 
|  | "Value of: n\n" | 
|  | "Expected: does not reference the variable @"); | 
|  | // Tests the "Actual" part. | 
|  | EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))), | 
|  | "Actual: 0" + OfType("int") + ", which is located @"); | 
|  | } | 
|  |  | 
|  | #if !GTEST_OS_SYMBIAN | 
|  | // Tests that ASSERT_THAT() and EXPECT_THAT() work when the matcher is | 
|  | // monomorphic. | 
|  |  | 
|  | // ASSERT_THAT("hello", starts_with_he) fails to compile with Nokia's | 
|  | // Symbian compiler: it tries to compile | 
|  | // template<T, U> class MatcherCastImpl { ... | 
|  | //   virtual bool MatchAndExplain(T x, ...) const { | 
|  | //     return source_matcher_.MatchAndExplain(static_cast<U>(x), ...); | 
|  | // with U == string and T == const char* | 
|  | // With ASSERT_THAT("hello"...) changed to ASSERT_THAT(string("hello") ... ) | 
|  | // the compiler silently crashes with no output. | 
|  | // If MatcherCastImpl is changed to use U(x) instead of static_cast<U>(x) | 
|  | // the code compiles but the converted string is bogus. | 
|  | TEST(MatcherAssertionTest, WorksForMonomorphicMatcher) { | 
|  | Matcher<const char*> starts_with_he = StartsWith("he"); | 
|  | ASSERT_THAT("hello", starts_with_he); | 
|  |  | 
|  | Matcher<const std::string&> ends_with_ok = EndsWith("ok"); | 
|  | ASSERT_THAT("book", ends_with_ok); | 
|  | const std::string bad = "bad"; | 
|  | EXPECT_NONFATAL_FAILURE(EXPECT_THAT(bad, ends_with_ok), | 
|  | "Value of: bad\n" | 
|  | "Expected: ends with \"ok\"\n" | 
|  | "  Actual: \"bad\""); | 
|  | Matcher<int> is_greater_than_5 = Gt(5); | 
|  | EXPECT_NONFATAL_FAILURE(EXPECT_THAT(5, is_greater_than_5), | 
|  | "Value of: 5\n" | 
|  | "Expected: is > 5\n" | 
|  | "  Actual: 5" + OfType("int")); | 
|  | } | 
|  | #endif  // !GTEST_OS_SYMBIAN | 
|  |  | 
|  | // Tests floating-point matchers. | 
|  | template <typename RawType> | 
|  | class FloatingPointTest : public testing::Test { | 
|  | protected: | 
|  | typedef testing::internal::FloatingPoint<RawType> Floating; | 
|  | typedef typename Floating::Bits Bits; | 
|  |  | 
|  | FloatingPointTest() | 
|  | : max_ulps_(Floating::kMaxUlps), | 
|  | zero_bits_(Floating(0).bits()), | 
|  | one_bits_(Floating(1).bits()), | 
|  | infinity_bits_(Floating(Floating::Infinity()).bits()), | 
|  | close_to_positive_zero_( | 
|  | Floating::ReinterpretBits(zero_bits_ + max_ulps_/2)), | 
|  | close_to_negative_zero_( | 
|  | -Floating::ReinterpretBits(zero_bits_ + max_ulps_ - max_ulps_/2)), | 
|  | further_from_negative_zero_(-Floating::ReinterpretBits( | 
|  | zero_bits_ + max_ulps_ + 1 - max_ulps_/2)), | 
|  | close_to_one_(Floating::ReinterpretBits(one_bits_ + max_ulps_)), | 
|  | further_from_one_(Floating::ReinterpretBits(one_bits_ + max_ulps_ + 1)), | 
|  | infinity_(Floating::Infinity()), | 
|  | close_to_infinity_( | 
|  | Floating::ReinterpretBits(infinity_bits_ - max_ulps_)), | 
|  | further_from_infinity_( | 
|  | Floating::ReinterpretBits(infinity_bits_ - max_ulps_ - 1)), | 
|  | max_(Floating::Max()), | 
|  | nan1_(Floating::ReinterpretBits(Floating::kExponentBitMask | 1)), | 
|  | nan2_(Floating::ReinterpretBits(Floating::kExponentBitMask | 200)) { | 
|  | } | 
|  |  | 
|  | void TestSize() { | 
|  | EXPECT_EQ(sizeof(RawType), sizeof(Bits)); | 
|  | } | 
|  |  | 
|  | // A battery of tests for FloatingEqMatcher::Matches. | 
|  | // matcher_maker is a pointer to a function which creates a FloatingEqMatcher. | 
|  | void TestMatches( | 
|  | testing::internal::FloatingEqMatcher<RawType> (*matcher_maker)(RawType)) { | 
|  | Matcher<RawType> m1 = matcher_maker(0.0); | 
|  | EXPECT_TRUE(m1.Matches(-0.0)); | 
|  | EXPECT_TRUE(m1.Matches(close_to_positive_zero_)); | 
|  | EXPECT_TRUE(m1.Matches(close_to_negative_zero_)); | 
|  | EXPECT_FALSE(m1.Matches(1.0)); | 
|  |  | 
|  | Matcher<RawType> m2 = matcher_maker(close_to_positive_zero_); | 
|  | EXPECT_FALSE(m2.Matches(further_from_negative_zero_)); | 
|  |  | 
|  | Matcher<RawType> m3 = matcher_maker(1.0); | 
|  | EXPECT_TRUE(m3.Matches(close_to_one_)); | 
|  | EXPECT_FALSE(m3.Matches(further_from_one_)); | 
|  |  | 
|  | // Test commutativity: matcher_maker(0.0).Matches(1.0) was tested above. | 
|  | EXPECT_FALSE(m3.Matches(0.0)); | 
|  |  | 
|  | Matcher<RawType> m4 = matcher_maker(-infinity_); | 
|  | EXPECT_TRUE(m4.Matches(-close_to_infinity_)); | 
|  |  | 
|  | Matcher<RawType> m5 = matcher_maker(infinity_); | 
|  | EXPECT_TRUE(m5.Matches(close_to_infinity_)); | 
|  |  | 
|  | // This is interesting as the representations of infinity_ and nan1_ | 
|  | // are only 1 DLP apart. | 
|  | EXPECT_FALSE(m5.Matches(nan1_)); | 
|  |  | 
|  | // matcher_maker can produce a Matcher<const RawType&>, which is needed in | 
|  | // some cases. | 
|  | Matcher<const RawType&> m6 = matcher_maker(0.0); | 
|  | EXPECT_TRUE(m6.Matches(-0.0)); | 
|  | EXPECT_TRUE(m6.Matches(close_to_positive_zero_)); | 
|  | EXPECT_FALSE(m6.Matches(1.0)); | 
|  |  | 
|  | // matcher_maker can produce a Matcher<RawType&>, which is needed in some | 
|  | // cases. | 
|  | Matcher<RawType&> m7 = matcher_maker(0.0); | 
|  | RawType x = 0.0; | 
|  | EXPECT_TRUE(m7.Matches(x)); | 
|  | x = 0.01f; | 
|  | EXPECT_FALSE(m7.Matches(x)); | 
|  | } | 
|  |  | 
|  | // Pre-calculated numbers to be used by the tests. | 
|  |  | 
|  | const Bits max_ulps_; | 
|  |  | 
|  | const Bits zero_bits_;  // The bits that represent 0.0. | 
|  | const Bits one_bits_;  // The bits that represent 1.0. | 
|  | const Bits infinity_bits_;  // The bits that represent +infinity. | 
|  |  | 
|  | // Some numbers close to 0.0. | 
|  | const RawType close_to_positive_zero_; | 
|  | const RawType close_to_negative_zero_; | 
|  | const RawType further_from_negative_zero_; | 
|  |  | 
|  | // Some numbers close to 1.0. | 
|  | const RawType close_to_one_; | 
|  | const RawType further_from_one_; | 
|  |  | 
|  | // Some numbers close to +infinity. | 
|  | const RawType infinity_; | 
|  | const RawType close_to_infinity_; | 
|  | const RawType further_from_infinity_; | 
|  |  | 
|  | // Maximum representable value that's not infinity. | 
|  | const RawType max_; | 
|  |  | 
|  | // Some NaNs. | 
|  | const RawType nan1_; | 
|  | const RawType nan2_; | 
|  | }; | 
|  |  | 
|  | // Tests floating-point matchers with fixed epsilons. | 
|  | template <typename RawType> | 
|  | class FloatingPointNearTest : public FloatingPointTest<RawType> { | 
|  | protected: | 
|  | typedef FloatingPointTest<RawType> ParentType; | 
|  |  | 
|  | // A battery of tests for FloatingEqMatcher::Matches with a fixed epsilon. | 
|  | // matcher_maker is a pointer to a function which creates a FloatingEqMatcher. | 
|  | void TestNearMatches( | 
|  | testing::internal::FloatingEqMatcher<RawType> | 
|  | (*matcher_maker)(RawType, RawType)) { | 
|  | Matcher<RawType> m1 = matcher_maker(0.0, 0.0); | 
|  | EXPECT_TRUE(m1.Matches(0.0)); | 
|  | EXPECT_TRUE(m1.Matches(-0.0)); | 
|  | EXPECT_FALSE(m1.Matches(ParentType::close_to_positive_zero_)); | 
|  | EXPECT_FALSE(m1.Matches(ParentType::close_to_negative_zero_)); | 
|  | EXPECT_FALSE(m1.Matches(1.0)); | 
|  |  | 
|  | Matcher<RawType> m2 = matcher_maker(0.0, 1.0); | 
|  | EXPECT_TRUE(m2.Matches(0.0)); | 
|  | EXPECT_TRUE(m2.Matches(-0.0)); | 
|  | EXPECT_TRUE(m2.Matches(1.0)); | 
|  | EXPECT_TRUE(m2.Matches(-1.0)); | 
|  | EXPECT_FALSE(m2.Matches(ParentType::close_to_one_)); | 
|  | EXPECT_FALSE(m2.Matches(-ParentType::close_to_one_)); | 
|  |  | 
|  | // Check that inf matches inf, regardless of the of the specified max | 
|  | // absolute error. | 
|  | Matcher<RawType> m3 = matcher_maker(ParentType::infinity_, 0.0); | 
|  | EXPECT_TRUE(m3.Matches(ParentType::infinity_)); | 
|  | EXPECT_FALSE(m3.Matches(ParentType::close_to_infinity_)); | 
|  | EXPECT_FALSE(m3.Matches(-ParentType::infinity_)); | 
|  |  | 
|  | Matcher<RawType> m4 = matcher_maker(-ParentType::infinity_, 0.0); | 
|  | EXPECT_TRUE(m4.Matches(-ParentType::infinity_)); | 
|  | EXPECT_FALSE(m4.Matches(-ParentType::close_to_infinity_)); | 
|  | EXPECT_FALSE(m4.Matches(ParentType::infinity_)); | 
|  |  | 
|  | // Test various overflow scenarios. | 
|  | Matcher<RawType> m5 = matcher_maker(ParentType::max_, ParentType::max_); | 
|  | EXPECT_TRUE(m5.Matches(ParentType::max_)); | 
|  | EXPECT_FALSE(m5.Matches(-ParentType::max_)); | 
|  |  | 
|  | Matcher<RawType> m6 = matcher_maker(-ParentType::max_, ParentType::max_); | 
|  | EXPECT_FALSE(m6.Matches(ParentType::max_)); | 
|  | EXPECT_TRUE(m6.Matches(-ParentType::max_)); | 
|  |  | 
|  | Matcher<RawType> m7 = matcher_maker(ParentType::max_, 0); | 
|  | EXPECT_TRUE(m7.Matches(ParentType::max_)); | 
|  | EXPECT_FALSE(m7.Matches(-ParentType::max_)); | 
|  |  | 
|  | Matcher<RawType> m8 = matcher_maker(-ParentType::max_, 0); | 
|  | EXPECT_FALSE(m8.Matches(ParentType::max_)); | 
|  | EXPECT_TRUE(m8.Matches(-ParentType::max_)); | 
|  |  | 
|  | // The difference between max() and -max() normally overflows to infinity, | 
|  | // but it should still match if the max_abs_error is also infinity. | 
|  | Matcher<RawType> m9 = matcher_maker( | 
|  | ParentType::max_, ParentType::infinity_); | 
|  | EXPECT_TRUE(m8.Matches(-ParentType::max_)); | 
|  |  | 
|  | // matcher_maker can produce a Matcher<const RawType&>, which is needed in | 
|  | // some cases. | 
|  | Matcher<const RawType&> m10 = matcher_maker(0.0, 1.0); | 
|  | EXPECT_TRUE(m10.Matches(-0.0)); | 
|  | EXPECT_TRUE(m10.Matches(ParentType::close_to_positive_zero_)); | 
|  | EXPECT_FALSE(m10.Matches(ParentType::close_to_one_)); | 
|  |  | 
|  | // matcher_maker can produce a Matcher<RawType&>, which is needed in some | 
|  | // cases. | 
|  | Matcher<RawType&> m11 = matcher_maker(0.0, 1.0); | 
|  | RawType x = 0.0; | 
|  | EXPECT_TRUE(m11.Matches(x)); | 
|  | x = 1.0f; | 
|  | EXPECT_TRUE(m11.Matches(x)); | 
|  | x = -1.0f; | 
|  | EXPECT_TRUE(m11.Matches(x)); | 
|  | x = 1.1f; | 
|  | EXPECT_FALSE(m11.Matches(x)); | 
|  | x = -1.1f; | 
|  | EXPECT_FALSE(m11.Matches(x)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Instantiate FloatingPointTest for testing floats. | 
|  | typedef FloatingPointTest<float> FloatTest; | 
|  |  | 
|  | TEST_F(FloatTest, FloatEqApproximatelyMatchesFloats) { | 
|  | TestMatches(&FloatEq); | 
|  | } | 
|  |  | 
|  | TEST_F(FloatTest, NanSensitiveFloatEqApproximatelyMatchesFloats) { | 
|  | TestMatches(&NanSensitiveFloatEq); | 
|  | } | 
|  |  | 
|  | TEST_F(FloatTest, FloatEqCannotMatchNaN) { | 
|  | // FloatEq never matches NaN. | 
|  | Matcher<float> m = FloatEq(nan1_); | 
|  | EXPECT_FALSE(m.Matches(nan1_)); | 
|  | EXPECT_FALSE(m.Matches(nan2_)); | 
|  | EXPECT_FALSE(m.Matches(1.0)); | 
|  | } | 
|  |  | 
|  | TEST_F(FloatTest, NanSensitiveFloatEqCanMatchNaN) { | 
|  | // NanSensitiveFloatEq will match NaN. | 
|  | Matcher<float> m = NanSensitiveFloatEq(nan1_); | 
|  | EXPECT_TRUE(m.Matches(nan1_)); | 
|  | EXPECT_TRUE(m.Matches(nan2_)); | 
|  | EXPECT_FALSE(m.Matches(1.0)); | 
|  | } | 
|  |  | 
|  | TEST_F(FloatTest, FloatEqCanDescribeSelf) { | 
|  | Matcher<float> m1 = FloatEq(2.0f); | 
|  | EXPECT_EQ("is approximately 2", Describe(m1)); | 
|  | EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); | 
|  |  | 
|  | Matcher<float> m2 = FloatEq(0.5f); | 
|  | EXPECT_EQ("is approximately 0.5", Describe(m2)); | 
|  | EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); | 
|  |  | 
|  | Matcher<float> m3 = FloatEq(nan1_); | 
|  | EXPECT_EQ("never matches", Describe(m3)); | 
|  | EXPECT_EQ("is anything", DescribeNegation(m3)); | 
|  | } | 
|  |  | 
|  | TEST_F(FloatTest, NanSensitiveFloatEqCanDescribeSelf) { | 
|  | Matcher<float> m1 = NanSensitiveFloatEq(2.0f); | 
|  | EXPECT_EQ("is approximately 2", Describe(m1)); | 
|  | EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); | 
|  |  | 
|  | Matcher<float> m2 = NanSensitiveFloatEq(0.5f); | 
|  | EXPECT_EQ("is approximately 0.5", Describe(m2)); | 
|  | EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); | 
|  |  | 
|  | Matcher<float> m3 = NanSensitiveFloatEq(nan1_); | 
|  | EXPECT_EQ("is NaN", Describe(m3)); | 
|  | EXPECT_EQ("isn't NaN", DescribeNegation(m3)); | 
|  | } | 
|  |  | 
|  | // Instantiate FloatingPointTest for testing floats with a user-specified | 
|  | // max absolute error. | 
|  | typedef FloatingPointNearTest<float> FloatNearTest; | 
|  |  | 
|  | TEST_F(FloatNearTest, FloatNearMatches) { | 
|  | TestNearMatches(&FloatNear); | 
|  | } | 
|  |  | 
|  | TEST_F(FloatNearTest, NanSensitiveFloatNearApproximatelyMatchesFloats) { | 
|  | TestNearMatches(&NanSensitiveFloatNear); | 
|  | } | 
|  |  | 
|  | TEST_F(FloatNearTest, FloatNearCanDescribeSelf) { | 
|  | Matcher<float> m1 = FloatNear(2.0f, 0.5f); | 
|  | EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); | 
|  | EXPECT_EQ( | 
|  | "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); | 
|  |  | 
|  | Matcher<float> m2 = FloatNear(0.5f, 0.5f); | 
|  | EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); | 
|  | EXPECT_EQ( | 
|  | "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); | 
|  |  | 
|  | Matcher<float> m3 = FloatNear(nan1_, 0.0); | 
|  | EXPECT_EQ("never matches", Describe(m3)); | 
|  | EXPECT_EQ("is anything", DescribeNegation(m3)); | 
|  | } | 
|  |  | 
|  | TEST_F(FloatNearTest, NanSensitiveFloatNearCanDescribeSelf) { | 
|  | Matcher<float> m1 = NanSensitiveFloatNear(2.0f, 0.5f); | 
|  | EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); | 
|  | EXPECT_EQ( | 
|  | "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); | 
|  |  | 
|  | Matcher<float> m2 = NanSensitiveFloatNear(0.5f, 0.5f); | 
|  | EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); | 
|  | EXPECT_EQ( | 
|  | "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); | 
|  |  | 
|  | Matcher<float> m3 = NanSensitiveFloatNear(nan1_, 0.1f); | 
|  | EXPECT_EQ("is NaN", Describe(m3)); | 
|  | EXPECT_EQ("isn't NaN", DescribeNegation(m3)); | 
|  | } | 
|  |  | 
|  | TEST_F(FloatNearTest, FloatNearCannotMatchNaN) { | 
|  | // FloatNear never matches NaN. | 
|  | Matcher<float> m = FloatNear(ParentType::nan1_, 0.1f); | 
|  | EXPECT_FALSE(m.Matches(nan1_)); | 
|  | EXPECT_FALSE(m.Matches(nan2_)); | 
|  | EXPECT_FALSE(m.Matches(1.0)); | 
|  | } | 
|  |  | 
|  | TEST_F(FloatNearTest, NanSensitiveFloatNearCanMatchNaN) { | 
|  | // NanSensitiveFloatNear will match NaN. | 
|  | Matcher<float> m = NanSensitiveFloatNear(nan1_, 0.1f); | 
|  | EXPECT_TRUE(m.Matches(nan1_)); | 
|  | EXPECT_TRUE(m.Matches(nan2_)); | 
|  | EXPECT_FALSE(m.Matches(1.0)); | 
|  | } | 
|  |  | 
|  | // Instantiate FloatingPointTest for testing doubles. | 
|  | typedef FloatingPointTest<double> DoubleTest; | 
|  |  | 
|  | TEST_F(DoubleTest, DoubleEqApproximatelyMatchesDoubles) { | 
|  | TestMatches(&DoubleEq); | 
|  | } | 
|  |  | 
|  | TEST_F(DoubleTest, NanSensitiveDoubleEqApproximatelyMatchesDoubles) { | 
|  | TestMatches(&NanSensitiveDoubleEq); | 
|  | } | 
|  |  | 
|  | TEST_F(DoubleTest, DoubleEqCannotMatchNaN) { | 
|  | // DoubleEq never matches NaN. | 
|  | Matcher<double> m = DoubleEq(nan1_); | 
|  | EXPECT_FALSE(m.Matches(nan1_)); | 
|  | EXPECT_FALSE(m.Matches(nan2_)); | 
|  | EXPECT_FALSE(m.Matches(1.0)); | 
|  | } | 
|  |  | 
|  | TEST_F(DoubleTest, NanSensitiveDoubleEqCanMatchNaN) { | 
|  | // NanSensitiveDoubleEq will match NaN. | 
|  | Matcher<double> m = NanSensitiveDoubleEq(nan1_); | 
|  | EXPECT_TRUE(m.Matches(nan1_)); | 
|  | EXPECT_TRUE(m.Matches(nan2_)); | 
|  | EXPECT_FALSE(m.Matches(1.0)); | 
|  | } | 
|  |  | 
|  | TEST_F(DoubleTest, DoubleEqCanDescribeSelf) { | 
|  | Matcher<double> m1 = DoubleEq(2.0); | 
|  | EXPECT_EQ("is approximately 2", Describe(m1)); | 
|  | EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); | 
|  |  | 
|  | Matcher<double> m2 = DoubleEq(0.5); | 
|  | EXPECT_EQ("is approximately 0.5", Describe(m2)); | 
|  | EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); | 
|  |  | 
|  | Matcher<double> m3 = DoubleEq(nan1_); | 
|  | EXPECT_EQ("never matches", Describe(m3)); | 
|  | EXPECT_EQ("is anything", DescribeNegation(m3)); | 
|  | } | 
|  |  | 
|  | TEST_F(DoubleTest, NanSensitiveDoubleEqCanDescribeSelf) { | 
|  | Matcher<double> m1 = NanSensitiveDoubleEq(2.0); | 
|  | EXPECT_EQ("is approximately 2", Describe(m1)); | 
|  | EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); | 
|  |  | 
|  | Matcher<double> m2 = NanSensitiveDoubleEq(0.5); | 
|  | EXPECT_EQ("is approximately 0.5", Describe(m2)); | 
|  | EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); | 
|  |  | 
|  | Matcher<double> m3 = NanSensitiveDoubleEq(nan1_); | 
|  | EXPECT_EQ("is NaN", Describe(m3)); | 
|  | EXPECT_EQ("isn't NaN", DescribeNegation(m3)); | 
|  | } | 
|  |  | 
|  | // Instantiate FloatingPointTest for testing floats with a user-specified | 
|  | // max absolute error. | 
|  | typedef FloatingPointNearTest<double> DoubleNearTest; | 
|  |  | 
|  | TEST_F(DoubleNearTest, DoubleNearMatches) { | 
|  | TestNearMatches(&DoubleNear); | 
|  | } | 
|  |  | 
|  | TEST_F(DoubleNearTest, NanSensitiveDoubleNearApproximatelyMatchesDoubles) { | 
