| // Copyright 2017 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #ifndef BASE_CONTAINERS_FLAT_TREE_H_ | 
 | #define BASE_CONTAINERS_FLAT_TREE_H_ | 
 |  | 
 | #include <algorithm> | 
 | #include <iterator> | 
 | #include <type_traits> | 
 | #include <vector> | 
 |  | 
 | #include "base/template_util.h" | 
 |  | 
 | namespace base { | 
 |  | 
 | enum FlatContainerDupes { | 
 |   KEEP_FIRST_OF_DUPES, | 
 |   KEEP_LAST_OF_DUPES, | 
 | }; | 
 |  | 
 | namespace internal { | 
 |  | 
 | // This is a convenience method returning true if Iterator is at least a | 
 | // ForwardIterator and thus supports multiple passes over a range. | 
 | template <class Iterator> | 
 | constexpr bool is_multipass() { | 
 |   return std::is_base_of< | 
 |       std::forward_iterator_tag, | 
 |       typename std::iterator_traits<Iterator>::iterator_category>::value; | 
 | } | 
 |  | 
 | // This algorithm is like unique() from the standard library except it | 
 | // selects only the last of consecutive values instead of the first. | 
 | template <class Iterator, class BinaryPredicate> | 
 | Iterator LastUnique(Iterator first, Iterator last, BinaryPredicate compare) { | 
 |   Iterator replacable = std::adjacent_find(first, last, compare); | 
 |  | 
 |   // No duplicate elements found. | 
 |   if (replacable == last) | 
 |     return last; | 
 |  | 
 |   first = std::next(replacable); | 
 |  | 
 |   // Last element is a duplicate but all others are unique. | 
 |   if (first == last) | 
 |     return replacable; | 
 |  | 
 |   // This loop is based on std::adjacent_find but std::adjacent_find doesn't | 
 |   // quite cut it. | 
 |   for (Iterator next = std::next(first); next != last; ++next, ++first) { | 
 |     if (!compare(*first, *next)) | 
 |       *replacable++ = std::move(*first); | 
 |   } | 
 |  | 
 |   // Last element should be copied unconditionally. | 
 |   *replacable++ = std::move(*first); | 
 |   return replacable; | 
 | } | 
 |  | 
 | // Uses SFINAE to detect whether type has is_transparent member. | 
 | template <typename T, typename = void> | 
 | struct IsTransparentCompare : std::false_type {}; | 
 | template <typename T> | 
 | struct IsTransparentCompare<T, std::void_t<typename T::is_transparent>> | 
 |     : std::true_type {}; | 
 |  | 
 | // Implementation ------------------------------------------------------------- | 
 |  | 
 | // Implementation of a sorted vector for backing flat_set and flat_map. Do not | 
 | // use directly. | 
 | // | 
 | // The use of "value" in this is like std::map uses, meaning it's the thing | 
 | // contained (in the case of map it's a <Kay, Mapped> pair). The Key is how | 
 | // things are looked up. In the case of a set, Key == Value. In the case of | 
 | // a map, the Key is a component of a Value. | 
 | // | 
 | // The helper class GetKeyFromValue provides the means to extract a key from a | 
 | // value for comparison purposes. It should implement: | 
 | //   const Key& operator()(const Value&). | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | class flat_tree { | 
 |  private: | 
 |   using underlying_type = std::vector<Value>; | 
 |  | 
 |  public: | 
 |   // -------------------------------------------------------------------------- | 
 |   // Types. | 
 |   // | 
 |   using key_type = Key; | 
 |   using key_compare = KeyCompare; | 
 |   using value_type = Value; | 
 |  | 
 |   // Wraps the templated key comparison to compare values. | 
 |   class value_compare : public key_compare { | 
 |    public: | 
 |     value_compare() = default; | 
 |  | 
 |     template <class Cmp> | 
 |     explicit value_compare(Cmp&& compare_arg) | 
 |         : KeyCompare(std::forward<Cmp>(compare_arg)) {} | 
 |  | 
 |     bool operator()(const value_type& left, const value_type& right) const { | 
 |       GetKeyFromValue extractor; | 
 |       return key_compare::operator()(extractor(left), extractor(right)); | 
 |     } | 
 |   }; | 
 |  | 
 |   using pointer = typename underlying_type::pointer; | 
 |   using const_pointer = typename underlying_type::const_pointer; | 