|  | TestNearMatches(&NanSensitiveDoubleNear); | 
|  | } | 
|  |  | 
|  | TEST_F(DoubleNearTest, DoubleNearCanDescribeSelf) { | 
|  | Matcher<double> m1 = DoubleNear(2.0, 0.5); | 
|  | EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); | 
|  | EXPECT_EQ( | 
|  | "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); | 
|  |  | 
|  | Matcher<double> m2 = DoubleNear(0.5, 0.5); | 
|  | EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); | 
|  | EXPECT_EQ( | 
|  | "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); | 
|  |  | 
|  | Matcher<double> m3 = DoubleNear(nan1_, 0.0); | 
|  | EXPECT_EQ("never matches", Describe(m3)); | 
|  | EXPECT_EQ("is anything", DescribeNegation(m3)); | 
|  | } | 
|  |  | 
|  | TEST_F(DoubleNearTest, ExplainsResultWhenMatchFails) { | 
|  | EXPECT_EQ("", Explain(DoubleNear(2.0, 0.1), 2.05)); | 
|  | EXPECT_EQ("which is 0.2 from 2", Explain(DoubleNear(2.0, 0.1), 2.2)); | 
|  | EXPECT_EQ("which is -0.3 from 2", Explain(DoubleNear(2.0, 0.1), 1.7)); | 
|  |  | 
|  | const std::string explanation = | 
|  | Explain(DoubleNear(2.1, 1e-10), 2.1 + 1.2e-10); | 
|  | // Different C++ implementations may print floating-point numbers | 
|  | // slightly differently. | 
|  | EXPECT_TRUE(explanation == "which is 1.2e-10 from 2.1" ||  // GCC | 
|  | explanation == "which is 1.2e-010 from 2.1")   // MSVC | 
|  | << " where explanation is \"" << explanation << "\"."; | 
|  | } | 
|  |  | 
|  | TEST_F(DoubleNearTest, NanSensitiveDoubleNearCanDescribeSelf) { | 
|  | Matcher<double> m1 = NanSensitiveDoubleNear(2.0, 0.5); | 
|  | EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); | 
|  | EXPECT_EQ( | 
|  | "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); | 
|  |  | 
|  | Matcher<double> m2 = NanSensitiveDoubleNear(0.5, 0.5); | 
|  | EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); | 
|  | EXPECT_EQ( | 
|  | "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); | 
|  |  | 
|  | Matcher<double> m3 = NanSensitiveDoubleNear(nan1_, 0.1); | 
|  | EXPECT_EQ("is NaN", Describe(m3)); | 
|  | EXPECT_EQ("isn't NaN", DescribeNegation(m3)); | 
|  | } | 
|  |  | 
|  | TEST_F(DoubleNearTest, DoubleNearCannotMatchNaN) { | 
|  | // DoubleNear never matches NaN. | 
|  | Matcher<double> m = DoubleNear(ParentType::nan1_, 0.1); | 
|  | EXPECT_FALSE(m.Matches(nan1_)); | 
|  | EXPECT_FALSE(m.Matches(nan2_)); | 
|  | EXPECT_FALSE(m.Matches(1.0)); | 
|  | } | 
|  |  | 
|  | TEST_F(DoubleNearTest, NanSensitiveDoubleNearCanMatchNaN) { | 
|  | // NanSensitiveDoubleNear will match NaN. | 
|  | Matcher<double> m = NanSensitiveDoubleNear(nan1_, 0.1); | 
|  | EXPECT_TRUE(m.Matches(nan1_)); | 
|  | EXPECT_TRUE(m.Matches(nan2_)); | 
|  | EXPECT_FALSE(m.Matches(1.0)); | 
|  | } | 
|  |  | 
|  | TEST(PointeeTest, RawPointer) { | 
|  | const Matcher<int*> m = Pointee(Ge(0)); | 
|  |  | 
|  | int n = 1; | 
|  | EXPECT_TRUE(m.Matches(&n)); | 
|  | n = -1; | 
|  | EXPECT_FALSE(m.Matches(&n)); | 
|  | EXPECT_FALSE(m.Matches(NULL)); | 
|  | } | 
|  |  | 
|  | TEST(PointeeTest, RawPointerToConst) { | 
|  | const Matcher<const double*> m = Pointee(Ge(0)); | 
|  |  | 
|  | double x = 1; | 
|  | EXPECT_TRUE(m.Matches(&x)); | 
|  | x = -1; | 
|  | EXPECT_FALSE(m.Matches(&x)); | 
|  | EXPECT_FALSE(m.Matches(NULL)); | 
|  | } | 
|  |  | 
|  | TEST(PointeeTest, ReferenceToConstRawPointer) { | 
|  | const Matcher<int* const &> m = Pointee(Ge(0)); | 
|  |  | 
|  | int n = 1; | 
|  | EXPECT_TRUE(m.Matches(&n)); | 
|  | n = -1; | 
|  | EXPECT_FALSE(m.Matches(&n)); | 
|  | EXPECT_FALSE(m.Matches(NULL)); | 
|  | } | 
|  |  | 
|  | TEST(PointeeTest, ReferenceToNonConstRawPointer) { | 
|  | const Matcher<double* &> m = Pointee(Ge(0)); | 
|  |  | 
|  | double x = 1.0; | 
|  | double* p = &x; | 
|  | EXPECT_TRUE(m.Matches(p)); | 
|  | x = -1; | 
|  | EXPECT_FALSE(m.Matches(p)); | 
|  | p = NULL; | 
|  | EXPECT_FALSE(m.Matches(p)); | 
|  | } | 
|  |  | 
|  | MATCHER_P(FieldIIs, inner_matcher, "") { | 
|  | return ExplainMatchResult(inner_matcher, arg.i, result_listener); | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_RTTI | 
|  | TEST(WhenDynamicCastToTest, SameType) { | 
|  | Derived derived; | 
|  | derived.i = 4; | 
|  |  | 
|  | // Right type. A pointer is passed down. | 
|  | Base* as_base_ptr = &derived; | 
|  | EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Not(IsNull()))); | 
|  | EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(4)))); | 
|  | EXPECT_THAT(as_base_ptr, | 
|  | Not(WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(5))))); | 
|  | } | 
|  |  | 
|  | TEST(WhenDynamicCastToTest, WrongTypes) { | 
|  | Base base; | 
|  | Derived derived; | 
|  | OtherDerived other_derived; | 
|  |  | 
|  | // Wrong types. NULL is passed. | 
|  | EXPECT_THAT(&base, Not(WhenDynamicCastTo<Derived*>(Pointee(_)))); | 
|  | EXPECT_THAT(&base, WhenDynamicCastTo<Derived*>(IsNull())); | 
|  | Base* as_base_ptr = &derived; | 
|  | EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<OtherDerived*>(Pointee(_)))); | 
|  | EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<OtherDerived*>(IsNull())); | 
|  | as_base_ptr = &other_derived; | 
|  | EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<Derived*>(Pointee(_)))); | 
|  | EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull())); | 
|  | } | 
|  |  | 
|  | TEST(WhenDynamicCastToTest, AlreadyNull) { | 
|  | // Already NULL. | 
|  | Base* as_base_ptr = NULL; | 
|  | EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull())); | 
|  | } | 
|  |  | 
|  | struct AmbiguousCastTypes { | 
|  | class VirtualDerived : public virtual Base {}; | 
|  | class DerivedSub1 : public VirtualDerived {}; | 
|  | class DerivedSub2 : public VirtualDerived {}; | 
|  | class ManyDerivedInHierarchy : public DerivedSub1, public DerivedSub2 {}; | 
|  | }; | 
|  |  | 
|  | TEST(WhenDynamicCastToTest, AmbiguousCast) { | 
|  | AmbiguousCastTypes::DerivedSub1 sub1; | 
|  | AmbiguousCastTypes::ManyDerivedInHierarchy many_derived; | 
|  | // Multiply derived from Base. dynamic_cast<> returns NULL. | 
|  | Base* as_base_ptr = | 
|  | static_cast<AmbiguousCastTypes::DerivedSub1*>(&many_derived); | 
|  | EXPECT_THAT(as_base_ptr, | 
|  | WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(IsNull())); | 
|  | as_base_ptr = &sub1; | 
|  | EXPECT_THAT( | 
|  | as_base_ptr, | 
|  | WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(Not(IsNull()))); | 
|  | } | 
|  |  | 
|  | TEST(WhenDynamicCastToTest, Describe) { | 
|  | Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_)); | 
|  | const std::string prefix = | 
|  | "when dynamic_cast to " + internal::GetTypeName<Derived*>() + ", "; | 
|  | EXPECT_EQ(prefix + "points to a value that is anything", Describe(matcher)); | 
|  | EXPECT_EQ(prefix + "does not point to a value that is anything", | 
|  | DescribeNegation(matcher)); | 
|  | } | 
|  |  | 
|  | TEST(WhenDynamicCastToTest, Explain) { | 
|  | Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_)); | 
|  | Base* null = NULL; | 
|  | EXPECT_THAT(Explain(matcher, null), HasSubstr("NULL")); | 
|  | Derived derived; | 
|  | EXPECT_TRUE(matcher.Matches(&derived)); | 
|  | EXPECT_THAT(Explain(matcher, &derived), HasSubstr("which points to ")); | 
|  |  | 
|  | // With references, the matcher itself can fail. Test for that one. | 
|  | Matcher<const Base&> ref_matcher = WhenDynamicCastTo<const OtherDerived&>(_); | 
|  | EXPECT_THAT(Explain(ref_matcher, derived), | 
|  | HasSubstr("which cannot be dynamic_cast")); | 
|  | } | 
|  |  | 
|  | TEST(WhenDynamicCastToTest, GoodReference) { | 
|  | Derived derived; | 
|  | derived.i = 4; | 
|  | Base& as_base_ref = derived; | 
|  | EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(FieldIIs(4))); | 
|  | EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(Not(FieldIIs(5)))); | 
|  | } | 
|  |  | 
|  | TEST(WhenDynamicCastToTest, BadReference) { | 
|  | Derived derived; | 
|  | Base& as_base_ref = derived; | 
|  | EXPECT_THAT(as_base_ref, Not(WhenDynamicCastTo<const OtherDerived&>(_))); | 
|  | } | 
|  | #endif  // GTEST_HAS_RTTI | 
|  |  | 
|  | // Minimal const-propagating pointer. | 
|  | template <typename T> | 
|  | class ConstPropagatingPtr { | 
|  | public: | 
|  | typedef T element_type; | 
|  |  | 
|  | ConstPropagatingPtr() : val_() {} | 
|  | explicit ConstPropagatingPtr(T* t) : val_(t) {} | 
|  | ConstPropagatingPtr(const ConstPropagatingPtr& other) : val_(other.val_) {} | 
|  |  | 
|  | T* get() { return val_; } | 
|  | T& operator*() { return *val_; } | 
|  | // Most smart pointers return non-const T* and T& from the next methods. | 
|  | const T* get() const { return val_; } | 
|  | const T& operator*() const { return *val_; } | 
|  |  | 
|  | private: | 
|  | T* val_; | 
|  | }; | 
|  |  | 
|  | TEST(PointeeTest, WorksWithConstPropagatingPointers) { | 
|  | const Matcher< ConstPropagatingPtr<int> > m = Pointee(Lt(5)); | 
|  | int three = 3; | 
|  | const ConstPropagatingPtr<int> co(&three); | 
|  | ConstPropagatingPtr<int> o(&three); | 
|  | EXPECT_TRUE(m.Matches(o)); | 
|  | EXPECT_TRUE(m.Matches(co)); | 
|  | *o = 6; | 
|  | EXPECT_FALSE(m.Matches(o)); | 
|  | EXPECT_FALSE(m.Matches(ConstPropagatingPtr<int>())); | 
|  | } | 
|  |  | 
|  | TEST(PointeeTest, NeverMatchesNull) { | 
|  | const Matcher<const char*> m = Pointee(_); | 
|  | EXPECT_FALSE(m.Matches(NULL)); | 
|  | } | 
|  |  | 
|  | // Tests that we can write Pointee(value) instead of Pointee(Eq(value)). | 
|  | TEST(PointeeTest, MatchesAgainstAValue) { | 
|  | const Matcher<int*> m = Pointee(5); | 
|  |  | 
|  | int n = 5; | 
|  | EXPECT_TRUE(m.Matches(&n)); | 
|  | n = -1; | 
|  | EXPECT_FALSE(m.Matches(&n)); | 
|  | EXPECT_FALSE(m.Matches(NULL)); | 
|  | } | 
|  |  | 
|  | TEST(PointeeTest, CanDescribeSelf) { | 
|  | const Matcher<int*> m = Pointee(Gt(3)); | 
|  | EXPECT_EQ("points to a value that is > 3", Describe(m)); | 
|  | EXPECT_EQ("does not point to a value that is > 3", | 
|  | DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | TEST(PointeeTest, CanExplainMatchResult) { | 
|  | const Matcher<const std::string*> m = Pointee(StartsWith("Hi")); | 
|  |  | 
|  | EXPECT_EQ("", Explain(m, static_cast<const std::string*>(NULL))); | 
|  |  | 
|  | const Matcher<long*> m2 = Pointee(GreaterThan(1));  // NOLINT | 
|  | long n = 3;  // NOLINT | 
|  | EXPECT_EQ("which points to 3" + OfType("long") + ", which is 2 more than 1", | 
|  | Explain(m2, &n)); | 
|  | } | 
|  |  | 
|  | TEST(PointeeTest, AlwaysExplainsPointee) { | 
|  | const Matcher<int*> m = Pointee(0); | 
|  | int n = 42; | 
|  | EXPECT_EQ("which points to 42" + OfType("int"), Explain(m, &n)); | 
|  | } | 
|  |  | 
|  | // An uncopyable class. | 
|  | class Uncopyable { | 
|  | public: | 
|  | Uncopyable() : value_(-1) {} | 
|  | explicit Uncopyable(int a_value) : value_(a_value) {} | 
|  |  | 
|  | int value() const { return value_; } | 
|  | void set_value(int i) { value_ = i; } | 
|  |  | 
|  | private: | 
|  | int value_; | 
|  | GTEST_DISALLOW_COPY_AND_ASSIGN_(Uncopyable); | 
|  | }; | 
|  |  | 
|  | // Returns true iff x.value() is positive. | 
|  | bool ValueIsPositive(const Uncopyable& x) { return x.value() > 0; } | 
|  |  | 
|  | MATCHER_P(UncopyableIs, inner_matcher, "") { | 
|  | return ExplainMatchResult(inner_matcher, arg.value(), result_listener); | 
|  | } | 
|  |  | 
|  | // A user-defined struct for testing Field(). | 
|  | struct AStruct { | 
|  | AStruct() : x(0), y(1.0), z(5), p(NULL) {} | 
|  | AStruct(const AStruct& rhs) | 
|  | : x(rhs.x), y(rhs.y), z(rhs.z.value()), p(rhs.p) {} | 
|  |  | 
|  | int x;           // A non-const field. | 
|  | const double y;  // A const field. | 
|  | Uncopyable z;    // An uncopyable field. | 
|  | const char* p;   // A pointer field. | 
|  |  | 
|  | private: | 
|  | GTEST_DISALLOW_ASSIGN_(AStruct); | 
|  | }; | 
|  |  | 
|  | // A derived struct for testing Field(). | 
|  | struct DerivedStruct : public AStruct { | 
|  | char ch; | 
|  |  | 
|  | private: | 
|  | GTEST_DISALLOW_ASSIGN_(DerivedStruct); | 
|  | }; | 
|  |  | 
|  | // Tests that Field(&Foo::field, ...) works when field is non-const. | 
|  | TEST(FieldTest, WorksForNonConstField) { | 
|  | Matcher<AStruct> m = Field(&AStruct::x, Ge(0)); | 
|  | Matcher<AStruct> m_with_name = Field("x", &AStruct::x, Ge(0)); | 
|  |  | 
|  | AStruct a; | 
|  | EXPECT_TRUE(m.Matches(a)); | 
|  | EXPECT_TRUE(m_with_name.Matches(a)); | 
|  | a.x = -1; | 
|  | EXPECT_FALSE(m.Matches(a)); | 
|  | EXPECT_FALSE(m_with_name.Matches(a)); | 
|  | } | 
|  |  | 
|  | // Tests that Field(&Foo::field, ...) works when field is const. | 
|  | TEST(FieldTest, WorksForConstField) { | 
|  | AStruct a; | 
|  |  | 
|  | Matcher<AStruct> m = Field(&AStruct::y, Ge(0.0)); | 
|  | Matcher<AStruct> m_with_name = Field("y", &AStruct::y, Ge(0.0)); | 
|  | EXPECT_TRUE(m.Matches(a)); | 
|  | EXPECT_TRUE(m_with_name.Matches(a)); | 
|  | m = Field(&AStruct::y, Le(0.0)); | 
|  | m_with_name = Field("y", &AStruct::y, Le(0.0)); | 
|  | EXPECT_FALSE(m.Matches(a)); | 
|  | EXPECT_FALSE(m_with_name.Matches(a)); | 
|  | } | 
|  |  | 
|  | // Tests that Field(&Foo::field, ...) works when field is not copyable. | 
|  | TEST(FieldTest, WorksForUncopyableField) { | 
|  | AStruct a; | 
|  |  | 
|  | Matcher<AStruct> m = Field(&AStruct::z, Truly(ValueIsPositive)); | 
|  | EXPECT_TRUE(m.Matches(a)); | 
|  | m = Field(&AStruct::z, Not(Truly(ValueIsPositive))); | 
|  | EXPECT_FALSE(m.Matches(a)); | 
|  | } | 
|  |  | 
|  | // Tests that Field(&Foo::field, ...) works when field is a pointer. | 
|  | TEST(FieldTest, WorksForPointerField) { | 
|  | // Matching against NULL. | 
|  | Matcher<AStruct> m = Field(&AStruct::p, static_cast<const char*>(NULL)); | 
|  | AStruct a; | 
|  | EXPECT_TRUE(m.Matches(a)); | 
|  | a.p = "hi"; | 
|  | EXPECT_FALSE(m.Matches(a)); | 
|  |  | 
|  | // Matching a pointer that is not NULL. | 
|  | m = Field(&AStruct::p, StartsWith("hi")); | 
|  | a.p = "hill"; | 
|  | EXPECT_TRUE(m.Matches(a)); | 
|  | a.p = "hole"; | 
|  | EXPECT_FALSE(m.Matches(a)); | 
|  | } | 
|  |  | 
|  | // Tests that Field() works when the object is passed by reference. | 
|  | TEST(FieldTest, WorksForByRefArgument) { | 
|  | Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0)); | 
|  |  | 
|  | AStruct a; | 
|  | EXPECT_TRUE(m.Matches(a)); | 
|  | a.x = -1; | 
|  | EXPECT_FALSE(m.Matches(a)); | 
|  | } | 
|  |  | 
|  | // Tests that Field(&Foo::field, ...) works when the argument's type | 
|  | // is a sub-type of Foo. | 
|  | TEST(FieldTest, WorksForArgumentOfSubType) { | 
|  | // Note that the matcher expects DerivedStruct but we say AStruct | 
|  | // inside Field(). | 
|  | Matcher<const DerivedStruct&> m = Field(&AStruct::x, Ge(0)); | 
|  |  | 
|  | DerivedStruct d; | 
|  | EXPECT_TRUE(m.Matches(d)); | 
|  | d.x = -1; | 
|  | EXPECT_FALSE(m.Matches(d)); | 
|  | } | 
|  |  | 
|  | // Tests that Field(&Foo::field, m) works when field's type and m's | 
|  | // argument type are compatible but not the same. | 
|  | TEST(FieldTest, WorksForCompatibleMatcherType) { | 
|  | // The field is an int, but the inner matcher expects a signed char. | 
|  | Matcher<const AStruct&> m = Field(&AStruct::x, | 
|  | Matcher<signed char>(Ge(0))); | 
|  |  | 
|  | AStruct a; | 
|  | EXPECT_TRUE(m.Matches(a)); | 
|  | a.x = -1; | 
|  | EXPECT_FALSE(m.Matches(a)); | 
|  | } | 
|  |  | 
|  | // Tests that Field() can describe itself. | 
|  | TEST(FieldTest, CanDescribeSelf) { | 
|  | Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0)); | 
|  |  | 
|  | EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); | 
|  | EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | TEST(FieldTest, CanDescribeSelfWithFieldName) { | 
|  | Matcher<const AStruct&> m = Field("field_name", &AStruct::x, Ge(0)); | 
|  |  | 
|  | EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m)); | 
|  | EXPECT_EQ("is an object whose field `field_name` isn't >= 0", | 
|  | DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Field() can explain the match result. | 
|  | TEST(FieldTest, CanExplainMatchResult) { | 
|  | Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0)); | 
|  |  | 
|  | AStruct a; | 
|  | a.x = 1; | 
|  | EXPECT_EQ("whose given field is 1" + OfType("int"), Explain(m, a)); | 
|  |  | 
|  | m = Field(&AStruct::x, GreaterThan(0)); | 
|  | EXPECT_EQ( | 
|  | "whose given field is 1" + OfType("int") + ", which is 1 more than 0", | 
|  | Explain(m, a)); | 
|  | } | 
|  |  | 
|  | TEST(FieldTest, CanExplainMatchResultWithFieldName) { | 
|  | Matcher<const AStruct&> m = Field("field_name", &AStruct::x, Ge(0)); | 
|  |  | 
|  | AStruct a; | 
|  | a.x = 1; | 
|  | EXPECT_EQ("whose field `field_name` is 1" + OfType("int"), Explain(m, a)); | 
|  |  | 
|  | m = Field("field_name", &AStruct::x, GreaterThan(0)); | 
|  | EXPECT_EQ("whose field `field_name` is 1" + OfType("int") + | 
|  | ", which is 1 more than 0", | 
|  | Explain(m, a)); | 
|  | } | 
|  |  | 
|  | // Tests that Field() works when the argument is a pointer to const. | 
|  | TEST(FieldForPointerTest, WorksForPointerToConst) { | 
|  | Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0)); | 
|  |  | 
|  | AStruct a; | 
|  | EXPECT_TRUE(m.Matches(&a)); | 
|  | a.x = -1; | 
|  | EXPECT_FALSE(m.Matches(&a)); | 
|  | } | 
|  |  | 
|  | // Tests that Field() works when the argument is a pointer to non-const. | 
|  | TEST(FieldForPointerTest, WorksForPointerToNonConst) { | 
|  | Matcher<AStruct*> m = Field(&AStruct::x, Ge(0)); | 
|  |  | 
|  | AStruct a; | 
|  | EXPECT_TRUE(m.Matches(&a)); | 
|  | a.x = -1; | 
|  | EXPECT_FALSE(m.Matches(&a)); | 
|  | } | 
|  |  | 
|  | // Tests that Field() works when the argument is a reference to a const pointer. | 
|  | TEST(FieldForPointerTest, WorksForReferenceToConstPointer) { | 
|  | Matcher<AStruct* const&> m = Field(&AStruct::x, Ge(0)); | 
|  |  | 
|  | AStruct a; | 
|  | EXPECT_TRUE(m.Matches(&a)); | 
|  | a.x = -1; | 
|  | EXPECT_FALSE(m.Matches(&a)); | 
|  | } | 
|  |  | 
|  | // Tests that Field() does not match the NULL pointer. | 
|  | TEST(FieldForPointerTest, DoesNotMatchNull) { | 
|  | Matcher<const AStruct*> m = Field(&AStruct::x, _); | 
|  | EXPECT_FALSE(m.Matches(NULL)); | 
|  | } | 
|  |  | 
|  | // Tests that Field(&Foo::field, ...) works when the argument's type | 
|  | // is a sub-type of const Foo*. | 
|  | TEST(FieldForPointerTest, WorksForArgumentOfSubType) { | 
|  | // Note that the matcher expects DerivedStruct but we say AStruct | 
|  | // inside Field(). | 
|  | Matcher<DerivedStruct*> m = Field(&AStruct::x, Ge(0)); | 
|  |  | 
|  | DerivedStruct d; | 
|  | EXPECT_TRUE(m.Matches(&d)); | 
|  | d.x = -1; | 
|  | EXPECT_FALSE(m.Matches(&d)); | 
|  | } | 
|  |  | 
|  | // Tests that Field() can describe itself when used to match a pointer. | 
|  | TEST(FieldForPointerTest, CanDescribeSelf) { | 
|  | Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0)); | 
|  |  | 
|  | EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); | 
|  | EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | TEST(FieldForPointerTest, CanDescribeSelfWithFieldName) { | 
|  | Matcher<const AStruct*> m = Field("field_name", &AStruct::x, Ge(0)); | 
|  |  | 
|  | EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m)); | 
|  | EXPECT_EQ("is an object whose field `field_name` isn't >= 0", | 
|  | DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Field() can explain the result of matching a pointer. | 
|  | TEST(FieldForPointerTest, CanExplainMatchResult) { | 
|  | Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0)); | 
|  |  | 
|  | AStruct a; | 
|  | a.x = 1; | 
|  | EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(NULL))); | 
|  | EXPECT_EQ("which points to an object whose given field is 1" + OfType("int"), | 
|  | Explain(m, &a)); | 
|  |  | 
|  | m = Field(&AStruct::x, GreaterThan(0)); | 
|  | EXPECT_EQ("which points to an object whose given field is 1" + OfType("int") + | 
|  | ", which is 1 more than 0", Explain(m, &a)); | 
|  | } | 
|  |  | 
|  | TEST(FieldForPointerTest, CanExplainMatchResultWithFieldName) { | 
|  | Matcher<const AStruct*> m = Field("field_name", &AStruct::x, Ge(0)); | 
|  |  | 
|  | AStruct a; | 
|  | a.x = 1; | 
|  | EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(NULL))); | 
|  | EXPECT_EQ( | 
|  | "which points to an object whose field `field_name` is 1" + OfType("int"), | 
|  | Explain(m, &a)); | 
|  |  | 
|  | m = Field("field_name", &AStruct::x, GreaterThan(0)); | 
|  | EXPECT_EQ("which points to an object whose field `field_name` is 1" + | 
|  | OfType("int") + ", which is 1 more than 0", | 
|  | Explain(m, &a)); | 
|  | } | 
|  |  | 
|  | // A user-defined class for testing Property(). | 
|  | class AClass { | 
|  | public: | 
|  | AClass() : n_(0) {} | 
|  |  | 
|  | // A getter that returns a non-reference. | 
|  | int n() const { return n_; } | 
|  |  | 
|  | void set_n(int new_n) { n_ = new_n; } | 
|  |  | 
|  | // A getter that returns a reference to const. | 
|  | const std::string& s() const { return s_; } | 
|  |  | 
|  | #if GTEST_LANG_CXX11 | 
|  | const std::string& s_ref() const & { return s_; } | 
|  | #endif | 
|  |  | 
|  | void set_s(const std::string& new_s) { s_ = new_s; } | 
|  |  | 
|  | // A getter that returns a reference to non-const. | 
|  | double& x() const { return x_; } | 
|  |  | 
|  | private: | 
|  | int n_; | 
|  | std::string s_; | 
|  |  | 
|  | static double x_; | 
|  | }; | 
|  |  | 
|  | double AClass::x_ = 0.0; | 
|  |  | 
|  | // A derived class for testing Property(). | 
|  | class DerivedClass : public AClass { | 
|  | public: | 
|  | int k() const { return k_; } | 
|  | private: | 
|  | int k_; | 
|  | }; | 
|  |  | 
|  | // Tests that Property(&Foo::property, ...) works when property() | 
|  | // returns a non-reference. | 
|  | TEST(PropertyTest, WorksForNonReferenceProperty) { | 
|  | Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); | 
|  | Matcher<const AClass&> m_with_name = Property("n", &AClass::n, Ge(0)); | 
|  |  | 
|  | AClass a; | 
|  | a.set_n(1); | 
|  | EXPECT_TRUE(m.Matches(a)); | 
|  | EXPECT_TRUE(m_with_name.Matches(a)); | 
|  |  | 
|  | a.set_n(-1); | 
|  | EXPECT_FALSE(m.Matches(a)); | 
|  | EXPECT_FALSE(m_with_name.Matches(a)); | 
|  | } | 
|  |  | 
|  | // Tests that Property(&Foo::property, ...) works when property() | 
|  | // returns a reference to const. | 
|  | TEST(PropertyTest, WorksForReferenceToConstProperty) { | 
|  | Matcher<const AClass&> m = Property(&AClass::s, StartsWith("hi")); | 
|  | Matcher<const AClass&> m_with_name = | 
|  | Property("s", &AClass::s, StartsWith("hi")); | 
|  |  | 
|  | AClass a; | 
|  | a.set_s("hill"); | 
|  | EXPECT_TRUE(m.Matches(a)); | 
|  | EXPECT_TRUE(m_with_name.Matches(a)); | 
|  |  | 
|  | a.set_s("hole"); | 
|  | EXPECT_FALSE(m.Matches(a)); | 
|  | EXPECT_FALSE(m_with_name.Matches(a)); | 
|  | } | 
|  |  | 
|  | #if GTEST_LANG_CXX11 | 
|  | // Tests that Property(&Foo::property, ...) works when property() is | 
|  | // ref-qualified. | 
|  | TEST(PropertyTest, WorksForRefQualifiedProperty) { | 
|  | Matcher<const AClass&> m = Property(&AClass::s_ref, StartsWith("hi")); | 
|  |  | 
|  | AClass a; | 
|  | a.set_s("hill"); | 
|  | EXPECT_TRUE(m.Matches(a)); | 
|  |  | 
|  | a.set_s("hole"); | 
|  | EXPECT_FALSE(m.Matches(a)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Tests that Property(&Foo::property, ...) works when property() | 
|  | // returns a reference to non-const. | 
|  | TEST(PropertyTest, WorksForReferenceToNonConstProperty) { | 
|  | double x = 0.0; | 
|  | AClass a; | 
|  |  | 
|  | Matcher<const AClass&> m = Property(&AClass::x, Ref(x)); | 
|  | EXPECT_FALSE(m.Matches(a)); | 
|  |  | 
|  | m = Property(&AClass::x, Not(Ref(x))); | 
|  | EXPECT_TRUE(m.Matches(a)); | 
|  | } | 
|  |  | 
|  | // Tests that Property(&Foo::property, ...) works when the argument is | 
|  | // passed by value. | 
|  | TEST(PropertyTest, WorksForByValueArgument) { | 
|  | Matcher<AClass> m = Property(&AClass::s, StartsWith("hi")); | 
|  |  | 
|  | AClass a; | 
|  | a.set_s("hill"); | 
|  | EXPECT_TRUE(m.Matches(a)); | 
|  |  | 
|  | a.set_s("hole"); | 
|  | EXPECT_FALSE(m.Matches(a)); | 
|  | } | 
|  |  | 
|  | // Tests that Property(&Foo::property, ...) works when the argument's | 
|  | // type is a sub-type of Foo. | 
|  | TEST(PropertyTest, WorksForArgumentOfSubType) { | 
|  | // The matcher expects a DerivedClass, but inside the Property() we | 
|  | // say AClass. | 
|  | Matcher<const DerivedClass&> m = Property(&AClass::n, Ge(0)); | 
|  |  | 
|  | DerivedClass d; | 
|  | d.set_n(1); | 
|  | EXPECT_TRUE(m.Matches(d)); | 
|  |  | 
|  | d.set_n(-1); | 
|  | EXPECT_FALSE(m.Matches(d)); | 
|  | } | 
|  |  | 
|  | // Tests that Property(&Foo::property, m) works when property()'s type | 
|  | // and m's argument type are compatible but different. | 
|  | TEST(PropertyTest, WorksForCompatibleMatcherType) { | 
|  | // n() returns an int but the inner matcher expects a signed char. | 
|  | Matcher<const AClass&> m = Property(&AClass::n, | 
|  | Matcher<signed char>(Ge(0))); | 
|  |  | 
|  | Matcher<const AClass&> m_with_name = | 
|  | Property("n", &AClass::n, Matcher<signed char>(Ge(0))); | 
|  |  | 
|  | AClass a; | 
|  | EXPECT_TRUE(m.Matches(a)); | 
|  | EXPECT_TRUE(m_with_name.Matches(a)); | 
|  | a.set_n(-1); | 
|  | EXPECT_FALSE(m.Matches(a)); | 
|  | EXPECT_FALSE(m_with_name.Matches(a)); | 
|  | } | 
|  |  | 
|  | // Tests that Property() can describe itself. | 
|  | TEST(PropertyTest, CanDescribeSelf) { | 
|  | Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); | 
|  |  | 
|  | EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); | 
|  | EXPECT_EQ("is an object whose given property isn't >= 0", | 
|  | DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | TEST(PropertyTest, CanDescribeSelfWithPropertyName) { | 
|  | Matcher<const AClass&> m = Property("fancy_name", &AClass::n, Ge(0)); | 
|  |  | 
|  | EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m)); | 
|  | EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0", | 
|  | DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Property() can explain the match result. | 
|  | TEST(PropertyTest, CanExplainMatchResult) { | 
|  | Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); | 
|  |  | 
|  | AClass a; | 
|  | a.set_n(1); | 
|  | EXPECT_EQ("whose given property is 1" + OfType("int"), Explain(m, a)); | 
|  |  | 
|  | m = Property(&AClass::n, GreaterThan(0)); | 
|  | EXPECT_EQ( | 
|  | "whose given property is 1" + OfType("int") + ", which is 1 more than 0", | 
|  | Explain(m, a)); | 
|  | } | 
|  |  | 
|  | TEST(PropertyTest, CanExplainMatchResultWithPropertyName) { | 
|  | Matcher<const AClass&> m = Property("fancy_name", &AClass::n, Ge(0)); | 
|  |  | 
|  | AClass a; | 
|  | a.set_n(1); | 
|  | EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int"), Explain(m, a)); | 
|  |  | 
|  | m = Property("fancy_name", &AClass::n, GreaterThan(0)); | 
|  | EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int") + | 
|  | ", which is 1 more than 0", | 
|  | Explain(m, a)); | 
|  | } | 
|  |  | 
|  | // Tests that Property() works when the argument is a pointer to const. | 
|  | TEST(PropertyForPointerTest, WorksForPointerToConst) { | 
|  | Matcher<const AClass*> m = Property(&AClass::n, Ge(0)); | 
|  |  | 
|  | AClass a; | 
|  | a.set_n(1); | 
|  | EXPECT_TRUE(m.Matches(&a)); | 
|  |  | 
|  | a.set_n(-1); | 
|  | EXPECT_FALSE(m.Matches(&a)); | 
|  | } | 
|  |  | 
|  | // Tests that Property() works when the argument is a pointer to non-const. | 
|  | TEST(PropertyForPointerTest, WorksForPointerToNonConst) { | 
|  | Matcher<AClass*> m = Property(&AClass::s, StartsWith("hi")); | 
|  |  | 
|  | AClass a; | 
|  | a.set_s("hill"); | 
|  | EXPECT_TRUE(m.Matches(&a)); | 
|  |  | 
|  | a.set_s("hole"); | 
|  | EXPECT_FALSE(m.Matches(&a)); | 
|  | } | 
|  |  | 
|  | // Tests that Property() works when the argument is a reference to a | 
|  | // const pointer. | 
|  | TEST(PropertyForPointerTest, WorksForReferenceToConstPointer) { | 
|  | Matcher<AClass* const&> m = Property(&AClass::s, StartsWith("hi")); | 
|  |  | 
|  | AClass a; | 
|  | a.set_s("hill"); | 
|  | EXPECT_TRUE(m.Matches(&a)); | 
|  |  | 
|  | a.set_s("hole"); | 
|  | EXPECT_FALSE(m.Matches(&a)); | 
|  | } | 
|  |  | 
|  | // Tests that Property() does not match the NULL pointer. | 
|  | TEST(PropertyForPointerTest, WorksForReferenceToNonConstProperty) { | 
|  | Matcher<const AClass*> m = Property(&AClass::x, _); | 
|  | EXPECT_FALSE(m.Matches(NULL)); | 
|  | } | 
|  |  | 
|  | // Tests that Property(&Foo::property, ...) works when the argument's | 
|  | // type is a sub-type of const Foo*. | 
|  | TEST(PropertyForPointerTest, WorksForArgumentOfSubType) { | 
|  | // The matcher expects a DerivedClass, but inside the Property() we | 
|  | // say AClass. | 
|  | Matcher<const DerivedClass*> m = Property(&AClass::n, Ge(0)); | 
|  |  | 
|  | DerivedClass d; | 
|  | d.set_n(1); | 
|  | EXPECT_TRUE(m.Matches(&d)); | 
|  |  | 
|  | d.set_n(-1); | 
|  | EXPECT_FALSE(m.Matches(&d)); | 
|  | } | 
|  |  | 
|  | // Tests that Property() can describe itself when used to match a pointer. | 
|  | TEST(PropertyForPointerTest, CanDescribeSelf) { | 
|  | Matcher<const AClass*> m = Property(&AClass::n, Ge(0)); | 
|  |  | 
|  | EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); | 
|  | EXPECT_EQ("is an object whose given property isn't >= 0", | 
|  | DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | TEST(PropertyForPointerTest, CanDescribeSelfWithPropertyDescription) { | 
|  | Matcher<const AClass*> m = Property("fancy_name", &AClass::n, Ge(0)); | 
|  |  | 
|  | EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m)); | 
|  | EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0", | 
|  | DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | // Tests that Property() can explain the result of matching a pointer. | 
|  | TEST(PropertyForPointerTest, CanExplainMatchResult) { | 
|  | Matcher<const AClass*> m = Property(&AClass::n, Ge(0)); | 
|  |  | 
|  | AClass a; | 
|  | a.set_n(1); | 
|  | EXPECT_EQ("", Explain(m, static_cast<const AClass*>(NULL))); | 
|  | EXPECT_EQ( | 
|  | "which points to an object whose given property is 1" + OfType("int"), | 
|  | Explain(m, &a)); | 
|  |  | 
|  | m = Property(&AClass::n, GreaterThan(0)); | 
|  | EXPECT_EQ("which points to an object whose given property is 1" + | 
|  | OfType("int") + ", which is 1 more than 0", | 
|  | Explain(m, &a)); | 
|  | } | 
|  |  | 
|  | TEST(PropertyForPointerTest, CanExplainMatchResultWithPropertyName) { | 
|  | Matcher<const AClass*> m = Property("fancy_name", &AClass::n, Ge(0)); | 
|  |  | 
|  | AClass a; | 
|  | a.set_n(1); | 
|  | EXPECT_EQ("", Explain(m, static_cast<const AClass*>(NULL))); | 
|  | EXPECT_EQ("which points to an object whose property `fancy_name` is 1" + | 
|  | OfType("int"), | 
|  | Explain(m, &a)); | 
|  |  | 
|  | m = Property("fancy_name", &AClass::n, GreaterThan(0)); | 
|  | EXPECT_EQ("which points to an object whose property `fancy_name` is 1" + | 
|  | OfType("int") + ", which is 1 more than 0", | 
|  | Explain(m, &a)); | 
|  | } | 
|  |  | 
|  | // Tests ResultOf. | 
|  |  | 
|  | // Tests that ResultOf(f, ...) compiles and works as expected when f is a | 
|  | // function pointer. | 
|  | std::string IntToStringFunction(int input) { | 
|  | return input == 1 ? "foo" : "bar"; | 
|  | } | 
|  |  | 
|  | TEST(ResultOfTest, WorksForFunctionPointers) { | 
|  | Matcher<int> matcher = ResultOf(&IntToStringFunction, Eq(std::string("foo"))); | 
|  |  | 
|  | EXPECT_TRUE(matcher.Matches(1)); | 
|  | EXPECT_FALSE(matcher.Matches(2)); | 
|  | } | 
|  |  | 
|  | // Tests that ResultOf() can describe itself. | 
|  | TEST(ResultOfTest, CanDescribeItself) { | 
|  | Matcher<int> matcher = ResultOf(&IntToStringFunction, StrEq("foo")); | 
|  |  | 
|  | EXPECT_EQ("is mapped by the given callable to a value that " | 
|  | "is equal to \"foo\"", Describe(matcher)); | 
|  | EXPECT_EQ("is mapped by the given callable to a value that " | 
|  | "isn't equal to \"foo\"", DescribeNegation(matcher)); | 
|  | } | 
|  |  | 
|  | // Tests that ResultOf() can explain the match result. | 
|  | int IntFunction(int input) { return input == 42 ? 80 : 90; } | 
|  |  | 
|  | TEST(ResultOfTest, CanExplainMatchResult) { | 
|  | Matcher<int> matcher = ResultOf(&IntFunction, Ge(85)); | 
|  | EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int"), | 
|  | Explain(matcher, 36)); | 
|  |  | 
|  | matcher = ResultOf(&IntFunction, GreaterThan(85)); | 
|  | EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int") + | 
|  | ", which is 5 more than 85", Explain(matcher, 36)); | 
|  | } | 
|  |  | 
|  | // Tests that ResultOf(f, ...) compiles and works as expected when f(x) | 
|  | // returns a non-reference. | 
|  | TEST(ResultOfTest, WorksForNonReferenceResults) { | 
|  | Matcher<int> matcher = ResultOf(&IntFunction, Eq(80)); | 
|  |  | 
|  | EXPECT_TRUE(matcher.Matches(42)); | 
|  | EXPECT_FALSE(matcher.Matches(36)); | 
|  | } | 
|  |  | 
|  | // Tests that ResultOf(f, ...) compiles and works as expected when f(x) | 
|  | // returns a reference to non-const. | 
|  | double& DoubleFunction(double& input) { return input; }  // NOLINT | 
|  |  | 
|  | Uncopyable& RefUncopyableFunction(Uncopyable& obj) {  // NOLINT | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | TEST(ResultOfTest, WorksForReferenceToNonConstResults) { | 
|  | double x = 3.14; | 
|  | double x2 = x; | 
|  | Matcher<double&> matcher = ResultOf(&DoubleFunction, Ref(x)); | 
|  |  | 
|  | EXPECT_TRUE(matcher.Matches(x)); | 
|  | EXPECT_FALSE(matcher.Matches(x2)); | 
|  |  | 
|  | // Test that ResultOf works with uncopyable objects | 
|  | Uncopyable obj(0); | 
|  | Uncopyable obj2(0); | 
|  | Matcher<Uncopyable&> matcher2 = | 
|  | ResultOf(&RefUncopyableFunction, Ref(obj)); | 
|  |  | 
|  | EXPECT_TRUE(matcher2.Matches(obj)); | 
|  | EXPECT_FALSE(matcher2.Matches(obj2)); | 
|  | } | 
|  |  | 
|  | // Tests that ResultOf(f, ...) compiles and works as expected when f(x) | 
|  | // returns a reference to const. | 