 |   using reference = typename underlying_type::reference; | 
 |   using const_reference = typename underlying_type::const_reference; | 
 |   using size_type = typename underlying_type::size_type; | 
 |   using difference_type = typename underlying_type::difference_type; | 
 |   using iterator = typename underlying_type::iterator; | 
 |   using const_iterator = typename underlying_type::const_iterator; | 
 |   using reverse_iterator = typename underlying_type::reverse_iterator; | 
 |   using const_reverse_iterator = | 
 |       typename underlying_type::const_reverse_iterator; | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Lifetime. | 
 |   // | 
 |   // Constructors that take range guarantee O(N * log^2(N)) + O(N) complexity | 
 |   // and take O(N * log(N)) + O(N) if extra memory is available (N is a range | 
 |   // length). | 
 |   // | 
 |   // Assume that move constructors invalidate iterators and references. | 
 |   // | 
 |   // The constructors that take ranges, lists, and vectors do not require that | 
 |   // the input be sorted. | 
 |  | 
 |   flat_tree(); | 
 |   explicit flat_tree(const key_compare& comp); | 
 |  | 
 |   template <class InputIterator> | 
 |   flat_tree(InputIterator first, | 
 |             InputIterator last, | 
 |             FlatContainerDupes dupe_handling = KEEP_FIRST_OF_DUPES, | 
 |             const key_compare& comp = key_compare()); | 
 |  | 
 |   flat_tree(const flat_tree&); | 
 |   flat_tree(flat_tree&&) noexcept = default; | 
 |  | 
 |   flat_tree(std::vector<value_type> items, | 
 |             FlatContainerDupes dupe_handling = KEEP_FIRST_OF_DUPES, | 
 |             const key_compare& comp = key_compare()); | 
 |  | 
 |   flat_tree(std::initializer_list<value_type> ilist, | 
 |             FlatContainerDupes dupe_handling = KEEP_FIRST_OF_DUPES, | 
 |             const key_compare& comp = key_compare()); | 
 |  | 
 |   ~flat_tree(); | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Assignments. | 
 |   // | 
 |   // Assume that move assignment invalidates iterators and references. | 
 |  | 
 |   flat_tree& operator=(const flat_tree&); | 
 |   flat_tree& operator=(flat_tree&&); | 
 |   // Takes the first if there are duplicates in the initializer list. | 
 |   flat_tree& operator=(std::initializer_list<value_type> ilist); | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Memory management. | 
 |   // | 
 |   // Beware that shrink_to_fit() simply forwards the request to the | 
 |   // underlying_type and its implementation is free to optimize otherwise and | 
 |   // leave capacity() to be greater that its size. | 
 |   // | 
 |   // reserve() and shrink_to_fit() invalidate iterators and references. | 
 |  | 
 |   void reserve(size_type new_capacity); | 
 |   size_type capacity() const; | 
 |   void shrink_to_fit(); | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Size management. | 
 |   // | 
 |   // clear() leaves the capacity() of the flat_tree unchanged. | 
 |  | 
 |   void clear(); | 
 |  | 
 |   size_type size() const; | 
 |   size_type max_size() const; | 
 |   bool empty() const; | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Iterators. | 
 |  | 
 |   iterator begin(); | 
 |   const_iterator begin() const; | 
 |   const_iterator cbegin() const; | 
 |  | 
 |   iterator end(); | 
 |   const_iterator end() const; | 
 |   const_iterator cend() const; | 
 |  | 
 |   reverse_iterator rbegin(); | 
 |   const_reverse_iterator rbegin() const; | 
 |   const_reverse_iterator crbegin() const; | 
 |  | 
 |   reverse_iterator rend(); | 
 |   const_reverse_iterator rend() const; | 
 |   const_reverse_iterator crend() const; | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Insert operations. | 
 |   // | 
 |   // Assume that every operation invalidates iterators and references. | 
 |   // Insertion of one element can take O(size). Capacity of flat_tree grows in | 
 |   // an implementation-defined manner. | 
 |   // | 
 |   // NOTE: Prefer to build a new flat_tree from a std::vector (or similar) | 