|  | const std::string& StringFunction(const std::string& input) { return input; } | 
|  |  | 
|  | TEST(ResultOfTest, WorksForReferenceToConstResults) { | 
|  | std::string s = "foo"; | 
|  | std::string s2 = s; | 
|  | Matcher<const std::string&> matcher = ResultOf(&StringFunction, Ref(s)); | 
|  |  | 
|  | EXPECT_TRUE(matcher.Matches(s)); | 
|  | EXPECT_FALSE(matcher.Matches(s2)); | 
|  | } | 
|  |  | 
|  | // Tests that ResultOf(f, m) works when f(x) and m's | 
|  | // argument types are compatible but different. | 
|  | TEST(ResultOfTest, WorksForCompatibleMatcherTypes) { | 
|  | // IntFunction() returns int but the inner matcher expects a signed char. | 
|  | Matcher<int> matcher = ResultOf(IntFunction, Matcher<signed char>(Ge(85))); | 
|  |  | 
|  | EXPECT_TRUE(matcher.Matches(36)); | 
|  | EXPECT_FALSE(matcher.Matches(42)); | 
|  | } | 
|  |  | 
|  | // Tests that the program aborts when ResultOf is passed | 
|  | // a NULL function pointer. | 
|  | TEST(ResultOfDeathTest, DiesOnNullFunctionPointers) { | 
|  | EXPECT_DEATH_IF_SUPPORTED( | 
|  | ResultOf(static_cast<std::string (*)(int dummy)>(NULL), | 
|  | Eq(std::string("foo"))), | 
|  | "NULL function pointer is passed into ResultOf\\(\\)\\."); | 
|  | } | 
|  |  | 
|  | // Tests that ResultOf(f, ...) compiles and works as expected when f is a | 
|  | // function reference. | 
|  | TEST(ResultOfTest, WorksForFunctionReferences) { | 
|  | Matcher<int> matcher = ResultOf(IntToStringFunction, StrEq("foo")); | 
|  | EXPECT_TRUE(matcher.Matches(1)); | 
|  | EXPECT_FALSE(matcher.Matches(2)); | 
|  | } | 
|  |  | 
|  | // Tests that ResultOf(f, ...) compiles and works as expected when f is a | 
|  | // function object. | 
|  | struct Functor : public ::std::unary_function<int, std::string> { | 
|  | result_type operator()(argument_type input) const { | 
|  | return IntToStringFunction(input); | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(ResultOfTest, WorksForFunctors) { | 
|  | Matcher<int> matcher = ResultOf(Functor(), Eq(std::string("foo"))); | 
|  |  | 
|  | EXPECT_TRUE(matcher.Matches(1)); | 
|  | EXPECT_FALSE(matcher.Matches(2)); | 
|  | } | 
|  |  | 
|  | // Tests that ResultOf(f, ...) compiles and works as expected when f is a | 
|  | // functor with more then one operator() defined. ResultOf() must work | 
|  | // for each defined operator(). | 
|  | struct PolymorphicFunctor { | 
|  | typedef int result_type; | 
|  | int operator()(int n) { return n; } | 
|  | int operator()(const char* s) { return static_cast<int>(strlen(s)); } | 
|  | }; | 
|  |  | 
|  | TEST(ResultOfTest, WorksForPolymorphicFunctors) { | 
|  | Matcher<int> matcher_int = ResultOf(PolymorphicFunctor(), Ge(5)); | 
|  |  | 
|  | EXPECT_TRUE(matcher_int.Matches(10)); | 
|  | EXPECT_FALSE(matcher_int.Matches(2)); | 
|  |  | 
|  | Matcher<const char*> matcher_string = ResultOf(PolymorphicFunctor(), Ge(5)); | 
|  |  | 
|  | EXPECT_TRUE(matcher_string.Matches("long string")); | 
|  | EXPECT_FALSE(matcher_string.Matches("shrt")); | 
|  | } | 
|  |  | 
|  | const int* ReferencingFunction(const int& n) { return &n; } | 
|  |  | 
|  | struct ReferencingFunctor { | 
|  | typedef const int* result_type; | 
|  | result_type operator()(const int& n) { return &n; } | 
|  | }; | 
|  |  | 
|  | TEST(ResultOfTest, WorksForReferencingCallables) { | 
|  | const int n = 1; | 
|  | const int n2 = 1; | 
|  | Matcher<const int&> matcher2 = ResultOf(ReferencingFunction, Eq(&n)); | 
|  | EXPECT_TRUE(matcher2.Matches(n)); | 
|  | EXPECT_FALSE(matcher2.Matches(n2)); | 
|  |  | 
|  | Matcher<const int&> matcher3 = ResultOf(ReferencingFunctor(), Eq(&n)); | 
|  | EXPECT_TRUE(matcher3.Matches(n)); | 
|  | EXPECT_FALSE(matcher3.Matches(n2)); | 
|  | } | 
|  |  | 
|  | class DivisibleByImpl { | 
|  | public: | 
|  | explicit DivisibleByImpl(int a_divider) : divider_(a_divider) {} | 
|  |  | 
|  | // For testing using ExplainMatchResultTo() with polymorphic matchers. | 
|  | template <typename T> | 
|  | bool MatchAndExplain(const T& n, MatchResultListener* listener) const { | 
|  | *listener << "which is " << (n % divider_) << " modulo " | 
|  | << divider_; | 
|  | return (n % divider_) == 0; | 
|  | } | 
|  |  | 
|  | void DescribeTo(ostream* os) const { | 
|  | *os << "is divisible by " << divider_; | 
|  | } | 
|  |  | 
|  | void DescribeNegationTo(ostream* os) const { | 
|  | *os << "is not divisible by " << divider_; | 
|  | } | 
|  |  | 
|  | void set_divider(int a_divider) { divider_ = a_divider; } | 
|  | int divider() const { return divider_; } | 
|  |  | 
|  | private: | 
|  | int divider_; | 
|  | }; | 
|  |  | 
|  | PolymorphicMatcher<DivisibleByImpl> DivisibleBy(int n) { | 
|  | return MakePolymorphicMatcher(DivisibleByImpl(n)); | 
|  | } | 
|  |  | 
|  | // Tests that when AllOf() fails, only the first failing matcher is | 
|  | // asked to explain why. | 
|  | TEST(ExplainMatchResultTest, AllOf_False_False) { | 
|  | const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3)); | 
|  | EXPECT_EQ("which is 1 modulo 4", Explain(m, 5)); | 
|  | } | 
|  |  | 
|  | // Tests that when AllOf() fails, only the first failing matcher is | 
|  | // asked to explain why. | 
|  | TEST(ExplainMatchResultTest, AllOf_False_True) { | 
|  | const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3)); | 
|  | EXPECT_EQ("which is 2 modulo 4", Explain(m, 6)); | 
|  | } | 
|  |  | 
|  | // Tests that when AllOf() fails, only the first failing matcher is | 
|  | // asked to explain why. | 
|  | TEST(ExplainMatchResultTest, AllOf_True_False) { | 
|  | const Matcher<int> m = AllOf(Ge(1), DivisibleBy(3)); | 
|  | EXPECT_EQ("which is 2 modulo 3", Explain(m, 5)); | 
|  | } | 
|  |  | 
|  | // Tests that when AllOf() succeeds, all matchers are asked to explain | 
|  | // why. | 
|  | TEST(ExplainMatchResultTest, AllOf_True_True) { | 
|  | const Matcher<int> m = AllOf(DivisibleBy(2), DivisibleBy(3)); | 
|  | EXPECT_EQ("which is 0 modulo 2, and which is 0 modulo 3", Explain(m, 6)); | 
|  | } | 
|  |  | 
|  | TEST(ExplainMatchResultTest, AllOf_True_True_2) { | 
|  | const Matcher<int> m = AllOf(Ge(2), Le(3)); | 
|  | EXPECT_EQ("", Explain(m, 2)); | 
|  | } | 
|  |  | 
|  | TEST(ExplainmatcherResultTest, MonomorphicMatcher) { | 
|  | const Matcher<int> m = GreaterThan(5); | 
|  | EXPECT_EQ("which is 1 more than 5", Explain(m, 6)); | 
|  | } | 
|  |  | 
|  | // The following two tests verify that values without a public copy | 
|  | // ctor can be used as arguments to matchers like Eq(), Ge(), and etc | 
|  | // with the help of ByRef(). | 
|  |  | 
|  | class NotCopyable { | 
|  | public: | 
|  | explicit NotCopyable(int a_value) : value_(a_value) {} | 
|  |  | 
|  | int value() const { return value_; } | 
|  |  | 
|  | bool operator==(const NotCopyable& rhs) const { | 
|  | return value() == rhs.value(); | 
|  | } | 
|  |  | 
|  | bool operator>=(const NotCopyable& rhs) const { | 
|  | return value() >= rhs.value(); | 
|  | } | 
|  | private: | 
|  | int value_; | 
|  |  | 
|  | GTEST_DISALLOW_COPY_AND_ASSIGN_(NotCopyable); | 
|  | }; | 
|  |  | 
|  | TEST(ByRefTest, AllowsNotCopyableConstValueInMatchers) { | 
|  | const NotCopyable const_value1(1); | 
|  | const Matcher<const NotCopyable&> m = Eq(ByRef(const_value1)); | 
|  |  | 
|  | const NotCopyable n1(1), n2(2); | 
|  | EXPECT_TRUE(m.Matches(n1)); | 
|  | EXPECT_FALSE(m.Matches(n2)); | 
|  | } | 
|  |  | 
|  | TEST(ByRefTest, AllowsNotCopyableValueInMatchers) { | 
|  | NotCopyable value2(2); | 
|  | const Matcher<NotCopyable&> m = Ge(ByRef(value2)); | 
|  |  | 
|  | NotCopyable n1(1), n2(2); | 
|  | EXPECT_FALSE(m.Matches(n1)); | 
|  | EXPECT_TRUE(m.Matches(n2)); | 
|  | } | 
|  |  | 
|  | TEST(IsEmptyTest, ImplementsIsEmpty) { | 
|  | vector<int> container; | 
|  | EXPECT_THAT(container, IsEmpty()); | 
|  | container.push_back(0); | 
|  | EXPECT_THAT(container, Not(IsEmpty())); | 
|  | container.push_back(1); | 
|  | EXPECT_THAT(container, Not(IsEmpty())); | 
|  | } | 
|  |  | 
|  | TEST(IsEmptyTest, WorksWithString) { | 
|  | std::string text; | 
|  | EXPECT_THAT(text, IsEmpty()); | 
|  | text = "foo"; | 
|  | EXPECT_THAT(text, Not(IsEmpty())); | 
|  | text = std::string("\0", 1); | 
|  | EXPECT_THAT(text, Not(IsEmpty())); | 
|  | } | 
|  |  | 
|  | TEST(IsEmptyTest, CanDescribeSelf) { | 
|  | Matcher<vector<int> > m = IsEmpty(); | 
|  | EXPECT_EQ("is empty", Describe(m)); | 
|  | EXPECT_EQ("isn't empty", DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | TEST(IsEmptyTest, ExplainsResult) { | 
|  | Matcher<vector<int> > m = IsEmpty(); | 
|  | vector<int> container; | 
|  | EXPECT_EQ("", Explain(m, container)); | 
|  | container.push_back(0); | 
|  | EXPECT_EQ("whose size is 1", Explain(m, container)); | 
|  | } | 
|  |  | 
|  | TEST(IsTrueTest, IsTrueIsFalse) { | 
|  | EXPECT_THAT(true, IsTrue()); | 
|  | EXPECT_THAT(false, IsFalse()); | 
|  | EXPECT_THAT(true, Not(IsFalse())); | 
|  | EXPECT_THAT(false, Not(IsTrue())); | 
|  | EXPECT_THAT(0, Not(IsTrue())); | 
|  | EXPECT_THAT(0, IsFalse()); | 
|  | EXPECT_THAT(NULL, Not(IsTrue())); | 
|  | EXPECT_THAT(NULL, IsFalse()); | 
|  | EXPECT_THAT(-1, IsTrue()); | 
|  | EXPECT_THAT(-1, Not(IsFalse())); | 
|  | EXPECT_THAT(1, IsTrue()); | 
|  | EXPECT_THAT(1, Not(IsFalse())); | 
|  | EXPECT_THAT(2, IsTrue()); | 
|  | EXPECT_THAT(2, Not(IsFalse())); | 
|  | int a = 42; | 
|  | EXPECT_THAT(a, IsTrue()); | 
|  | EXPECT_THAT(a, Not(IsFalse())); | 
|  | EXPECT_THAT(&a, IsTrue()); | 
|  | EXPECT_THAT(&a, Not(IsFalse())); | 
|  | EXPECT_THAT(false, Not(IsTrue())); | 
|  | EXPECT_THAT(true, Not(IsFalse())); | 
|  | #if GTEST_LANG_CXX11 | 
|  | EXPECT_THAT(std::true_type(), IsTrue()); | 
|  | EXPECT_THAT(std::true_type(), Not(IsFalse())); | 
|  | EXPECT_THAT(std::false_type(), IsFalse()); | 
|  | EXPECT_THAT(std::false_type(), Not(IsTrue())); | 
|  | EXPECT_THAT(nullptr, Not(IsTrue())); | 
|  | EXPECT_THAT(nullptr, IsFalse()); | 
|  | std::unique_ptr<int> null_unique; | 
|  | std::unique_ptr<int> nonnull_unique(new int(0)); | 
|  | EXPECT_THAT(null_unique, Not(IsTrue())); | 
|  | EXPECT_THAT(null_unique, IsFalse()); | 
|  | EXPECT_THAT(nonnull_unique, IsTrue()); | 
|  | EXPECT_THAT(nonnull_unique, Not(IsFalse())); | 
|  | #endif  // GTEST_LANG_CXX11 | 
|  | } | 
|  |  | 
|  | TEST(SizeIsTest, ImplementsSizeIs) { | 
|  | vector<int> container; | 
|  | EXPECT_THAT(container, SizeIs(0)); | 
|  | EXPECT_THAT(container, Not(SizeIs(1))); | 
|  | container.push_back(0); | 
|  | EXPECT_THAT(container, Not(SizeIs(0))); | 
|  | EXPECT_THAT(container, SizeIs(1)); | 
|  | container.push_back(0); | 
|  | EXPECT_THAT(container, Not(SizeIs(0))); | 
|  | EXPECT_THAT(container, SizeIs(2)); | 
|  | } | 
|  |  | 
|  | TEST(SizeIsTest, WorksWithMap) { | 
|  | map<std::string, int> container; | 
|  | EXPECT_THAT(container, SizeIs(0)); | 
|  | EXPECT_THAT(container, Not(SizeIs(1))); | 
|  | container.insert(make_pair("foo", 1)); | 
|  | EXPECT_THAT(container, Not(SizeIs(0))); | 
|  | EXPECT_THAT(container, SizeIs(1)); | 
|  | container.insert(make_pair("bar", 2)); | 
|  | EXPECT_THAT(container, Not(SizeIs(0))); | 
|  | EXPECT_THAT(container, SizeIs(2)); | 
|  | } | 
|  |  | 
|  | TEST(SizeIsTest, WorksWithReferences) { | 
|  | vector<int> container; | 
|  | Matcher<const vector<int>&> m = SizeIs(1); | 
|  | EXPECT_THAT(container, Not(m)); | 
|  | container.push_back(0); | 
|  | EXPECT_THAT(container, m); | 
|  | } | 
|  |  | 
|  | TEST(SizeIsTest, CanDescribeSelf) { | 
|  | Matcher<vector<int> > m = SizeIs(2); | 
|  | EXPECT_EQ("size is equal to 2", Describe(m)); | 
|  | EXPECT_EQ("size isn't equal to 2", DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | TEST(SizeIsTest, ExplainsResult) { | 
|  | Matcher<vector<int> > m1 = SizeIs(2); | 
|  | Matcher<vector<int> > m2 = SizeIs(Lt(2u)); | 
|  | Matcher<vector<int> > m3 = SizeIs(AnyOf(0, 3)); | 
|  | Matcher<vector<int> > m4 = SizeIs(GreaterThan(1)); | 
|  | vector<int> container; | 
|  | EXPECT_EQ("whose size 0 doesn't match", Explain(m1, container)); | 
|  | EXPECT_EQ("whose size 0 matches", Explain(m2, container)); | 
|  | EXPECT_EQ("whose size 0 matches", Explain(m3, container)); | 
|  | EXPECT_EQ("whose size 0 doesn't match, which is 1 less than 1", | 
|  | Explain(m4, container)); | 
|  | container.push_back(0); | 
|  | container.push_back(0); | 
|  | EXPECT_EQ("whose size 2 matches", Explain(m1, container)); | 
|  | EXPECT_EQ("whose size 2 doesn't match", Explain(m2, container)); | 
|  | EXPECT_EQ("whose size 2 doesn't match", Explain(m3, container)); | 
|  | EXPECT_EQ("whose size 2 matches, which is 1 more than 1", | 
|  | Explain(m4, container)); | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_TYPED_TEST | 
|  | // Tests ContainerEq with different container types, and | 
|  | // different element types. | 
|  |  | 
|  | template <typename T> | 
|  | class ContainerEqTest : public testing::Test {}; | 
|  |  | 
|  | typedef testing::Types< | 
|  | set<int>, | 
|  | vector<size_t>, | 
|  | multiset<size_t>, | 
|  | list<int> > | 
|  | ContainerEqTestTypes; | 
|  |  | 
|  | TYPED_TEST_CASE(ContainerEqTest, ContainerEqTestTypes); | 
|  |  | 
|  | // Tests that the filled container is equal to itself. | 
|  | TYPED_TEST(ContainerEqTest, EqualsSelf) { | 
|  | static const int vals[] = {1, 1, 2, 3, 5, 8}; | 
|  | TypeParam my_set(vals, vals + 6); | 
|  | const Matcher<TypeParam> m = ContainerEq(my_set); | 
|  | EXPECT_TRUE(m.Matches(my_set)); | 
|  | EXPECT_EQ("", Explain(m, my_set)); | 
|  | } | 
|  |  | 
|  | // Tests that missing values are reported. | 
|  | TYPED_TEST(ContainerEqTest, ValueMissing) { | 
|  | static const int vals[] = {1, 1, 2, 3, 5, 8}; | 
|  | static const int test_vals[] = {2, 1, 8, 5}; | 
|  | TypeParam my_set(vals, vals + 6); | 
|  | TypeParam test_set(test_vals, test_vals + 4); | 
|  | const Matcher<TypeParam> m = ContainerEq(my_set); | 
|  | EXPECT_FALSE(m.Matches(test_set)); | 
|  | EXPECT_EQ("which doesn't have these expected elements: 3", | 
|  | Explain(m, test_set)); | 
|  | } | 
|  |  | 
|  | // Tests that added values are reported. | 
|  | TYPED_TEST(ContainerEqTest, ValueAdded) { | 
|  | static const int vals[] = {1, 1, 2, 3, 5, 8}; | 
|  | static const int test_vals[] = {1, 2, 3, 5, 8, 46}; | 
|  | TypeParam my_set(vals, vals + 6); | 
|  | TypeParam test_set(test_vals, test_vals + 6); | 
|  | const Matcher<const TypeParam&> m = ContainerEq(my_set); | 
|  | EXPECT_FALSE(m.Matches(test_set)); | 
|  | EXPECT_EQ("which has these unexpected elements: 46", Explain(m, test_set)); | 
|  | } | 
|  |  | 
|  | // Tests that added and missing values are reported together. | 
|  | TYPED_TEST(ContainerEqTest, ValueAddedAndRemoved) { | 
|  | static const int vals[] = {1, 1, 2, 3, 5, 8}; | 
|  | static const int test_vals[] = {1, 2, 3, 8, 46}; | 
|  | TypeParam my_set(vals, vals + 6); | 
|  | TypeParam test_set(test_vals, test_vals + 5); | 
|  | const Matcher<TypeParam> m = ContainerEq(my_set); | 
|  | EXPECT_FALSE(m.Matches(test_set)); | 
|  | EXPECT_EQ("which has these unexpected elements: 46,\n" | 
|  | "and doesn't have these expected elements: 5", | 
|  | Explain(m, test_set)); | 
|  | } | 
|  |  | 
|  | // Tests duplicated value -- expect no explanation. | 
|  | TYPED_TEST(ContainerEqTest, DuplicateDifference) { | 
|  | static const int vals[] = {1, 1, 2, 3, 5, 8}; | 
|  | static const int test_vals[] = {1, 2, 3, 5, 8}; | 
|  | TypeParam my_set(vals, vals + 6); | 
|  | TypeParam test_set(test_vals, test_vals + 5); | 
|  | const Matcher<const TypeParam&> m = ContainerEq(my_set); | 
|  | // Depending on the container, match may be true or false | 
|  | // But in any case there should be no explanation. | 
|  | EXPECT_EQ("", Explain(m, test_set)); | 
|  | } | 
|  | #endif  // GTEST_HAS_TYPED_TEST | 
|  |  | 
|  | // Tests that mutliple missing values are reported. | 
|  | // Using just vector here, so order is predictable. | 
|  | TEST(ContainerEqExtraTest, MultipleValuesMissing) { | 
|  | static const int vals[] = {1, 1, 2, 3, 5, 8}; | 
|  | static const int test_vals[] = {2, 1, 5}; | 
|  | vector<int> my_set(vals, vals + 6); | 
|  | vector<int> test_set(test_vals, test_vals + 3); | 
|  | const Matcher<vector<int> > m = ContainerEq(my_set); | 
|  | EXPECT_FALSE(m.Matches(test_set)); | 
|  | EXPECT_EQ("which doesn't have these expected elements: 3, 8", | 
|  | Explain(m, test_set)); | 
|  | } | 
|  |  | 
|  | // Tests that added values are reported. | 
|  | // Using just vector here, so order is predictable. | 
|  | TEST(ContainerEqExtraTest, MultipleValuesAdded) { | 
|  | static const int vals[] = {1, 1, 2, 3, 5, 8}; | 
|  | static const int test_vals[] = {1, 2, 92, 3, 5, 8, 46}; | 
|  | list<size_t> my_set(vals, vals + 6); | 
|  | list<size_t> test_set(test_vals, test_vals + 7); | 
|  | const Matcher<const list<size_t>&> m = ContainerEq(my_set); | 
|  | EXPECT_FALSE(m.Matches(test_set)); | 
|  | EXPECT_EQ("which has these unexpected elements: 92, 46", | 
|  | Explain(m, test_set)); | 
|  | } | 
|  |  | 
|  | // Tests that added and missing values are reported together. | 