 |   // instead of calling insert() repeatedly. | 
 |  | 
 |   std::pair<iterator, bool> insert(const value_type& val); | 
 |   std::pair<iterator, bool> insert(value_type&& val); | 
 |  | 
 |   iterator insert(const_iterator position_hint, const value_type& x); | 
 |   iterator insert(const_iterator position_hint, value_type&& x); | 
 |  | 
 |   // This method inserts the values from the range [first, last) into the | 
 |   // current tree. In case of KEEP_LAST_OF_DUPES newly added elements can | 
 |   // overwrite existing values. | 
 |   template <class InputIterator> | 
 |   void insert(InputIterator first, | 
 |               InputIterator last, | 
 |               FlatContainerDupes dupes = KEEP_FIRST_OF_DUPES); | 
 |  | 
 |   template <class... Args> | 
 |   std::pair<iterator, bool> emplace(Args&&... args); | 
 |  | 
 |   template <class... Args> | 
 |   iterator emplace_hint(const_iterator position_hint, Args&&... args); | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Erase operations. | 
 |   // | 
 |   // Assume that every operation invalidates iterators and references. | 
 |   // | 
 |   // erase(position), erase(first, last) can take O(size). | 
 |   // erase(key) may take O(size) + O(log(size)). | 
 |   // | 
 |   // Prefer base::EraseIf() or some other variation on erase(remove(), end()) | 
 |   // idiom when deleting multiple non-consecutive elements. | 
 |  | 
 |   iterator erase(iterator position); | 
 |   iterator erase(const_iterator position); | 
 |   iterator erase(const_iterator first, const_iterator last); | 
 |   template <typename K> | 
 |   size_type erase(const K& key); | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Comparators. | 
 |  | 
 |   key_compare key_comp() const; | 
 |   value_compare value_comp() const; | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // Search operations. | 
 |   // | 
 |   // Search operations have O(log(size)) complexity. | 
 |  | 
 |   template <typename K> | 
 |   size_type count(const K& key) const; | 
 |  | 
 |   template <typename K> | 
 |   iterator find(const K& key); | 
 |  | 
 |   template <typename K> | 
 |   const_iterator find(const K& key) const; | 
 |  | 
 |   template <typename K> | 
 |   std::pair<iterator, iterator> equal_range(const K& key); | 
 |  | 
 |   template <typename K> | 
 |   std::pair<const_iterator, const_iterator> equal_range(const K& key) const; | 
 |  | 
 |   template <typename K> | 
 |   iterator lower_bound(const K& key); | 
 |  | 
 |   template <typename K> | 
 |   const_iterator lower_bound(const K& key) const; | 
 |  | 
 |   template <typename K> | 
 |   iterator upper_bound(const K& key); | 
 |  | 
 |   template <typename K> | 
 |   const_iterator upper_bound(const K& key) const; | 
 |  | 
 |   // -------------------------------------------------------------------------- | 
 |   // General operations. | 
 |   // | 
 |   // Assume that swap invalidates iterators and references. | 
 |   // | 
 |   // Implementation note: currently we use operator==() and operator<() on | 
 |   // std::vector, because they have the same contract we need, so we use them | 
 |   // directly for brevity and in case it is more optimal than calling equal() | 
 |   // and lexicograhpical_compare(). If the underlying container type is changed, | 
 |   // this code may need to be modified. | 
 |  | 
 |   void swap(flat_tree& other) noexcept; | 
 |  | 
 |   friend bool operator==(const flat_tree& lhs, const flat_tree& rhs) { | 
 |     return lhs.impl_.body_ == rhs.impl_.body_; | 
 |   } | 
 |  | 
 |   friend bool operator!=(const flat_tree& lhs, const flat_tree& rhs) { | 
 |     return !(lhs == rhs); | 
 |   } | 
 |  | 
 |   friend bool operator<(const flat_tree& lhs, const flat_tree& rhs) { | 
 |     return lhs.impl_.body_ < rhs.impl_.body_; | 
 |   } | 
 |  | 
 |   friend bool operator>(const flat_tree& lhs, const flat_tree& rhs) { | 
 |     return rhs < lhs; | 
 |   } | 
 |  | 
 |   friend bool operator>=(const flat_tree& lhs, const flat_tree& rhs) { | 
 |     return !(lhs < rhs); | 
 |   } | 
 |  | 
 |   friend bool operator<=(const flat_tree& lhs, const flat_tree& rhs) { | 
 |     return !(lhs > rhs); | 
 |   } | 
 |  | 
 |   friend void swap(flat_tree& lhs, flat_tree& rhs) noexcept { lhs.swap(rhs); } | 
 |  | 
 |  protected: | 
 |   // Emplaces a new item into the tree that is known not to be in it. This | 
 |   // is for implementing map operator[]. | 
 |   template <class... Args> | 
 |   iterator unsafe_emplace(const_iterator position, Args&&... args); | 
 |  | 
 |   // Attempts to emplace a new element with key |key|. Only if |key| is not yet | 
 |   // present, construct value_type from |args| and insert it. Returns an | 
 |   // iterator to the element with key |key| and a bool indicating whether an | 
 |   // insertion happened. | 
 |   template <class K, class... Args> | 
 |   std::pair<iterator, bool> emplace_key_args(const K& key, Args&&... args); | 
 |  | 
 |   // Similar to |emplace_key_args|, but checks |hint| first as a possible | 
 |   // insertion position. | 
 |   template <class K, class... Args> | 
 |   std::pair<iterator, bool> emplace_hint_key_args(const_iterator hint, | 
 |                                                   const K& key, | 
 |                                                   Args&&... args); | 
 |  | 
 |  private: | 
 |   // Helper class for e.g. lower_bound that can compare a value on the left | 
 |   // to a key on the right. | 
 |   struct KeyValueCompare { | 
 |     // The key comparison object must outlive this class. | 
 |     explicit KeyValueCompare(const key_compare& key_comp) | 
 |         : key_comp_(key_comp) {} | 
 |  | 
 |     template <typename T, typename U> | 
 |     bool operator()(const T& lhs, const U& rhs) const { | 
 |       return key_comp_(extract_if_value_type(lhs), extract_if_value_type(rhs)); | 
 |     } | 
 |  | 
 |    private: | 
 |     const key_type& extract_if_value_type(const value_type& v) const { | 
 |       GetKeyFromValue extractor; | 
 |       return extractor(v); | 
 |     } | 
 |  | 
 |     template <typename K> | 
 |     const K& extract_if_value_type(const K& k) const { | 
 |       return k; | 
 |     } | 
 |  | 
 |     const key_compare& key_comp_; | 
 |   }; | 
 |  | 
 |   const flat_tree& as_const() { return *this; } | 
 |  | 
 |   iterator const_cast_it(const_iterator c_it) { | 
 |     auto distance = std::distance(cbegin(), c_it); | 
 |     return std::next(begin(), distance); | 
 |   } | 
 |  | 
 |   // This method is inspired by both std::map::insert(P&&) and | 
 |   // std::map::insert_or_assign(const K&, V&&). It inserts val if an equivalent | 
 |   // element is not present yet, otherwise it overwrites. It returns an iterator | 
 |   // to the modified element and a flag indicating whether insertion or | 
 |   // assignment happened. | 
 |   template <class V> | 
 |   std::pair<iterator, bool> insert_or_assign(V&& val) { | 
 |     auto position = lower_bound(GetKeyFromValue()(val)); | 
 |  | 
 |     if (position == end() || value_comp()(val, *position)) | 
 |       return {impl_.body_.emplace(position, std::forward<V>(val)), true}; | 
 |  | 
 |     *position = std::forward<V>(val); | 
 |     return {position, false}; | 
 |   } | 
 |  | 
 |   // This method is similar to insert_or_assign, with the following differences: | 
 |   // - Instead of searching [begin(), end()) it only searches [first, last). | 
 |   // - In case no equivalent element is found, val is appended to the end of the | 
 |   //   underlying body and an iterator to the next bigger element in [first, | 
 |   //   last) is returned. | 
 |   template <class V> | 
 |   std::pair<iterator, bool> append_or_assign(iterator first, | 
 |                                              iterator last, | 
 |                                              V&& val) { | 
 |     auto position = std::lower_bound(first, last, val, value_comp()); | 
 |  | 
 |     if (position == last || value_comp()(val, *position)) { | 
 |       // emplace_back might invalidate position, which is why distance needs to | 
 |       // be cached. | 