|  | TEST(ContainerEqExtraTest, MultipleValuesAddedAndRemoved) { | 
|  | static const int vals[] = {1, 1, 2, 3, 5, 8}; | 
|  | static const int test_vals[] = {1, 2, 3, 92, 46}; | 
|  | list<size_t> my_set(vals, vals + 6); | 
|  | list<size_t> test_set(test_vals, test_vals + 5); | 
|  | const Matcher<const list<size_t> > m = ContainerEq(my_set); | 
|  | EXPECT_FALSE(m.Matches(test_set)); | 
|  | EXPECT_EQ("which has these unexpected elements: 92, 46,\n" | 
|  | "and doesn't have these expected elements: 5, 8", | 
|  | Explain(m, test_set)); | 
|  | } | 
|  |  | 
|  | // Tests to see that duplicate elements are detected, | 
|  | // but (as above) not reported in the explanation. | 
|  | TEST(ContainerEqExtraTest, MultiSetOfIntDuplicateDifference) { | 
|  | static const int vals[] = {1, 1, 2, 3, 5, 8}; | 
|  | static const int test_vals[] = {1, 2, 3, 5, 8}; | 
|  | vector<int> my_set(vals, vals + 6); | 
|  | vector<int> test_set(test_vals, test_vals + 5); | 
|  | const Matcher<vector<int> > m = ContainerEq(my_set); | 
|  | EXPECT_TRUE(m.Matches(my_set)); | 
|  | EXPECT_FALSE(m.Matches(test_set)); | 
|  | // There is nothing to report when both sets contain all the same values. | 
|  | EXPECT_EQ("", Explain(m, test_set)); | 
|  | } | 
|  |  | 
|  | // Tests that ContainerEq works for non-trivial associative containers, | 
|  | // like maps. | 
|  | TEST(ContainerEqExtraTest, WorksForMaps) { | 
|  | map<int, std::string> my_map; | 
|  | my_map[0] = "a"; | 
|  | my_map[1] = "b"; | 
|  |  | 
|  | map<int, std::string> test_map; | 
|  | test_map[0] = "aa"; | 
|  | test_map[1] = "b"; | 
|  |  | 
|  | const Matcher<const map<int, std::string>&> m = ContainerEq(my_map); | 
|  | EXPECT_TRUE(m.Matches(my_map)); | 
|  | EXPECT_FALSE(m.Matches(test_map)); | 
|  |  | 
|  | EXPECT_EQ("which has these unexpected elements: (0, \"aa\"),\n" | 
|  | "and doesn't have these expected elements: (0, \"a\")", | 
|  | Explain(m, test_map)); | 
|  | } | 
|  |  | 
|  | TEST(ContainerEqExtraTest, WorksForNativeArray) { | 
|  | int a1[] = {1, 2, 3}; | 
|  | int a2[] = {1, 2, 3}; | 
|  | int b[] = {1, 2, 4}; | 
|  |  | 
|  | EXPECT_THAT(a1, ContainerEq(a2)); | 
|  | EXPECT_THAT(a1, Not(ContainerEq(b))); | 
|  | } | 
|  |  | 
|  | TEST(ContainerEqExtraTest, WorksForTwoDimensionalNativeArray) { | 
|  | const char a1[][3] = {"hi", "lo"}; | 
|  | const char a2[][3] = {"hi", "lo"}; | 
|  | const char b[][3] = {"lo", "hi"}; | 
|  |  | 
|  | // Tests using ContainerEq() in the first dimension. | 
|  | EXPECT_THAT(a1, ContainerEq(a2)); | 
|  | EXPECT_THAT(a1, Not(ContainerEq(b))); | 
|  |  | 
|  | // Tests using ContainerEq() in the second dimension. | 
|  | EXPECT_THAT(a1, ElementsAre(ContainerEq(a2[0]), ContainerEq(a2[1]))); | 
|  | EXPECT_THAT(a1, ElementsAre(Not(ContainerEq(b[0])), ContainerEq(a2[1]))); | 
|  | } | 
|  |  | 
|  | TEST(ContainerEqExtraTest, WorksForNativeArrayAsTuple) { | 
|  | const int a1[] = {1, 2, 3}; | 
|  | const int a2[] = {1, 2, 3}; | 
|  | const int b[] = {1, 2, 3, 4}; | 
|  |  | 
|  | const int* const p1 = a1; | 
|  | EXPECT_THAT(make_tuple(p1, 3), ContainerEq(a2)); | 
|  | EXPECT_THAT(make_tuple(p1, 3), Not(ContainerEq(b))); | 
|  |  | 
|  | const int c[] = {1, 3, 2}; | 
|  | EXPECT_THAT(make_tuple(p1, 3), Not(ContainerEq(c))); | 
|  | } | 
|  |  | 
|  | TEST(ContainerEqExtraTest, CopiesNativeArrayParameter) { | 
|  | std::string a1[][3] = { | 
|  | {"hi", "hello", "ciao"}, | 
|  | {"bye", "see you", "ciao"} | 
|  | }; | 
|  |  | 
|  | std::string a2[][3] = { | 
|  | {"hi", "hello", "ciao"}, | 
|  | {"bye", "see you", "ciao"} | 
|  | }; | 
|  |  | 
|  | const Matcher<const std::string(&)[2][3]> m = ContainerEq(a2); | 
|  | EXPECT_THAT(a1, m); | 
|  |  | 
|  | a2[0][0] = "ha"; | 
|  | EXPECT_THAT(a1, m); | 
|  | } | 
|  |  | 
|  | TEST(WhenSortedByTest, WorksForEmptyContainer) { | 
|  | const vector<int> numbers; | 
|  | EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre())); | 
|  | EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1)))); | 
|  | } | 
|  |  | 
|  | TEST(WhenSortedByTest, WorksForNonEmptyContainer) { | 
|  | vector<unsigned> numbers; | 
|  | numbers.push_back(3); | 
|  | numbers.push_back(1); | 
|  | numbers.push_back(2); | 
|  | numbers.push_back(2); | 
|  | EXPECT_THAT(numbers, WhenSortedBy(greater<unsigned>(), | 
|  | ElementsAre(3, 2, 2, 1))); | 
|  | EXPECT_THAT(numbers, Not(WhenSortedBy(greater<unsigned>(), | 
|  | ElementsAre(1, 2, 2, 3)))); | 
|  | } | 
|  |  | 
|  | TEST(WhenSortedByTest, WorksForNonVectorContainer) { | 
|  | list<std::string> words; | 
|  | words.push_back("say"); | 
|  | words.push_back("hello"); | 
|  | words.push_back("world"); | 
|  | EXPECT_THAT(words, WhenSortedBy(less<std::string>(), | 
|  | ElementsAre("hello", "say", "world"))); | 
|  | EXPECT_THAT(words, Not(WhenSortedBy(less<std::string>(), | 
|  | ElementsAre("say", "hello", "world")))); | 
|  | } | 
|  |  | 
|  | TEST(WhenSortedByTest, WorksForNativeArray) { | 
|  | const int numbers[] = {1, 3, 2, 4}; | 
|  | const int sorted_numbers[] = {1, 2, 3, 4}; | 
|  | EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre(1, 2, 3, 4))); | 
|  | EXPECT_THAT(numbers, WhenSortedBy(less<int>(), | 
|  | ElementsAreArray(sorted_numbers))); | 
|  | EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1, 3, 2, 4)))); | 
|  | } | 
|  |  | 
|  | TEST(WhenSortedByTest, CanDescribeSelf) { | 
|  | const Matcher<vector<int> > m = WhenSortedBy(less<int>(), ElementsAre(1, 2)); | 
|  | EXPECT_EQ("(when sorted) has 2 elements where\n" | 
|  | "element #0 is equal to 1,\n" | 
|  | "element #1 is equal to 2", | 
|  | Describe(m)); | 
|  | EXPECT_EQ("(when sorted) doesn't have 2 elements, or\n" | 
|  | "element #0 isn't equal to 1, or\n" | 
|  | "element #1 isn't equal to 2", | 
|  | DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | TEST(WhenSortedByTest, ExplainsMatchResult) { | 
|  | const int a[] = {2, 1}; | 
|  | EXPECT_EQ("which is { 1, 2 } when sorted, whose element #0 doesn't match", | 
|  | Explain(WhenSortedBy(less<int>(), ElementsAre(2, 3)), a)); | 
|  | EXPECT_EQ("which is { 1, 2 } when sorted", | 
|  | Explain(WhenSortedBy(less<int>(), ElementsAre(1, 2)), a)); | 
|  | } | 
|  |  | 
|  | // WhenSorted() is a simple wrapper on WhenSortedBy().  Hence we don't | 
|  | // need to test it as exhaustively as we test the latter. | 
|  |  | 
|  | TEST(WhenSortedTest, WorksForEmptyContainer) { | 
|  | const vector<int> numbers; | 
|  | EXPECT_THAT(numbers, WhenSorted(ElementsAre())); | 
|  | EXPECT_THAT(numbers, Not(WhenSorted(ElementsAre(1)))); | 
|  | } | 
|  |  | 
|  | TEST(WhenSortedTest, WorksForNonEmptyContainer) { | 
|  | list<std::string> words; | 
|  | words.push_back("3"); | 
|  | words.push_back("1"); | 
|  | words.push_back("2"); | 
|  | words.push_back("2"); | 
|  | EXPECT_THAT(words, WhenSorted(ElementsAre("1", "2", "2", "3"))); | 
|  | EXPECT_THAT(words, Not(WhenSorted(ElementsAre("3", "1", "2", "2")))); | 
|  | } | 
|  |  | 
|  | TEST(WhenSortedTest, WorksForMapTypes) { | 
|  | map<std::string, int> word_counts; | 
|  | word_counts["and"] = 1; | 
|  | word_counts["the"] = 1; | 
|  | word_counts["buffalo"] = 2; | 
|  | EXPECT_THAT(word_counts, | 
|  | WhenSorted(ElementsAre(Pair("and", 1), Pair("buffalo", 2), | 
|  | Pair("the", 1)))); | 
|  | EXPECT_THAT(word_counts, | 
|  | Not(WhenSorted(ElementsAre(Pair("and", 1), Pair("the", 1), | 
|  | Pair("buffalo", 2))))); | 
|  | } | 
|  |  | 
|  | TEST(WhenSortedTest, WorksForMultiMapTypes) { | 
|  | multimap<int, int> ifib; | 
|  | ifib.insert(make_pair(8, 6)); | 
|  | ifib.insert(make_pair(2, 3)); | 
|  | ifib.insert(make_pair(1, 1)); | 
|  | ifib.insert(make_pair(3, 4)); | 
|  | ifib.insert(make_pair(1, 2)); | 
|  | ifib.insert(make_pair(5, 5)); | 
|  | EXPECT_THAT(ifib, WhenSorted(ElementsAre(Pair(1, 1), | 
|  | Pair(1, 2), | 
|  | Pair(2, 3), | 
|  | Pair(3, 4), | 
|  | Pair(5, 5), | 
|  | Pair(8, 6)))); | 
|  | EXPECT_THAT(ifib, Not(WhenSorted(ElementsAre(Pair(8, 6), | 
|  | Pair(2, 3), | 
|  | Pair(1, 1), | 
|  | Pair(3, 4), | 
|  | Pair(1, 2), | 
|  | Pair(5, 5))))); | 
|  | } | 
|  |  | 
|  | TEST(WhenSortedTest, WorksForPolymorphicMatcher) { | 
|  | std::deque<int> d; | 
|  | d.push_back(2); | 
|  | d.push_back(1); | 
|  | EXPECT_THAT(d, WhenSorted(ElementsAre(1, 2))); | 
|  | EXPECT_THAT(d, Not(WhenSorted(ElementsAre(2, 1)))); | 
|  | } | 
|  |  | 
|  | TEST(WhenSortedTest, WorksForVectorConstRefMatcher) { | 
|  | std::deque<int> d; | 
|  | d.push_back(2); | 
|  | d.push_back(1); | 
|  | Matcher<const std::vector<int>&> vector_match = ElementsAre(1, 2); | 
|  | EXPECT_THAT(d, WhenSorted(vector_match)); | 
|  | Matcher<const std::vector<int>&> not_vector_match = ElementsAre(2, 1); | 
|  | EXPECT_THAT(d, Not(WhenSorted(not_vector_match))); | 
|  | } | 
|  |  | 
|  | // Deliberately bare pseudo-container. | 
|  | // Offers only begin() and end() accessors, yielding InputIterator. | 
|  | template <typename T> | 
|  | class Streamlike { | 
|  | private: | 
|  | class ConstIter; | 
|  | public: | 
|  | typedef ConstIter const_iterator; | 
|  | typedef T value_type; | 
|  |  | 
|  | template <typename InIter> | 
|  | Streamlike(InIter first, InIter last) : remainder_(first, last) {} | 
|  |  | 
|  | const_iterator begin() const { | 
|  | return const_iterator(this, remainder_.begin()); | 
|  | } | 
|  | const_iterator end() const { | 
|  | return const_iterator(this, remainder_.end()); | 
|  | } | 
|  |  | 
|  | private: | 
|  | class ConstIter : public std::iterator<std::input_iterator_tag, | 
|  | value_type, | 
|  | ptrdiff_t, | 
|  | const value_type*, | 
|  | const value_type&> { | 
|  | public: | 
|  | ConstIter(const Streamlike* s, | 
|  | typename std::list<value_type>::iterator pos) | 
|  | : s_(s), pos_(pos) {} | 
|  |  | 
|  | const value_type& operator*() const { return *pos_; } | 
|  | const value_type* operator->() const { return &*pos_; } | 
|  | ConstIter& operator++() { | 
|  | s_->remainder_.erase(pos_++); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // *iter++ is required to work (see std::istreambuf_iterator). | 
|  | // (void)iter++ is also required to work. | 
|  | class PostIncrProxy { | 
|  | public: | 
|  | explicit PostIncrProxy(const value_type& value) : value_(value) {} | 
|  | value_type operator*() const { return value_; } | 
|  | private: | 
|  | value_type value_; | 
|  | }; | 
|  | PostIncrProxy operator++(int) { | 
|  | PostIncrProxy proxy(**this); | 
|  | ++(*this); | 
|  | return proxy; | 
|  | } | 
|  |  | 
|  | friend bool operator==(const ConstIter& a, const ConstIter& b) { | 
|  | return a.s_ == b.s_ && a.pos_ == b.pos_; | 
|  | } | 
|  | friend bool operator!=(const ConstIter& a, const ConstIter& b) { | 
|  | return !(a == b); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Streamlike* s_; | 
|  | typename std::list<value_type>::iterator pos_; | 
|  | }; | 
|  |  | 
|  | friend std::ostream& operator<<(std::ostream& os, const Streamlike& s) { | 
|  | os << "["; | 
|  | typedef typename std::list<value_type>::const_iterator Iter; | 
|  | const char* sep = ""; | 
|  | for (Iter it = s.remainder_.begin(); it != s.remainder_.end(); ++it) { | 
|  | os << sep << *it; | 
|  | sep = ","; | 
|  | } | 
|  | os << "]"; | 
|  | return os; | 
|  | } | 
|  |  | 
|  | mutable std::list<value_type> remainder_;  // modified by iteration | 
|  | }; | 
|  |  | 
|  | TEST(StreamlikeTest, Iteration) { | 
|  | const int a[5] = {2, 1, 4, 5, 3}; | 
|  | Streamlike<int> s(a, a + 5); | 
|  | Streamlike<int>::const_iterator it = s.begin(); | 
|  | const int* ip = a; | 
|  | while (it != s.end()) { | 
|  | SCOPED_TRACE(ip - a); | 
|  | EXPECT_EQ(*ip++, *it++); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_STD_FORWARD_LIST_ | 
|  | TEST(BeginEndDistanceIsTest, WorksWithForwardList) { | 
|  | std::forward_list<int> container; | 
|  | EXPECT_THAT(container, BeginEndDistanceIs(0)); | 
|  | EXPECT_THAT(container, Not(BeginEndDistanceIs(1))); | 
|  | container.push_front(0); | 
|  | EXPECT_THAT(container, Not(BeginEndDistanceIs(0))); | 
|  | EXPECT_THAT(container, BeginEndDistanceIs(1)); | 
|  | container.push_front(0); | 
|  | EXPECT_THAT(container, Not(BeginEndDistanceIs(0))); | 
|  | EXPECT_THAT(container, BeginEndDistanceIs(2)); | 
|  | } | 
|  | #endif  // GTEST_HAS_STD_FORWARD_LIST_ | 
|  |  | 
|  | TEST(BeginEndDistanceIsTest, WorksWithNonStdList) { | 
|  | const int a[5] = {1, 2, 3, 4, 5}; | 
|  | Streamlike<int> s(a, a + 5); | 
|  | EXPECT_THAT(s, BeginEndDistanceIs(5)); | 
|  | } | 
|  |  | 
|  | TEST(BeginEndDistanceIsTest, CanDescribeSelf) { | 
|  | Matcher<vector<int> > m = BeginEndDistanceIs(2); | 
|  | EXPECT_EQ("distance between begin() and end() is equal to 2", Describe(m)); | 
|  | EXPECT_EQ("distance between begin() and end() isn't equal to 2", | 
|  | DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | TEST(BeginEndDistanceIsTest, ExplainsResult) { | 
|  | Matcher<vector<int> > m1 = BeginEndDistanceIs(2); | 
|  | Matcher<vector<int> > m2 = BeginEndDistanceIs(Lt(2)); | 
|  | Matcher<vector<int> > m3 = BeginEndDistanceIs(AnyOf(0, 3)); | 
|  | Matcher<vector<int> > m4 = BeginEndDistanceIs(GreaterThan(1)); | 
|  | vector<int> container; | 
|  | EXPECT_EQ("whose distance between begin() and end() 0 doesn't match", | 
|  | Explain(m1, container)); | 
|  | EXPECT_EQ("whose distance between begin() and end() 0 matches", | 
|  | Explain(m2, container)); | 
|  | EXPECT_EQ("whose distance between begin() and end() 0 matches", | 
|  | Explain(m3, container)); | 
|  | EXPECT_EQ( | 
|  | "whose distance between begin() and end() 0 doesn't match, which is 1 " | 
|  | "less than 1", | 
|  | Explain(m4, container)); | 
|  | container.push_back(0); | 
|  | container.push_back(0); | 
|  | EXPECT_EQ("whose distance between begin() and end() 2 matches", | 
|  | Explain(m1, container)); | 
|  | EXPECT_EQ("whose distance between begin() and end() 2 doesn't match", | 
|  | Explain(m2, container)); | 
|  | EXPECT_EQ("whose distance between begin() and end() 2 doesn't match", | 
|  | Explain(m3, container)); | 
|  | EXPECT_EQ( | 
|  | "whose distance between begin() and end() 2 matches, which is 1 more " | 
|  | "than 1", | 
|  | Explain(m4, container)); | 
|  | } | 
|  |  | 
|  | TEST(WhenSortedTest, WorksForStreamlike) { | 
|  | // Streamlike 'container' provides only minimal iterator support. | 
|  | // Its iterators are tagged with input_iterator_tag. | 
|  | const int a[5] = {2, 1, 4, 5, 3}; | 
|  | Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); | 
|  | EXPECT_THAT(s, WhenSorted(ElementsAre(1, 2, 3, 4, 5))); | 
|  | EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3)))); | 
|  | } | 
|  |  | 
|  | TEST(WhenSortedTest, WorksForVectorConstRefMatcherOnStreamlike) { | 
|  | const int a[] = {2, 1, 4, 5, 3}; | 
|  | Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); | 
|  | Matcher<const std::vector<int>&> vector_match = ElementsAre(1, 2, 3, 4, 5); | 
|  | EXPECT_THAT(s, WhenSorted(vector_match)); | 
|  | EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3)))); | 
|  | } | 
|  |  | 
|  | TEST(IsSupersetOfTest, WorksForNativeArray) { | 
|  | const int subset[] = {1, 4}; | 
|  | const int superset[] = {1, 2, 4}; | 
|  | const int disjoint[] = {1, 0, 3}; | 
|  | EXPECT_THAT(subset, IsSupersetOf(subset)); | 
|  | EXPECT_THAT(subset, Not(IsSupersetOf(superset))); | 
|  | EXPECT_THAT(superset, IsSupersetOf(subset)); | 
|  | EXPECT_THAT(subset, Not(IsSupersetOf(disjoint))); | 
|  | EXPECT_THAT(disjoint, Not(IsSupersetOf(subset))); | 
|  | } | 
|  |  | 
|  | TEST(IsSupersetOfTest, WorksWithDuplicates) { | 
|  | const int not_enough[] = {1, 2}; | 
|  | const int enough[] = {1, 1, 2}; | 
|  | const int expected[] = {1, 1}; | 
|  | EXPECT_THAT(not_enough, Not(IsSupersetOf(expected))); | 
|  | EXPECT_THAT(enough, IsSupersetOf(expected)); | 
|  | } | 
|  |  | 
|  | TEST(IsSupersetOfTest, WorksForEmpty) { | 
|  | vector<int> numbers; | 
|  | vector<int> expected; | 
|  | EXPECT_THAT(numbers, IsSupersetOf(expected)); | 
|  | expected.push_back(1); | 
|  | EXPECT_THAT(numbers, Not(IsSupersetOf(expected))); | 
|  | expected.clear(); | 
|  | numbers.push_back(1); | 
|  | numbers.push_back(2); | 
|  | EXPECT_THAT(numbers, IsSupersetOf(expected)); | 
|  | expected.push_back(1); | 
|  | EXPECT_THAT(numbers, IsSupersetOf(expected)); | 
|  | expected.push_back(2); | 
|  | EXPECT_THAT(numbers, IsSupersetOf(expected)); | 
|  | expected.push_back(3); | 
|  | EXPECT_THAT(numbers, Not(IsSupersetOf(expected))); | 
|  | } | 
|  |  | 
|  | TEST(IsSupersetOfTest, WorksForStreamlike) { | 
|  | const int a[5] = {1, 2, 3, 4, 5}; | 
|  | Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); | 
|  |  | 
|  | vector<int> expected; | 
|  | expected.push_back(1); | 
|  | expected.push_back(2); | 
|  | expected.push_back(5); | 
|  | EXPECT_THAT(s, IsSupersetOf(expected)); | 
|  |  | 
|  | expected.push_back(0); | 
|  | EXPECT_THAT(s, Not(IsSupersetOf(expected))); | 
|  | } | 
|  |  | 
|  | TEST(IsSupersetOfTest, TakesStlContainer) { | 
|  | const int actual[] = {3, 1, 2}; | 
|  |  | 
|  | ::std::list<int> expected; | 