 |       const difference_type distance = std::distance(begin(), position); | 
 |       impl_.body_.emplace_back(std::forward<V>(val)); | 
 |       return {std::next(begin(), distance), true}; | 
 |     } | 
 |  | 
 |     *position = std::forward<V>(val); | 
 |     return {position, false}; | 
 |   } | 
 |  | 
 |   // This method is similar to insert, with the following differences: | 
 |   // - Instead of searching [begin(), end()) it only searches [first, last). | 
 |   // - In case no equivalent element is found, val is appended to the end of the | 
 |   //   underlying body and an iterator to the next bigger element in [first, | 
 |   //   last) is returned. | 
 |   template <class V> | 
 |   std::pair<iterator, bool> append_unique(iterator first, | 
 |                                           iterator last, | 
 |                                           V&& val) { | 
 |     auto position = std::lower_bound(first, last, val, value_comp()); | 
 |  | 
 |     if (position == last || value_comp()(val, *position)) { | 
 |       // emplace_back might invalidate position, which is why distance needs to | 
 |       // be cached. | 
 |       const difference_type distance = std::distance(begin(), position); | 
 |       impl_.body_.emplace_back(std::forward<V>(val)); | 
 |       return {std::next(begin(), distance), true}; | 
 |     } | 
 |  | 
 |     return {position, false}; | 
 |   } | 
 |  | 
 |   void sort_and_unique(iterator first, | 
 |                        iterator last, | 
 |                        FlatContainerDupes dupes) { | 
 |     // Preserve stability for the unique code below. | 
 |     std::stable_sort(first, last, impl_.get_value_comp()); | 
 |  | 
 |     auto comparator = [this](const value_type& lhs, const value_type& rhs) { | 
 |       // lhs is already <= rhs due to sort, therefore | 
 |       // !(lhs < rhs) <=> lhs == rhs. | 
 |       return !impl_.get_value_comp()(lhs, rhs); | 
 |     }; | 
 |  | 
 |     iterator erase_after; | 
 |     switch (dupes) { | 
 |       case KEEP_FIRST_OF_DUPES: | 
 |         erase_after = std::unique(first, last, comparator); | 
 |         break; | 
 |       case KEEP_LAST_OF_DUPES: | 
 |         erase_after = LastUnique(first, last, comparator); | 
 |         break; | 
 |     } | 
 |     erase(erase_after, last); | 
 |   } | 
 |  | 
 |   // To support comparators that may not be possible to default-construct, we | 
 |   // have to store an instance of Compare. Using this to store all internal | 
 |   // state of flat_tree and using private inheritance to store compare lets us | 
 |   // take advantage of an empty base class optimization to avoid extra space in | 
 |   // the common case when Compare has no state. | 
 |   struct Impl : private value_compare { | 
 |     Impl() = default; | 
 |  | 
 |     template <class Cmp, class... Body> | 
 |     explicit Impl(Cmp&& compare_arg, Body&&... underlying_type_args) | 
 |         : value_compare(std::forward<Cmp>(compare_arg)), | 
 |           body_(std::forward<Body>(underlying_type_args)...) {} | 
 |  | 
 |     const value_compare& get_value_comp() const { return *this; } | 
 |     const key_compare& get_key_comp() const { return *this; } | 
 |  | 
 |     underlying_type body_; | 
 |   } impl_; | 
 |  | 
 |   // If the compare is not transparent we want to construct key_type once. | 
 |   template <typename K> | 
 |   using KeyTypeOrK = typename std:: | 
 |       conditional<IsTransparentCompare<key_compare>::value, K, key_type>::type; | 
 | }; | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Lifetime. | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree() = default; | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree( | 
 |     const KeyCompare& comp) | 
 |     : impl_(comp) {} | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <class InputIterator> | 
 | flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree( | 
 |     InputIterator first, | 
 |     InputIterator last, | 
 |     FlatContainerDupes dupe_handling, | 
 |     const KeyCompare& comp) | 
 |     : impl_(comp, first, last) { | 
 |   sort_and_unique(begin(), end(), dupe_handling); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree( | 
 |     const flat_tree&) = default; | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree( | 
 |     std::vector<value_type> items, | 
 |     FlatContainerDupes dupe_handling, | 
 |     const KeyCompare& comp) | 
 |     : impl_(comp, std::move(items)) { | 
 |   sort_and_unique(begin(), end(), dupe_handling); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree( | 
 |     std::initializer_list<value_type> ilist, | 
 |     FlatContainerDupes dupe_handling, | 
 |     const KeyCompare& comp) | 
 |     : flat_tree(std::begin(ilist), std::end(ilist), dupe_handling, comp) {} | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::~flat_tree() = default; | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Assignments. | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::operator=( | 
 |     const flat_tree&) -> flat_tree& = default; | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::operator=(flat_tree &&) | 
 |     -> flat_tree& = default; | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::operator=( | 
 |     std::initializer_list<value_type> ilist) -> flat_tree& { | 
 |   impl_.body_ = ilist; | 
 |   sort_and_unique(begin(), end(), KEEP_FIRST_OF_DUPES); | 
 |   return *this; | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Memory management. | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | void flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::reserve( | 
 |     size_type new_capacity) { | 
 |   impl_.body_.reserve(new_capacity); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::capacity() const | 
 |     -> size_type { | 
 |   return impl_.body_.capacity(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | void flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::shrink_to_fit() { | 
 |   impl_.body_.shrink_to_fit(); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Size management. | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | void flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::clear() { | 
 |   impl_.body_.clear(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::size() const | 
 |     -> size_type { | 
 |   return impl_.body_.size(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::max_size() const | 
 |     -> size_type { | 
 |   return impl_.body_.max_size(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | bool flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::empty() const { | 
 |   return impl_.body_.empty(); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Iterators. | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::begin() -> iterator { | 
 |   return impl_.body_.begin(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::begin() const | 
 |     -> const_iterator { | 
 |   return impl_.body_.begin(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::cbegin() const | 
 |     -> const_iterator { | 
 |   return impl_.body_.cbegin(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::end() -> iterator { | 
 |   return impl_.body_.end(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::end() const | 
 |     -> const_iterator { | 
 |   return impl_.body_.end(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::cend() const | 
 |     -> const_iterator { | 
 |   return impl_.body_.cend(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::rbegin() | 
 |     -> reverse_iterator { | 
 |   return impl_.body_.rbegin(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::rbegin() const | 
 |     -> const_reverse_iterator { | 
 |   return impl_.body_.rbegin(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::crbegin() const | 
 |     -> const_reverse_iterator { | 
 |   return impl_.body_.crbegin(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::rend() | 
 |     -> reverse_iterator { | 
 |   return impl_.body_.rend(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::rend() const | 
 |     -> const_reverse_iterator { | 
 |   return impl_.body_.rend(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::crend() const | 