|  | expected.push_back(1); | 
|  | expected.push_back(3); | 
|  | EXPECT_THAT(actual, IsSupersetOf(expected)); | 
|  |  | 
|  | expected.push_back(4); | 
|  | EXPECT_THAT(actual, Not(IsSupersetOf(expected))); | 
|  | } | 
|  |  | 
|  | TEST(IsSupersetOfTest, Describe) { | 
|  | typedef std::vector<int> IntVec; | 
|  | IntVec expected; | 
|  | expected.push_back(111); | 
|  | expected.push_back(222); | 
|  | expected.push_back(333); | 
|  | EXPECT_THAT( | 
|  | Describe<IntVec>(IsSupersetOf(expected)), | 
|  | Eq("a surjection from elements to requirements exists such that:\n" | 
|  | " - an element is equal to 111\n" | 
|  | " - an element is equal to 222\n" | 
|  | " - an element is equal to 333")); | 
|  | } | 
|  |  | 
|  | TEST(IsSupersetOfTest, DescribeNegation) { | 
|  | typedef std::vector<int> IntVec; | 
|  | IntVec expected; | 
|  | expected.push_back(111); | 
|  | expected.push_back(222); | 
|  | expected.push_back(333); | 
|  | EXPECT_THAT( | 
|  | DescribeNegation<IntVec>(IsSupersetOf(expected)), | 
|  | Eq("no surjection from elements to requirements exists such that:\n" | 
|  | " - an element is equal to 111\n" | 
|  | " - an element is equal to 222\n" | 
|  | " - an element is equal to 333")); | 
|  | } | 
|  |  | 
|  | TEST(IsSupersetOfTest, MatchAndExplain) { | 
|  | std::vector<int> v; | 
|  | v.push_back(2); | 
|  | v.push_back(3); | 
|  | std::vector<int> expected; | 
|  | expected.push_back(1); | 
|  | expected.push_back(2); | 
|  | StringMatchResultListener listener; | 
|  | ASSERT_FALSE(ExplainMatchResult(IsSupersetOf(expected), v, &listener)) | 
|  | << listener.str(); | 
|  | EXPECT_THAT(listener.str(), | 
|  | Eq("where the following matchers don't match any elements:\n" | 
|  | "matcher #0: is equal to 1")); | 
|  |  | 
|  | v.push_back(1); | 
|  | listener.Clear(); | 
|  | ASSERT_TRUE(ExplainMatchResult(IsSupersetOf(expected), v, &listener)) | 
|  | << listener.str(); | 
|  | EXPECT_THAT(listener.str(), Eq("where:\n" | 
|  | " - element #0 is matched by matcher #1,\n" | 
|  | " - element #2 is matched by matcher #0")); | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
|  | TEST(IsSupersetOfTest, WorksForRhsInitializerList) { | 
|  | const int numbers[] = {1, 3, 6, 2, 4, 5}; | 
|  | EXPECT_THAT(numbers, IsSupersetOf({1, 2})); | 
|  | EXPECT_THAT(numbers, Not(IsSupersetOf({3, 0}))); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | TEST(IsSubsetOfTest, WorksForNativeArray) { | 
|  | const int subset[] = {1, 4}; | 
|  | const int superset[] = {1, 2, 4}; | 
|  | const int disjoint[] = {1, 0, 3}; | 
|  | EXPECT_THAT(subset, IsSubsetOf(subset)); | 
|  | EXPECT_THAT(subset, IsSubsetOf(superset)); | 
|  | EXPECT_THAT(superset, Not(IsSubsetOf(subset))); | 
|  | EXPECT_THAT(subset, Not(IsSubsetOf(disjoint))); | 
|  | EXPECT_THAT(disjoint, Not(IsSubsetOf(subset))); | 
|  | } | 
|  |  | 
|  | TEST(IsSubsetOfTest, WorksWithDuplicates) { | 
|  | const int not_enough[] = {1, 2}; | 
|  | const int enough[] = {1, 1, 2}; | 
|  | const int actual[] = {1, 1}; | 
|  | EXPECT_THAT(actual, Not(IsSubsetOf(not_enough))); | 
|  | EXPECT_THAT(actual, IsSubsetOf(enough)); | 
|  | } | 
|  |  | 
|  | TEST(IsSubsetOfTest, WorksForEmpty) { | 
|  | vector<int> numbers; | 
|  | vector<int> expected; | 
|  | EXPECT_THAT(numbers, IsSubsetOf(expected)); | 
|  | expected.push_back(1); | 
|  | EXPECT_THAT(numbers, IsSubsetOf(expected)); | 
|  | expected.clear(); | 
|  | numbers.push_back(1); | 
|  | numbers.push_back(2); | 
|  | EXPECT_THAT(numbers, Not(IsSubsetOf(expected))); | 
|  | expected.push_back(1); | 
|  | EXPECT_THAT(numbers, Not(IsSubsetOf(expected))); | 
|  | expected.push_back(2); | 
|  | EXPECT_THAT(numbers, IsSubsetOf(expected)); | 
|  | expected.push_back(3); | 
|  | EXPECT_THAT(numbers, IsSubsetOf(expected)); | 
|  | } | 
|  |  | 
|  | TEST(IsSubsetOfTest, WorksForStreamlike) { | 
|  | const int a[5] = {1, 2}; | 
|  | Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); | 
|  |  | 
|  | vector<int> expected; | 
|  | expected.push_back(1); | 
|  | EXPECT_THAT(s, Not(IsSubsetOf(expected))); | 
|  | expected.push_back(2); | 
|  | expected.push_back(5); | 
|  | EXPECT_THAT(s, IsSubsetOf(expected)); | 
|  | } | 
|  |  | 
|  | TEST(IsSubsetOfTest, TakesStlContainer) { | 
|  | const int actual[] = {3, 1, 2}; | 
|  |  | 
|  | ::std::list<int> expected; | 
|  | expected.push_back(1); | 
|  | expected.push_back(3); | 
|  | EXPECT_THAT(actual, Not(IsSubsetOf(expected))); | 
|  |  | 
|  | expected.push_back(2); | 
|  | expected.push_back(4); | 
|  | EXPECT_THAT(actual, IsSubsetOf(expected)); | 
|  | } | 
|  |  | 
|  | TEST(IsSubsetOfTest, Describe) { | 
|  | typedef std::vector<int> IntVec; | 
|  | IntVec expected; | 
|  | expected.push_back(111); | 
|  | expected.push_back(222); | 
|  | expected.push_back(333); | 
|  |  | 
|  | EXPECT_THAT( | 
|  | Describe<IntVec>(IsSubsetOf(expected)), | 
|  | Eq("an injection from elements to requirements exists such that:\n" | 
|  | " - an element is equal to 111\n" | 
|  | " - an element is equal to 222\n" | 
|  | " - an element is equal to 333")); | 
|  | } | 
|  |  | 
|  | TEST(IsSubsetOfTest, DescribeNegation) { | 
|  | typedef std::vector<int> IntVec; | 
|  | IntVec expected; | 
|  | expected.push_back(111); | 
|  | expected.push_back(222); | 
|  | expected.push_back(333); | 
|  | EXPECT_THAT( | 
|  | DescribeNegation<IntVec>(IsSubsetOf(expected)), | 
|  | Eq("no injection from elements to requirements exists such that:\n" | 
|  | " - an element is equal to 111\n" | 
|  | " - an element is equal to 222\n" | 
|  | " - an element is equal to 333")); | 
|  | } | 
|  |  | 
|  | TEST(IsSubsetOfTest, MatchAndExplain) { | 
|  | std::vector<int> v; | 
|  | v.push_back(2); | 
|  | v.push_back(3); | 
|  | std::vector<int> expected; | 
|  | expected.push_back(1); | 
|  | expected.push_back(2); | 
|  | StringMatchResultListener listener; | 
|  | ASSERT_FALSE(ExplainMatchResult(IsSubsetOf(expected), v, &listener)) | 
|  | << listener.str(); | 
|  | EXPECT_THAT(listener.str(), | 
|  | Eq("where the following elements don't match any matchers:\n" | 
|  | "element #1: 3")); | 
|  |  | 
|  | expected.push_back(3); | 
|  | listener.Clear(); | 
|  | ASSERT_TRUE(ExplainMatchResult(IsSubsetOf(expected), v, &listener)) | 
|  | << listener.str(); | 
|  | EXPECT_THAT(listener.str(), Eq("where:\n" | 
|  | " - element #0 is matched by matcher #1,\n" | 
|  | " - element #1 is matched by matcher #2")); | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
|  | TEST(IsSubsetOfTest, WorksForRhsInitializerList) { | 
|  | const int numbers[] = {1, 2, 3}; | 
|  | EXPECT_THAT(numbers, IsSubsetOf({1, 2, 3, 4})); | 
|  | EXPECT_THAT(numbers, Not(IsSubsetOf({1, 2}))); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Tests using ElementsAre() and ElementsAreArray() with stream-like | 
|  | // "containers". | 
|  |  | 
|  | TEST(ElemensAreStreamTest, WorksForStreamlike) { | 
|  | const int a[5] = {1, 2, 3, 4, 5}; | 
|  | Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); | 
|  | EXPECT_THAT(s, ElementsAre(1, 2, 3, 4, 5)); | 
|  | EXPECT_THAT(s, Not(ElementsAre(2, 1, 4, 5, 3))); | 
|  | } | 
|  |  | 
|  | TEST(ElemensAreArrayStreamTest, WorksForStreamlike) { | 
|  | const int a[5] = {1, 2, 3, 4, 5}; | 
|  | Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); | 
|  |  | 
|  | vector<int> expected; | 
|  | expected.push_back(1); | 
|  | expected.push_back(2); | 
|  | expected.push_back(3); | 
|  | expected.push_back(4); | 
|  | expected.push_back(5); | 
|  | EXPECT_THAT(s, ElementsAreArray(expected)); | 
|  |  | 
|  | expected[3] = 0; | 
|  | EXPECT_THAT(s, Not(ElementsAreArray(expected))); | 
|  | } | 
|  |  | 
|  | TEST(ElementsAreTest, WorksWithUncopyable) { | 
|  | Uncopyable objs[2]; | 
|  | objs[0].set_value(-3); | 
|  | objs[1].set_value(1); | 
|  | EXPECT_THAT(objs, ElementsAre(UncopyableIs(-3), Truly(ValueIsPositive))); | 
|  | } | 
|  |  | 
|  | TEST(ElementsAreTest, TakesStlContainer) { | 
|  | const int actual[] = {3, 1, 2}; | 
|  |  | 
|  | ::std::list<int> expected; | 
|  | expected.push_back(3); | 
|  | expected.push_back(1); | 
|  | expected.push_back(2); | 
|  | EXPECT_THAT(actual, ElementsAreArray(expected)); | 
|  |  | 
|  | expected.push_back(4); | 
|  | EXPECT_THAT(actual, Not(ElementsAreArray(expected))); | 
|  | } | 
|  |  | 
|  | // Tests for UnorderedElementsAreArray() | 
|  |  | 
|  | TEST(UnorderedElementsAreArrayTest, SucceedsWhenExpected) { | 
|  | const int a[] = {0, 1, 2, 3, 4}; | 
|  | std::vector<int> s(a, a + GTEST_ARRAY_SIZE_(a)); | 
|  | do { | 
|  | StringMatchResultListener listener; | 
|  | EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(a), | 
|  | s, &listener)) << listener.str(); | 
|  | } while (std::next_permutation(s.begin(), s.end())); | 
|  | } | 
|  |  | 
|  | TEST(UnorderedElementsAreArrayTest, VectorBool) { | 
|  | const bool a[] = {0, 1, 0, 1, 1}; | 
|  | const bool b[] = {1, 0, 1, 1, 0}; | 
|  | std::vector<bool> expected(a, a + GTEST_ARRAY_SIZE_(a)); | 
|  | std::vector<bool> actual(b, b + GTEST_ARRAY_SIZE_(b)); | 
|  | StringMatchResultListener listener; | 
|  | EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(expected), | 
|  | actual, &listener)) << listener.str(); | 
|  | } | 
|  |  | 
|  | TEST(UnorderedElementsAreArrayTest, WorksForStreamlike) { | 
|  | // Streamlike 'container' provides only minimal iterator support. | 
|  | // Its iterators are tagged with input_iterator_tag, and it has no | 
|  | // size() or empty() methods. | 
|  | const int a[5] = {2, 1, 4, 5, 3}; | 
|  | Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); | 
|  |  | 
|  | ::std::vector<int> expected; | 
|  | expected.push_back(1); | 
|  | expected.push_back(2); | 
|  | expected.push_back(3); | 
|  | expected.push_back(4); | 
|  | expected.push_back(5); | 
|  | EXPECT_THAT(s, UnorderedElementsAreArray(expected)); | 
|  |  | 
|  | expected.push_back(6); | 
|  | EXPECT_THAT(s, Not(UnorderedElementsAreArray(expected))); | 
|  | } | 
|  |  | 
|  | TEST(UnorderedElementsAreArrayTest, TakesStlContainer) { | 
|  | const int actual[] = {3, 1, 2}; | 
|  |  | 
|  | ::std::list<int> expected; | 
|  | expected.push_back(1); | 
|  | expected.push_back(2); | 
|  | expected.push_back(3); | 
|  | EXPECT_THAT(actual, UnorderedElementsAreArray(expected)); | 
|  |  | 
|  | expected.push_back(4); | 
|  | EXPECT_THAT(actual, Not(UnorderedElementsAreArray(expected))); | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
|  |  | 
|  | TEST(UnorderedElementsAreArrayTest, TakesInitializerList) { | 
|  | const int a[5] = {2, 1, 4, 5, 3}; | 
|  | EXPECT_THAT(a, UnorderedElementsAreArray({1, 2, 3, 4, 5})); | 
|  | EXPECT_THAT(a, Not(UnorderedElementsAreArray({1, 2, 3, 4, 6}))); | 
|  | } | 
|  |  | 
|  | TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfCStrings) { | 
|  | const std::string a[5] = {"a", "b", "c", "d", "e"}; | 
|  | EXPECT_THAT(a, UnorderedElementsAreArray({"a", "b", "c", "d", "e"})); | 
|  | EXPECT_THAT(a, Not(UnorderedElementsAreArray({"a", "b", "c", "d", "ef"}))); | 
|  | } | 
|  |  | 
|  | TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) { | 
|  | const int a[5] = {2, 1, 4, 5, 3}; | 
|  | EXPECT_THAT(a, UnorderedElementsAreArray( | 
|  | {Eq(1), Eq(2), Eq(3), Eq(4), Eq(5)})); | 
|  | EXPECT_THAT(a, Not(UnorderedElementsAreArray( | 
|  | {Eq(1), Eq(2), Eq(3), Eq(4), Eq(6)}))); | 
|  | } | 
|  |  | 
|  | TEST(UnorderedElementsAreArrayTest, | 
|  | TakesInitializerListOfDifferentTypedMatchers) { | 
|  | const int a[5] = {2, 1, 4, 5, 3}; | 
|  | // The compiler cannot infer the type of the initializer list if its | 
|  | // elements have different types.  We must explicitly specify the | 
|  | // unified element type in this case. | 
|  | EXPECT_THAT(a, UnorderedElementsAreArray<Matcher<int> >( | 
|  | {Eq(1), Ne(-2), Ge(3), Le(4), Eq(5)})); | 
|  | EXPECT_THAT(a, Not(UnorderedElementsAreArray<Matcher<int> >( | 
|  | {Eq(1), Ne(-2), Ge(3), Le(4), Eq(6)}))); | 
|  | } | 
|  |  | 
|  | #endif  // GTEST_HAS_STD_INITIALIZER_LIST_ | 
|  |  | 
|  | class UnorderedElementsAreTest : public testing::Test { | 
|  | protected: | 
|  | typedef std::vector<int> IntVec; | 
|  | }; | 
|  |  | 
|  | TEST_F(UnorderedElementsAreTest, WorksWithUncopyable) { | 
|  | Uncopyable objs[2]; | 
|  | objs[0].set_value(-3); | 
|  | objs[1].set_value(1); | 
|  | EXPECT_THAT(objs, | 
|  | UnorderedElementsAre(Truly(ValueIsPositive), UncopyableIs(-3))); | 
|  | } | 
|  |  | 
|  | TEST_F(UnorderedElementsAreTest, SucceedsWhenExpected) { | 
|  | const int a[] = {1, 2, 3}; | 
|  | std::vector<int> s(a, a + GTEST_ARRAY_SIZE_(a)); | 
|  | do { | 
|  | StringMatchResultListener listener; | 
|  | EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), | 
|  | s, &listener)) << listener.str(); | 
|  | } while (std::next_permutation(s.begin(), s.end())); | 
|  | } | 
|  |  | 
|  | TEST_F(UnorderedElementsAreTest, FailsWhenAnElementMatchesNoMatcher) { | 
|  | const int a[] = {1, 2, 3}; | 
|  | std::vector<int> s(a, a + GTEST_ARRAY_SIZE_(a)); | 
|  | std::vector<Matcher<int> > mv; | 
|  | mv.push_back(1); | 
|  | mv.push_back(2); | 
|  | mv.push_back(2); | 
|  | // The element with value '3' matches nothing: fail fast. | 
|  | StringMatchResultListener listener; | 
|  | EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAreArray(mv), | 
|  | s, &listener)) << listener.str(); | 
|  | } | 
|  |  | 
|  | TEST_F(UnorderedElementsAreTest, WorksForStreamlike) { | 
|  | // Streamlike 'container' provides only minimal iterator support. | 
|  | // Its iterators are tagged with input_iterator_tag, and it has no | 
|  | // size() or empty() methods. | 
|  | const int a[5] = {2, 1, 4, 5, 3}; | 
|  | Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); | 
|  |  | 
|  | EXPECT_THAT(s, UnorderedElementsAre(1, 2, 3, 4, 5)); | 
|  | EXPECT_THAT(s, Not(UnorderedElementsAre(2, 2, 3, 4, 5))); | 
|  | } | 
|  |  | 
|  | // One naive implementation of the matcher runs in O(N!) time, which is too | 
|  | // slow for many real-world inputs. This test shows that our matcher can match | 
|  | // 100 inputs very quickly (a few milliseconds).  An O(100!) is 10^158 | 
|  | // iterations and obviously effectively incomputable. | 
|  | // [ RUN      ] UnorderedElementsAreTest.Performance | 
|  | // [       OK ] UnorderedElementsAreTest.Performance (4 ms) | 
|  | TEST_F(UnorderedElementsAreTest, Performance) { | 
|  | std::vector<int> s; | 
|  | std::vector<Matcher<int> > mv; | 
|  | for (int i = 0; i < 100; ++i) { | 
|  | s.push_back(i); | 
|  | mv.push_back(_); | 
|  | } | 
|  | mv[50] = Eq(0); | 
|  | StringMatchResultListener listener; | 
|  | EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv), | 
|  | s, &listener)) << listener.str(); | 
|  | } | 
|  |  | 
|  | // Another variant of 'Performance' with similar expectations. | 
|  | // [ RUN      ] UnorderedElementsAreTest.PerformanceHalfStrict | 
|  | // [       OK ] UnorderedElementsAreTest.PerformanceHalfStrict (4 ms) | 
|  | TEST_F(UnorderedElementsAreTest, PerformanceHalfStrict) { | 
|  | std::vector<int> s; | 
|  | std::vector<Matcher<int> > mv; | 
|  | for (int i = 0; i < 100; ++i) { | 
|  | s.push_back(i); | 
|  | if (i & 1) { | 
|  | mv.push_back(_); | 
|  | } else { | 
|  | mv.push_back(i); | 
|  | } | 
|  | } | 
|  | StringMatchResultListener listener; | 
|  | EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv), | 
|  | s, &listener)) << listener.str(); | 
|  | } | 
|  |  | 
|  | TEST_F(UnorderedElementsAreTest, FailMessageCountWrong) { | 
|  | std::vector<int> v; | 
|  | v.push_back(4); | 
|  | StringMatchResultListener listener; | 
|  | EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), | 
|  | v, &listener)) << listener.str(); | 
|  | EXPECT_THAT(listener.str(), Eq("which has 1 element")); | 
|  | } | 
|  |  | 
|  | TEST_F(UnorderedElementsAreTest, FailMessageCountWrongZero) { | 
|  | std::vector<int> v; | 
|  | StringMatchResultListener listener; | 
|  | EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), | 
|  | v, &listener)) << listener.str(); | 
|  | EXPECT_THAT(listener.str(), Eq("")); | 
|  | } | 
|  |  | 
|  | TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatchers) { | 
|  | std::vector<int> v; | 
|  | v.push_back(1); | 
|  | v.push_back(1); | 
|  | StringMatchResultListener listener; | 
|  | EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2), | 
|  | v, &listener)) << listener.str(); | 
|  | EXPECT_THAT( | 
|  | listener.str(), | 
|  | Eq("where the following matchers don't match any elements:\n" | 
|  | "matcher #1: is equal to 2")); | 
|  | } | 
|  |  | 
|  | TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedElements) { | 
|  | std::vector<int> v; | 
|  | v.push_back(1); | 
|  | v.push_back(2); | 
|  | StringMatchResultListener listener; | 
|  | EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 1), | 
|  | v, &listener)) << listener.str(); | 
|  | EXPECT_THAT( | 
|  | listener.str(), | 
|  | Eq("where the following elements don't match any matchers:\n" | 
|  | "element #1: 2")); | 
|  | } | 
|  |  | 
|  | TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatcherAndElement) { | 
|  | std::vector<int> v; | 
|  | v.push_back(2); | 
|  | v.push_back(3); | 
|  | StringMatchResultListener listener; | 
|  | EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2), | 
|  | v, &listener)) << listener.str(); | 
|  | EXPECT_THAT( | 
|  | listener.str(), | 
|  | Eq("where" | 
|  | " the following matchers don't match any elements:\n" | 
|  | "matcher #0: is equal to 1\n" | 
|  | "and" | 
|  | " where" | 
|  | " the following elements don't match any matchers:\n" | 
|  | "element #1: 3")); | 
|  | } | 
|  |  | 
|  | // Test helper for formatting element, matcher index pairs in expectations. | 
|  | static std::string EMString(int element, int matcher) { | 
|  | stringstream ss; | 
|  | ss << "(element #" << element << ", matcher #" << matcher << ")"; | 
|  | return ss.str(); | 
|  | } | 
|  |  | 
|  | TEST_F(UnorderedElementsAreTest, FailMessageImperfectMatchOnly) { | 
|  | // A situation where all elements and matchers have a match | 
|  | // associated with them, but the max matching is not perfect. | 
|  | std::vector<std::string> v; | 
|  | v.push_back("a"); | 
|  | v.push_back("b"); | 
|  | v.push_back("c"); | 
|  | StringMatchResultListener listener; | 
|  | EXPECT_FALSE(ExplainMatchResult( | 
|  | UnorderedElementsAre("a", "a", AnyOf("b", "c")), v, &listener)) | 
|  | << listener.str(); | 
|  |  | 
|  | std::string prefix = | 
|  | "where no permutation of the elements can satisfy all matchers, " | 
|  | "and the closest match is 2 of 3 matchers with the " | 
|  | "pairings:\n"; | 
|  |  | 
|  | // We have to be a bit loose here, because there are 4 valid max matches. | 
|  | EXPECT_THAT( | 
|  | listener.str(), | 
|  | AnyOf(prefix + "{\n  " + EMString(0, 0) + | 
|  | ",\n  " + EMString(1, 2) + "\n}", | 
|  | prefix + "{\n  " + EMString(0, 1) + | 
|  | ",\n  " + EMString(1, 2) + "\n}", | 
|  | prefix + "{\n  " + EMString(0, 0) + | 
|  | ",\n  " + EMString(2, 2) + "\n}", | 
|  | prefix + "{\n  " + EMString(0, 1) + | 
|  | ",\n  " + EMString(2, 2) + "\n}")); | 
|  | } | 
|  |  | 
|  | TEST_F(UnorderedElementsAreTest, Describe) { | 
|  | EXPECT_THAT(Describe<IntVec>(UnorderedElementsAre()), | 
|  | Eq("is empty")); | 
|  | EXPECT_THAT( | 
|  | Describe<IntVec>(UnorderedElementsAre(345)), | 
|  | Eq("has 1 element and that element is equal to 345")); | 
|  | EXPECT_THAT( | 
|  | Describe<IntVec>(UnorderedElementsAre(111, 222, 333)), | 
|  | Eq("has 3 elements and there exists some permutation " | 
|  | "of elements such that:\n" | 
|  | " - element #0 is equal to 111, and\n" | 
|  | " - element #1 is equal to 222, and\n" | 
|  | " - element #2 is equal to 333")); | 
|  | } | 
|  |  | 
|  | TEST_F(UnorderedElementsAreTest, DescribeNegation) { | 
|  | EXPECT_THAT(DescribeNegation<IntVec>(UnorderedElementsAre()), | 
|  | Eq("isn't empty")); | 
|  | EXPECT_THAT( | 
|  | DescribeNegation<IntVec>(UnorderedElementsAre(345)), | 
|  | Eq("doesn't have 1 element, or has 1 element that isn't equal to 345")); | 
|  | EXPECT_THAT( | 
|  | DescribeNegation<IntVec>(UnorderedElementsAre(123, 234, 345)), | 
|  | Eq("doesn't have 3 elements, or there exists no permutation " | 
|  | "of elements such that:\n" | 
|  | " - element #0 is equal to 123, and\n" | 
|  | " - element #1 is equal to 234, and\n" | 
|  | " - element #2 is equal to 345")); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Used as a check on the more complex max flow method used in the | 
|  | // real testing::internal::FindMaxBipartiteMatching. This method is | 
|  | // compatible but runs in worst-case factorial time, so we only | 
|  | // use it in testing for small problem sizes. | 
|  | template <typename Graph> | 
|  | class BacktrackingMaxBPMState { | 
|  | public: | 
|  | // Does not take ownership of 'g'. | 
|  | explicit BacktrackingMaxBPMState(const Graph* g) : graph_(g) { } | 
|  |  | 
|  | ElementMatcherPairs Compute() { | 
|  | if (graph_->LhsSize() == 0 || graph_->RhsSize() == 0) { | 
|  | return best_so_far_; | 
|  | } | 
|  | lhs_used_.assign(graph_->LhsSize(), kUnused); | 
|  | rhs_used_.assign(graph_->RhsSize(), kUnused); | 
|  | for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { | 
|  | matches_.clear(); | 
|  | RecurseInto(irhs); | 
|  | if (best_so_far_.size() == graph_->RhsSize()) | 
|  | break; | 
|  | } | 
|  | return best_so_far_; | 
|  | } | 
|  |  | 
|  | private: | 
|  | static const size_t kUnused = static_cast<size_t>(-1); | 
|  |  | 
|  | void PushMatch(size_t lhs, size_t rhs) { | 
|  | matches_.push_back(ElementMatcherPair(lhs, rhs)); | 
|  | lhs_used_[lhs] = rhs; | 
|  | rhs_used_[rhs] = lhs; | 
|  | if (matches_.size() > best_so_far_.size()) { | 
|  | best_so_far_ = matches_; | 
|  | } | 
|  | } | 
|  |  | 
|  | void PopMatch() { | 
|  | const ElementMatcherPair& back = matches_.back(); | 
|  | lhs_used_[back.first] = kUnused; | 
|  | rhs_used_[back.second] = kUnused; | 
|  | matches_.pop_back(); | 
|  | } | 
|  |  | 
|  | bool RecurseInto(size_t irhs) { | 
|  | if (rhs_used_[irhs] != kUnused) { | 
|  | return true; | 
|  | } | 
|  | for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { | 
|  | if (lhs_used_[ilhs] != kUnused) { | 
|  | continue; | 
|  | } | 
|  | if (!graph_->HasEdge(ilhs, irhs)) { | 
|  | continue; | 
|  | } | 
|  | PushMatch(ilhs, irhs); | 
|  | if (best_so_far_.size() == graph_->RhsSize()) { | 
|  | return false; | 
|  | } | 
|  | for (size_t mi = irhs + 1; mi < graph_->RhsSize(); ++mi) { | 
|  | if (!RecurseInto(mi)) return false; | 
|  | } | 
|  | PopMatch(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const Graph* graph_;  // not owned | 
|  | std::vector<size_t> lhs_used_; | 
|  | std::vector<size_t> rhs_used_; | 
|  | ElementMatcherPairs matches_; | 
|  | ElementMatcherPairs best_so_far_; | 
|  | }; | 
|  |  | 
|  | template <typename Graph> | 
|  | const size_t BacktrackingMaxBPMState<Graph>::kUnused; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | // Implement a simple backtracking algorithm to determine if it is possible | 
|  | // to find one element per matcher, without reusing elements. | 
|  | template <typename Graph> | 
|  | ElementMatcherPairs | 
|  | FindBacktrackingMaxBPM(const Graph& g) { | 
|  | return BacktrackingMaxBPMState<Graph>(&g).Compute(); | 
|  | } | 
|  |  | 
|  | class BacktrackingBPMTest : public ::testing::Test { }; | 
|  |  | 
|  | // Tests the MaxBipartiteMatching algorithm with square matrices. | 
|  | // The single int param is the # of nodes on each of the left and right sides. | 
|  | class BipartiteTest : public ::testing::TestWithParam<int> { }; | 
|  |  | 
|  | // Verify all match graphs up to some moderate number of edges. | 
|  | TEST_P(BipartiteTest, Exhaustive) { | 
|  | int nodes = GetParam(); | 
|  | MatchMatrix graph(nodes, nodes); | 
|  | do { | 
|  | ElementMatcherPairs matches = | 
|  | internal::FindMaxBipartiteMatching(graph); | 
|  | EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), matches.size()) | 
|  | << "graph: " << graph.DebugString(); | 
|  | // Check that all elements of matches are in the graph. | 
|  | // Check that elements of first and second are unique. | 
|  | std::vector<bool> seen_element(graph.LhsSize()); | 
|  | std::vector<bool> seen_matcher(graph.RhsSize()); | 
|  | SCOPED_TRACE(PrintToString(matches)); | 
|  | for (size_t i = 0; i < matches.size(); ++i) { | 
|  | size_t ilhs = matches[i].first; | 
|  | size_t irhs = matches[i].second; | 
|  | EXPECT_TRUE(graph.HasEdge(ilhs, irhs)); | 
|  | EXPECT_FALSE(seen_element[ilhs]); | 
|  | EXPECT_FALSE(seen_matcher[irhs]); | 
|  | seen_element[ilhs] = true; | 
|  | seen_matcher[irhs] = true; | 
|  | } | 
|  | } while (graph.NextGraph()); | 
|  | } | 
|  |  | 
|  | INSTANTIATE_TEST_CASE_P(AllGraphs, BipartiteTest, | 
|  | ::testing::Range(0, 5)); | 
|  |  | 
|  | // Parameterized by a pair interpreted as (LhsSize, RhsSize). | 
|  | class BipartiteNonSquareTest | 
|  | : public ::testing::TestWithParam<std::pair<size_t, size_t> > { | 
|  | }; | 
|  |  | 
|  | TEST_F(BipartiteNonSquareTest, SimpleBacktracking) { | 
|  | //   ....... | 
|  | // 0:-----\ : | 
|  | // 1:---\ | : | 
|  | // 2:---\ | : | 
|  | // 3:-\ | | : | 
|  | //  :.......: | 
|  | //    0 1 2 | 
|  | MatchMatrix g(4, 3); | 
|  | static const int kEdges[][2] = {{0, 2}, {1, 1}, {2, 1}, {3, 0}}; | 
|  | for (size_t i = 0; i < GTEST_ARRAY_SIZE_(kEdges); ++i) { | 
|  | g.SetEdge(kEdges[i][0], kEdges[i][1], true); | 
|  | } | 
|  | EXPECT_THAT(FindBacktrackingMaxBPM(g), | 
|  | ElementsAre(Pair(3, 0), | 
|  | Pair(AnyOf(1, 2), 1), | 
|  | Pair(0, 2))) << g.DebugString(); | 
|  | } | 
|  |  | 
|  | // Verify a few nonsquare matrices. | 
|  | TEST_P(BipartiteNonSquareTest, Exhaustive) { | 
|  | size_t nlhs = GetParam().first; | 
|  | size_t nrhs = GetParam().second; | 
|  | MatchMatrix graph(nlhs, nrhs); | 
|  | do { | 
|  | EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), | 
|  | internal::FindMaxBipartiteMatching(graph).size()) | 
|  | << "graph: " << graph.DebugString() | 
|  | << "\nbacktracking: " | 
|  | << PrintToString(FindBacktrackingMaxBPM(graph)) | 
|  | << "\nmax flow: " | 
|  | << PrintToString(internal::FindMaxBipartiteMatching(graph)); | 
|  | } while (graph.NextGraph()); | 
|  | } | 
|  |  | 
|  | INSTANTIATE_TEST_CASE_P(AllGraphs, BipartiteNonSquareTest, | 
|  | testing::Values( | 
|  | std::make_pair(1, 2), | 
|  | std::make_pair(2, 1), | 
|  | std::make_pair(3, 2), | 
|  | std::make_pair(2, 3), | 
|  | std::make_pair(4, 1), | 
|  | std::make_pair(1, 4), | 
|  | std::make_pair(4, 3), | 
|  | std::make_pair(3, 4))); | 
|  |  | 
|  | class BipartiteRandomTest | 
|  | : public ::testing::TestWithParam<std::pair<int, int> > { | 
|  | }; | 
|  |  | 
|  | // Verifies a large sample of larger graphs. | 
|  | TEST_P(BipartiteRandomTest, LargerNets) { | 
|  | int nodes = GetParam().first; | 
|  | int iters = GetParam().second; | 
|  | MatchMatrix graph(nodes, nodes); | 
|  |  | 
|  | testing::internal::Int32 seed = GTEST_FLAG(random_seed); | 
|  | if (seed == 0) { | 
|  | seed = static_cast<testing::internal::Int32>(time(NULL)); | 
|  | } | 
|  |  | 
|  | for (; iters > 0; --iters, ++seed) { | 
|  | srand(static_cast<int>(seed)); | 
|  | graph.Randomize(); | 
|  | EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), | 
|  | internal::FindMaxBipartiteMatching(graph).size()) | 
|  | << " graph: " << graph.DebugString() | 
|  | << "\nTo reproduce the failure, rerun the test with the flag" | 
|  | " --" << GTEST_FLAG_PREFIX_ << "random_seed=" << seed; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test argument is a std::pair<int, int> representing (nodes, iters). | 
|  | INSTANTIATE_TEST_CASE_P(Samples, BipartiteRandomTest, | 
|  | testing::Values( | 
|  | std::make_pair(5, 10000), | 
|  | std::make_pair(6, 5000), | 
|  | std::make_pair(7, 2000), | 
|  | std::make_pair(8, 500), | 
|  | std::make_pair(9, 100))); | 
|  |  | 
|  | // Tests IsReadableTypeName(). | 
|  |  | 
|  | TEST(IsReadableTypeNameTest, ReturnsTrueForShortNames) { | 
|  | EXPECT_TRUE(IsReadableTypeName("int")); | 
|  | EXPECT_TRUE(IsReadableTypeName("const unsigned char*")); | 
|  | EXPECT_TRUE(IsReadableTypeName("MyMap<int, void*>")); | 
|  | EXPECT_TRUE(IsReadableTypeName("void (*)(int, bool)")); | 
|  | } | 
|  |  | 
|  | TEST(IsReadableTypeNameTest, ReturnsTrueForLongNonTemplateNonFunctionNames) { | 
|  | EXPECT_TRUE(IsReadableTypeName("my_long_namespace::MyClassName")); | 
|  | EXPECT_TRUE(IsReadableTypeName("int [5][6][7][8][9][10][11]")); | 
|  | EXPECT_TRUE(IsReadableTypeName("my_namespace::MyOuterClass::MyInnerClass")); | 
|  | } | 
|  |  | 
|  | TEST(IsReadableTypeNameTest, ReturnsFalseForLongTemplateNames) { | 
|  | EXPECT_FALSE( | 
|  | IsReadableTypeName("basic_string<char, std::char_traits<char> >")); | 
|  | EXPECT_FALSE(IsReadableTypeName("std::vector<int, std::alloc_traits<int> >")); | 
|  | } | 
|  |  | 
|  | TEST(IsReadableTypeNameTest, ReturnsFalseForLongFunctionTypeNames) { | 
|  | EXPECT_FALSE(IsReadableTypeName("void (&)(int, bool, char, float)")); | 
|  | } | 
|  |  | 
|  | // Tests FormatMatcherDescription(). | 
|  |  | 
|  | TEST(FormatMatcherDescriptionTest, WorksForEmptyDescription) { | 
|  | EXPECT_EQ("is even", | 
|  | FormatMatcherDescription(false, "IsEven", Strings())); | 
|  | EXPECT_EQ("not (is even)", | 
|  | FormatMatcherDescription(true, "IsEven", Strings())); | 
|  |  | 
|  | const char* params[] = {"5"}; | 
|  | EXPECT_EQ("equals 5", | 
|  | FormatMatcherDescription(false, "Equals", | 
|  | Strings(params, params + 1))); | 
|  |  | 
|  | const char* params2[] = {"5", "8"}; | 
|  | EXPECT_EQ("is in range (5, 8)", | 
|  | FormatMatcherDescription(false, "IsInRange", | 
|  | Strings(params2, params2 + 2))); | 
|  | } | 
|  |  | 
|  | // Tests PolymorphicMatcher::mutable_impl(). | 
|  | TEST(PolymorphicMatcherTest, CanAccessMutableImpl) { | 
|  | PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42)); | 
|  | DivisibleByImpl& impl = m.mutable_impl(); | 
|  | EXPECT_EQ(42, impl.divider()); | 
|  |  | 
|  | impl.set_divider(0); | 
|  | EXPECT_EQ(0, m.mutable_impl().divider()); | 
|  | } | 
|  |  | 
|  | // Tests PolymorphicMatcher::impl(). | 
|  | TEST(PolymorphicMatcherTest, CanAccessImpl) { | 
|  | const PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42)); | 
|  | const DivisibleByImpl& impl = m.impl(); | 
|  | EXPECT_EQ(42, impl.divider()); | 
|  | } | 
|  |  | 
|  | TEST(MatcherTupleTest, ExplainsMatchFailure) { | 
|  | stringstream ss1; | 
|  | ExplainMatchFailureTupleTo(make_tuple(Matcher<char>(Eq('a')), GreaterThan(5)), | 
|  | make_tuple('a', 10), &ss1); | 
|  | EXPECT_EQ("", ss1.str());  // Successful match. | 
|  |  | 
|  | stringstream ss2; | 
|  | ExplainMatchFailureTupleTo(make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))), | 
|  | make_tuple(2, 'b'), &ss2); | 
|  | EXPECT_EQ("  Expected arg #0: is > 5\n" | 
|  | "           Actual: 2, which is 3 less than 5\n" | 
|  | "  Expected arg #1: is equal to 'a' (97, 0x61)\n" | 
|  | "           Actual: 'b' (98, 0x62)\n", | 
|  | ss2.str());  // Failed match where both arguments need explanation. | 
|  |  | 
|  | stringstream ss3; | 
|  | ExplainMatchFailureTupleTo(make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))), | 
|  | make_tuple(2, 'a'), &ss3); | 
|  | EXPECT_EQ("  Expected arg #0: is > 5\n" | 
|  | "           Actual: 2, which is 3 less than 5\n", | 
|  | ss3.str());  // Failed match where only one argument needs | 
|  | // explanation. | 
|  | } | 
|  |  | 
|  | // Tests Each(). | 
|  |  | 
|  | TEST(EachTest, ExplainsMatchResultCorrectly) { | 
|  | set<int> a;  // empty | 
|  |  | 
|  | Matcher<set<int> > m = Each(2); | 
|  | EXPECT_EQ("", Explain(m, a)); | 
|  |  | 
|  | Matcher<const int(&)[1]> n = Each(1);  // NOLINT | 
|  |  | 
|  | const int b[1] = {1}; | 
|  | EXPECT_EQ("", Explain(n, b)); | 
|  |  | 
|  | n = Each(3); | 
|  | EXPECT_EQ("whose element #0 doesn't match", Explain(n, b)); | 
|  |  | 
|  | a.insert(1); | 
|  | a.insert(2); | 
|  | a.insert(3); | 
|  | m = Each(GreaterThan(0)); | 
|  | EXPECT_EQ("", Explain(m, a)); | 
|  |  | 
|  | m = Each(GreaterThan(10)); | 
|  | EXPECT_EQ("whose element #0 doesn't match, which is 9 less than 10", | 
|  | Explain(m, a)); | 
|  | } | 
|  |  | 
|  | TEST(EachTest, DescribesItselfCorrectly) { | 
|  | Matcher<vector<int> > m = Each(1); | 
|  | EXPECT_EQ("only contains elements that is equal to 1", Describe(m)); | 
|  |  | 
|  | Matcher<vector<int> > m2 = Not(m); | 
|  | EXPECT_EQ("contains some element that isn't equal to 1", Describe(m2)); | 
|  | } | 
|  |  | 
|  | TEST(EachTest, MatchesVectorWhenAllElementsMatch) { | 
|  | vector<int> some_vector; | 
|  | EXPECT_THAT(some_vector, Each(1)); | 
|  | some_vector.push_back(3); | 
|  | EXPECT_THAT(some_vector, Not(Each(1))); | 
|  | EXPECT_THAT(some_vector, Each(3)); | 
|  | some_vector.push_back(1); | 
|  | some_vector.push_back(2); | 
|  | EXPECT_THAT(some_vector, Not(Each(3))); | 
|  | EXPECT_THAT(some_vector, Each(Lt(3.5))); | 
|  |  | 
|  | vector<std::string> another_vector; | 
|  | another_vector.push_back("fee"); | 
|  | EXPECT_THAT(another_vector, Each(std::string("fee"))); | 
|  | another_vector.push_back("fie"); | 
|  | another_vector.push_back("foe"); | 
|  | another_vector.push_back("fum"); | 
|  | EXPECT_THAT(another_vector, Not(Each(std::string("fee")))); | 
|  | } | 
|  |  | 
|  | TEST(EachTest, MatchesMapWhenAllElementsMatch) { | 
|  | map<const char*, int> my_map; | 
|  | const char* bar = "a string"; | 
|  | my_map[bar] = 2; | 
|  | EXPECT_THAT(my_map, Each(make_pair(bar, 2))); | 
|  |  | 
|  | map<std::string, int> another_map; | 
|  | EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1))); | 
|  | another_map["fee"] = 1; | 
|  | EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1))); | 
|  | another_map["fie"] = 2; | 
|  | another_map["foe"] = 3; | 
|  | another_map["fum"] = 4; | 
|  | EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fee"), 1)))); | 
|  | EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fum"), 1)))); | 
|  | EXPECT_THAT(another_map, Each(Pair(_, Gt(0)))); | 
|  | } | 
|  |  | 
|  | TEST(EachTest, AcceptsMatcher) { | 
|  | const int a[] = {1, 2, 3}; | 
|  | EXPECT_THAT(a, Each(Gt(0))); | 
|  | EXPECT_THAT(a, Not(Each(Gt(1)))); | 
|  | } | 
|  |  | 
|  | TEST(EachTest, WorksForNativeArrayAsTuple) { | 
|  | const int a[] = {1, 2}; | 
|  | const int* const pointer = a; | 
|  | EXPECT_THAT(make_tuple(pointer, 2), Each(Gt(0))); | 
|  | EXPECT_THAT(make_tuple(pointer, 2), Not(Each(Gt(1)))); | 
|  | } | 
|  |  | 
|  | // For testing Pointwise(). | 
|  | class IsHalfOfMatcher { | 
|  | public: | 
|  | template <typename T1, typename T2> | 
|  | bool MatchAndExplain(const tuple<T1, T2>& a_pair, | 
|  | MatchResultListener* listener) const { | 
|  | if (get<0>(a_pair) == get<1>(a_pair)/2) { | 
|  | *listener << "where the second is " << get<1>(a_pair); | 
|  | return true; | 
|  | } else { | 
|  | *listener << "where the second/2 is " << get<1>(a_pair)/2; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void DescribeTo(ostream* os) const { | 
|  | *os << "are a pair where the first is half of the second"; | 
|  | } | 
|  |  | 
|  | void DescribeNegationTo(ostream* os) const { | 
|  | *os << "are a pair where the first isn't half of the second"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | PolymorphicMatcher<IsHalfOfMatcher> IsHalfOf() { | 
|  | return MakePolymorphicMatcher(IsHalfOfMatcher()); | 
|  | } | 
|  |  | 
|  | TEST(PointwiseTest, DescribesSelf) { | 
|  | vector<int> rhs; | 
|  | rhs.push_back(1); | 
|  | rhs.push_back(2); | 
|  | rhs.push_back(3); | 
|  | const Matcher<const vector<int>&> m = Pointwise(IsHalfOf(), rhs); | 
|  | EXPECT_EQ("contains 3 values, where each value and its corresponding value " | 
|  | "in { 1, 2, 3 } are a pair where the first is half of the second", | 
|  | Describe(m)); | 
|  | EXPECT_EQ("doesn't contain exactly 3 values, or contains a value x at some " | 
|  | "index i where x and the i-th value of { 1, 2, 3 } are a pair " | 
|  | "where the first isn't half of the second", | 
|  | DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | TEST(PointwiseTest, MakesCopyOfRhs) { | 
|  | list<signed char> rhs; | 
|  | rhs.push_back(2); | 
|  | rhs.push_back(4); | 
|  |  | 
|  | int lhs[] = {1, 2}; | 
|  | const Matcher<const int (&)[2]> m = Pointwise(IsHalfOf(), rhs); | 
|  | EXPECT_THAT(lhs, m); | 
|  |  | 
|  | // Changing rhs now shouldn't affect m, which made a copy of rhs. | 
|  | rhs.push_back(6); | 
|  | EXPECT_THAT(lhs, m); | 
|  | } | 
|  |  | 
|  | TEST(PointwiseTest, WorksForLhsNativeArray) { | 
|  | const int lhs[] = {1, 2, 3}; | 
|  | vector<int> rhs; | 
|  | rhs.push_back(2); | 
|  | rhs.push_back(4); | 
|  | rhs.push_back(6); | 
|  | EXPECT_THAT(lhs, Pointwise(Lt(), rhs)); | 
|  | EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs))); | 
|  | } | 
|  |  | 
|  | TEST(PointwiseTest, WorksForRhsNativeArray) { | 
|  | const int rhs[] = {1, 2, 3}; | 
|  | vector<int> lhs; | 
|  | lhs.push_back(2); | 
|  | lhs.push_back(4); | 
|  | lhs.push_back(6); | 
|  | EXPECT_THAT(lhs, Pointwise(Gt(), rhs)); | 
|  | EXPECT_THAT(lhs, Not(Pointwise(Lt(), rhs))); | 
|  | } | 
|  |  | 
|  | // Test is effective only with sanitizers. | 
|  | TEST(PointwiseTest, WorksForVectorOfBool) { | 
|  | vector<bool> rhs(3, false); | 
|  | rhs[1] = true; | 
|  | vector<bool> lhs = rhs; | 
|  | EXPECT_THAT(lhs, Pointwise(Eq(), rhs)); | 
|  | rhs[0] = true; | 
|  | EXPECT_THAT(lhs, Not(Pointwise(Eq(), rhs))); | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
|  |  | 
|  | TEST(PointwiseTest, WorksForRhsInitializerList) { | 
|  | const vector<int> lhs{2, 4, 6}; | 
|  | EXPECT_THAT(lhs, Pointwise(Gt(), {1, 2, 3})); | 
|  | EXPECT_THAT(lhs, Not(Pointwise(Lt(), {3, 3, 7}))); | 
|  | } | 
|  |  | 
|  | #endif  // GTEST_HAS_STD_INITIALIZER_LIST_ | 
|  |  | 
|  | TEST(PointwiseTest, RejectsWrongSize) { | 
|  | const double lhs[2] = {1, 2}; | 
|  | const int rhs[1] = {0}; | 
|  | EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs))); | 
|  | EXPECT_EQ("which contains 2 values", | 
|  | Explain(Pointwise(Gt(), rhs), lhs)); | 
|  |  | 
|  | const int rhs2[3] = {0, 1, 2}; | 
|  | EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs2))); | 
|  | } | 
|  |  | 
|  | TEST(PointwiseTest, RejectsWrongContent) { | 
|  | const double lhs[3] = {1, 2, 3}; | 
|  | const int rhs[3] = {2, 6, 4}; | 
|  | EXPECT_THAT(lhs, Not(Pointwise(IsHalfOf(), rhs))); | 
|  | EXPECT_EQ("where the value pair (2, 6) at index #1 don't match, " | 
|  | "where the second/2 is 3", | 
|  | Explain(Pointwise(IsHalfOf(), rhs), lhs)); | 
|  | } | 
|  |  | 
|  | TEST(PointwiseTest, AcceptsCorrectContent) { | 
|  | const double lhs[3] = {1, 2, 3}; | 
|  | const int rhs[3] = {2, 4, 6}; | 
|  | EXPECT_THAT(lhs, Pointwise(IsHalfOf(), rhs)); | 
|  | EXPECT_EQ("", Explain(Pointwise(IsHalfOf(), rhs), lhs)); | 
|  | } | 
|  |  | 
|  | TEST(PointwiseTest, AllowsMonomorphicInnerMatcher) { | 
|  | const double lhs[3] = {1, 2, 3}; | 
|  | const int rhs[3] = {2, 4, 6}; | 
|  | const Matcher<tuple<const double&, const int&> > m1 = IsHalfOf(); | 
|  | EXPECT_THAT(lhs, Pointwise(m1, rhs)); | 
|  | EXPECT_EQ("", Explain(Pointwise(m1, rhs), lhs)); | 
|  |  | 
|  | // This type works as a tuple<const double&, const int&> can be | 
|  | // implicitly cast to tuple<double, int>. | 
|  | const Matcher<tuple<double, int> > m2 = IsHalfOf(); | 
|  | EXPECT_THAT(lhs, Pointwise(m2, rhs)); | 
|  | EXPECT_EQ("", Explain(Pointwise(m2, rhs), lhs)); | 
|  | } | 
|  |  | 
|  | TEST(UnorderedPointwiseTest, DescribesSelf) { | 
|  | vector<int> rhs; | 
|  | rhs.push_back(1); | 
|  | rhs.push_back(2); | 
|  | rhs.push_back(3); | 
|  | const Matcher<const vector<int>&> m = UnorderedPointwise(IsHalfOf(), rhs); | 
|  | EXPECT_EQ( | 
|  | "has 3 elements and there exists some permutation of elements such " | 
|  | "that:\n" | 
|  | " - element #0 and 1 are a pair where the first is half of the second, " | 
|  | "and\n" | 
|  | " - element #1 and 2 are a pair where the first is half of the second, " | 
|  | "and\n" | 
|  | " - element #2 and 3 are a pair where the first is half of the second", | 
|  | Describe(m)); | 
|  | EXPECT_EQ( | 
|  | "doesn't have 3 elements, or there exists no permutation of elements " | 
|  | "such that:\n" | 
|  | " - element #0 and 1 are a pair where the first is half of the second, " | 
|  | "and\n" | 
|  | " - element #1 and 2 are a pair where the first is half of the second, " | 
|  | "and\n" | 
|  | " - element #2 and 3 are a pair where the first is half of the second", | 
|  | DescribeNegation(m)); | 
|  | } | 
|  |  | 
|  | TEST(UnorderedPointwiseTest, MakesCopyOfRhs) { | 
|  | list<signed char> rhs; | 
|  | rhs.push_back(2); | 
|  | rhs.push_back(4); | 
|  |  | 
|  | int lhs[] = {2, 1}; | 
|  | const Matcher<const int (&)[2]> m = UnorderedPointwise(IsHalfOf(), rhs); | 
|  | EXPECT_THAT(lhs, m); | 
|  |  | 
|  | // Changing rhs now shouldn't affect m, which made a copy of rhs. | 
|  | rhs.push_back(6); | 
|  | EXPECT_THAT(lhs, m); | 
|  | } | 
|  |  | 
|  | TEST(UnorderedPointwiseTest, WorksForLhsNativeArray) { | 
|  | const int lhs[] = {1, 2, 3}; | 
|  | vector<int> rhs; | 
|  | rhs.push_back(4); | 
|  | rhs.push_back(6); | 
|  | rhs.push_back(2); | 
|  | EXPECT_THAT(lhs, UnorderedPointwise(Lt(), rhs)); | 
|  | EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs))); | 
|  | } | 
|  |  | 
|  | TEST(UnorderedPointwiseTest, WorksForRhsNativeArray) { | 
|  | const int rhs[] = {1, 2, 3}; | 
|  | vector<int> lhs; | 
|  | lhs.push_back(4); | 
|  | lhs.push_back(2); | 
|  | lhs.push_back(6); | 
|  | EXPECT_THAT(lhs, UnorderedPointwise(Gt(), rhs)); | 
|  | EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), rhs))); | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
|  |  | 
|  | TEST(UnorderedPointwiseTest, WorksForRhsInitializerList) { | 
|  | const vector<int> lhs{2, 4, 6}; | 
|  | EXPECT_THAT(lhs, UnorderedPointwise(Gt(), {5, 1, 3})); | 
|  | EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), {1, 1, 7}))); | 
|  | } | 
|  |  | 
|  | #endif  // GTEST_HAS_STD_INITIALIZER_LIST_ | 
|  |  | 
|  | TEST(UnorderedPointwiseTest, RejectsWrongSize) { | 
|  | const double lhs[2] = {1, 2}; | 
|  | const int rhs[1] = {0}; | 
|  | EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs))); | 
|  | EXPECT_EQ("which has 2 elements", | 
|  | Explain(UnorderedPointwise(Gt(), rhs), lhs)); | 
|  |  | 
|  | const int rhs2[3] = {0, 1, 2}; | 
|  | EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs2))); | 
|  | } | 
|  |  | 
|  | TEST(UnorderedPointwiseTest, RejectsWrongContent) { | 
|  | const double lhs[3] = {1, 2, 3}; | 
|  | const int rhs[3] = {2, 6, 6}; | 
|  | EXPECT_THAT(lhs, Not(UnorderedPointwise(IsHalfOf(), rhs))); | 
|  | EXPECT_EQ("where the following elements don't match any matchers:\n" | 
|  | "element #1: 2", | 
|  | Explain(UnorderedPointwise(IsHalfOf(), rhs), lhs)); | 
|  | } | 
|  |  | 
|  | TEST(UnorderedPointwiseTest, AcceptsCorrectContentInSameOrder) { | 
|  | const double lhs[3] = {1, 2, 3}; | 
|  | const int rhs[3] = {2, 4, 6}; | 
|  | EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs)); | 
|  | } | 
|  |  | 
|  | TEST(UnorderedPointwiseTest, AcceptsCorrectContentInDifferentOrder) { | 
|  | const double lhs[3] = {1, 2, 3}; | 
|  | const int rhs[3] = {6, 4, 2}; | 
|  | EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs)); | 
|  | } | 
|  |  | 
|  | TEST(UnorderedPointwiseTest, AllowsMonomorphicInnerMatcher) { | 
|  | const double lhs[3] = {1, 2, 3}; | 
|  | const int rhs[3] = {4, 6, 2}; | 
|  | const Matcher<tuple<const double&, const int&> > m1 = IsHalfOf(); | 
|  | EXPECT_THAT(lhs, UnorderedPointwise(m1, rhs)); | 
|  |  | 
|  | // This type works as a tuple<const double&, const int&> can be | 
|  | // implicitly cast to tuple<double, int>. | 
|  | const Matcher<tuple<double, int> > m2 = IsHalfOf(); | 
|  | EXPECT_THAT(lhs, UnorderedPointwise(m2, rhs)); | 
|  | } | 
|  |  | 
|  | // Sample optional type implementation with minimal requirements for use with | 
|  | // Optional matcher. | 
|  | class SampleOptionalInt { | 
|  | public: | 
|  | typedef int value_type; | 
|  | explicit SampleOptionalInt(int value) : value_(value), has_value_(true) {} | 
|  | SampleOptionalInt() : value_(0), has_value_(false) {} | 
|  | operator bool() const { | 
|  | return has_value_; | 
|  | } | 
|  | const int& operator*() const { | 
|  | return value_; | 
|  | } | 
|  | private: | 
|  | int value_; | 
|  | bool has_value_; | 
|  | }; | 
|  |  | 
|  | TEST(OptionalTest, DescribesSelf) { | 
|  | const Matcher<SampleOptionalInt> m = Optional(Eq(1)); | 
|  | EXPECT_EQ("value is equal to 1", Describe(m)); | 
|  | } | 
|  |  | 
|  | TEST(OptionalTest, ExplainsSelf) { | 
|  | const Matcher<SampleOptionalInt> m = Optional(Eq(1)); | 
|  | EXPECT_EQ("whose value 1 matches", Explain(m, SampleOptionalInt(1))); | 
|  | EXPECT_EQ("whose value 2 doesn't match", Explain(m, SampleOptionalInt(2))); | 
|  | } | 
|  |  | 
|  | TEST(OptionalTest, MatchesNonEmptyOptional) { | 
|  | const Matcher<SampleOptionalInt> m1 = Optional(1); | 
|  | const Matcher<SampleOptionalInt> m2 = Optional(Eq(2)); | 
|  | const Matcher<SampleOptionalInt> m3 = Optional(Lt(3)); | 
|  | SampleOptionalInt opt(1); | 
|  | EXPECT_TRUE(m1.Matches(opt)); | 
|  | EXPECT_FALSE(m2.Matches(opt)); | 
|  | EXPECT_TRUE(m3.Matches(opt)); | 
|  | } | 
|  |  | 
|  | TEST(OptionalTest, DoesNotMatchNullopt) { | 
|  | const Matcher<SampleOptionalInt> m = Optional(1); | 
|  | SampleOptionalInt empty; | 
|  | EXPECT_FALSE(m.Matches(empty)); | 
|  | } | 
|  |  | 
|  | class SampleVariantIntString { | 
|  | public: | 
|  | SampleVariantIntString(int i) : i_(i), has_int_(true) {} | 
|  | SampleVariantIntString(const std::string& s) : s_(s), has_int_(false) {} | 
|  |  | 
|  | template <typename T> | 
|  | friend bool holds_alternative(const SampleVariantIntString& value) { | 
|  | return value.has_int_ == internal::IsSame<T, int>::value; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | friend const T& get(const SampleVariantIntString& value) { | 
|  | return value.get_impl(static_cast<T*>(NULL)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const int& get_impl(int*) const { return i_; } | 
|  | const std::string& get_impl(std::string*) const { return s_; } | 
|  |  | 
|  | int i_; | 
|  | std::string s_; | 
|  | bool has_int_; | 
|  | }; | 
|  |  | 
|  | TEST(VariantTest, DescribesSelf) { | 
|  | const Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); | 
|  | EXPECT_THAT(Describe(m), ContainsRegex("is a variant<> with value of type " | 
|  | "'.*' and the value is equal to 1")); | 
|  | } | 
|  |  | 
|  | TEST(VariantTest, ExplainsSelf) { | 
|  | const Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); | 
|  | EXPECT_THAT(Explain(m, SampleVariantIntString(1)), | 
|  | ContainsRegex("whose value 1")); | 
|  | EXPECT_THAT(Explain(m, SampleVariantIntString("A")), | 
|  | HasSubstr("whose value is not of type '")); | 
|  | EXPECT_THAT(Explain(m, SampleVariantIntString(2)), | 
|  | "whose value 2 doesn't match"); | 
|  | } | 
|  |  | 
|  | TEST(VariantTest, FullMatch) { | 
|  | Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); | 
|  | EXPECT_TRUE(m.Matches(SampleVariantIntString(1))); | 
|  |  | 
|  | m = VariantWith<std::string>(Eq("1")); | 
|  | EXPECT_TRUE(m.Matches(SampleVariantIntString("1"))); | 
|  | } | 
|  |  | 
|  | TEST(VariantTest, TypeDoesNotMatch) { | 
|  | Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); | 
|  | EXPECT_FALSE(m.Matches(SampleVariantIntString("1"))); | 
|  |  | 
|  | m = VariantWith<std::string>(Eq("1")); | 
|  | EXPECT_FALSE(m.Matches(SampleVariantIntString(1))); | 
|  | } | 
|  |  | 
|  | TEST(VariantTest, InnerDoesNotMatch) { | 
|  | Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); | 
|  | EXPECT_FALSE(m.Matches(SampleVariantIntString(2))); | 
|  |  | 
|  | m = VariantWith<std::string>(Eq("1")); | 
|  | EXPECT_FALSE(m.Matches(SampleVariantIntString("2"))); | 
|  | } | 
|  |  | 
|  | class SampleAnyType { | 
|  | public: | 
|  | explicit SampleAnyType(int i) : index_(0), i_(i) {} | 
|  | explicit SampleAnyType(const std::string& s) : index_(1), s_(s) {} | 
|  |  | 
|  | template <typename T> | 
|  | friend const T* any_cast(const SampleAnyType* any) { | 
|  | return any->get_impl(static_cast<T*>(NULL)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | int index_; | 
|  | int i_; | 
|  | std::string s_; | 
|  |  | 
|  | const int* get_impl(int*) const { return index_ == 0 ? &i_ : NULL; } | 
|  | const std::string* get_impl(std::string*) const { | 
|  | return index_ == 1 ? &s_ : NULL; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(AnyWithTest, FullMatch) { | 
|  | Matcher<SampleAnyType> m = AnyWith<int>(Eq(1)); | 
|  | EXPECT_TRUE(m.Matches(SampleAnyType(1))); | 
|  | } | 
|  |  | 
|  | TEST(AnyWithTest, TestBadCastType) { | 
|  | Matcher<SampleAnyType> m = AnyWith<std::string>(Eq("fail")); | 
|  | EXPECT_FALSE(m.Matches(SampleAnyType(1))); | 
|  | } | 
|  |  | 
|  | #if GTEST_LANG_CXX11 | 
|  | TEST(AnyWithTest, TestUseInContainers) { | 
|  | std::vector<SampleAnyType> a; | 
|  | a.emplace_back(1); | 
|  | a.emplace_back(2); | 
|  | a.emplace_back(3); | 
|  | EXPECT_THAT( | 
|  | a, ElementsAreArray({AnyWith<int>(1), AnyWith<int>(2), AnyWith<int>(3)})); | 
|  |  | 
|  | std::vector<SampleAnyType> b; | 
|  | b.emplace_back("hello"); | 
|  | b.emplace_back("merhaba"); | 
|  | b.emplace_back("salut"); | 
|  | EXPECT_THAT(b, ElementsAreArray({AnyWith<std::string>("hello"), | 
|  | AnyWith<std::string>("merhaba"), | 
|  | AnyWith<std::string>("salut")})); | 
|  | } | 
|  | #endif  //  GTEST_LANG_CXX11 | 
|  | TEST(AnyWithTest, TestCompare) { | 
|  | EXPECT_THAT(SampleAnyType(1), AnyWith<int>(Gt(0))); | 
|  | } | 
|  |  | 
|  | TEST(AnyWithTest, DescribesSelf) { | 
|  | const Matcher<const SampleAnyType&> m = AnyWith<int>(Eq(1)); | 
|  | EXPECT_THAT(Describe(m), ContainsRegex("is an 'any' type with value of type " | 
|  | "'.*' and the value is equal to 1")); | 
|  | } | 
|  |  | 
|  | TEST(AnyWithTest, ExplainsSelf) { | 
|  | const Matcher<const SampleAnyType&> m = AnyWith<int>(Eq(1)); | 
|  |  | 
|  | EXPECT_THAT(Explain(m, SampleAnyType(1)), ContainsRegex("whose value 1")); | 
|  | EXPECT_THAT(Explain(m, SampleAnyType("A")), | 
|  | HasSubstr("whose value is not of type '")); | 
|  | EXPECT_THAT(Explain(m, SampleAnyType(2)), "whose value 2 doesn't match"); | 
|  | } | 
|  |  | 
|  | #if GTEST_LANG_CXX11 | 
|  |  | 
|  | TEST(PointeeTest, WorksOnMoveOnlyType) { | 
|  | std::unique_ptr<int> p(new int(3)); | 
|  | EXPECT_THAT(p, Pointee(Eq(3))); | 
|  | EXPECT_THAT(p, Not(Pointee(Eq(2)))); | 
|  | } | 
|  |  | 
|  | TEST(NotTest, WorksOnMoveOnlyType) { | 
|  | std::unique_ptr<int> p(new int(3)); | 
|  | EXPECT_THAT(p, Pointee(Eq(3))); | 
|  | EXPECT_THAT(p, Not(Pointee(Eq(2)))); | 
|  | } | 
|  |  | 
|  | #endif  // GTEST_LANG_CXX11 | 
|  |  | 
|  | }  // namespace gmock_matchers_test | 
|  | }  // namespace testing | 
|  |  |