 |     -> const_reverse_iterator { | 
 |   return impl_.body_.crend(); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Insert operations. | 
 | // | 
 | // Currently we use position_hint the same way as eastl or boost: | 
 | // https://github.com/electronicarts/EASTL/blob/master/include/EASTL/vector_set.h#L493 | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::insert( | 
 |     const value_type& val) -> std::pair<iterator, bool> { | 
 |   return emplace_key_args(GetKeyFromValue()(val), val); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::insert( | 
 |     value_type&& val) -> std::pair<iterator, bool> { | 
 |   return emplace_key_args(GetKeyFromValue()(val), std::move(val)); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::insert( | 
 |     const_iterator position_hint, | 
 |     const value_type& val) -> iterator { | 
 |   return emplace_hint_key_args(position_hint, GetKeyFromValue()(val), val) | 
 |       .first; | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::insert( | 
 |     const_iterator position_hint, | 
 |     value_type&& val) -> iterator { | 
 |   return emplace_hint_key_args(position_hint, GetKeyFromValue()(val), | 
 |                                std::move(val)) | 
 |       .first; | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <class InputIterator> | 
 | void flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::insert( | 
 |     InputIterator first, | 
 |     InputIterator last, | 
 |     FlatContainerDupes dupes) { | 
 |   if (first == last) | 
 |     return; | 
 |  | 
 |   // Cache results whether existing elements should be overwritten and whether | 
 |   // inserting new elements happens immediately or will be done in a batch. | 
 |   const bool overwrite_existing = dupes == KEEP_LAST_OF_DUPES; | 
 |   const bool insert_inplace = | 
 |       is_multipass<InputIterator>() && std::next(first) == last; | 
 |  | 
 |   if (insert_inplace) { | 
 |     if (overwrite_existing) { | 
 |       for (; first != last; ++first) | 
 |         insert_or_assign(*first); | 
 |     } else | 
 |       std::copy(first, last, std::inserter(*this, end())); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Provide a convenience lambda to obtain an iterator pointing past the last | 
 |   // old element. This needs to be dymanic due to possible re-allocations. | 
 |   const size_type original_size = size(); | 
 |   auto middle = [this, original_size]() { | 
 |     return std::next(begin(), original_size); | 
 |   }; | 
 |  | 
 |   // For batch updates initialize the first insertion point. | 
 |   difference_type pos_first_new = original_size; | 
 |  | 
 |   // Loop over the input range while appending new values and overwriting | 
 |   // existing ones, if applicable. Keep track of the first insertion point. | 
 |   if (overwrite_existing) { | 
 |     for (; first != last; ++first) { | 
 |       std::pair<iterator, bool> result = | 
 |           append_or_assign(begin(), middle(), *first); | 
 |       if (result.second) { | 
 |         pos_first_new = | 
 |             std::min(pos_first_new, std::distance(begin(), result.first)); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     for (; first != last; ++first) { | 
 |       std::pair<iterator, bool> result = | 
 |           append_unique(begin(), middle(), *first); | 
 |       if (result.second) { | 
 |         pos_first_new = | 
 |             std::min(pos_first_new, std::distance(begin(), result.first)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // The new elements might be unordered and contain duplicates, so post-process | 
 |   // the just inserted elements and merge them with the rest, inserting them at | 
 |   // the previously found spot. | 
 |   sort_and_unique(middle(), end(), dupes); | 
 |   std::inplace_merge(std::next(begin(), pos_first_new), middle(), end(), | 
 |                      value_comp()); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <class... Args> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::emplace(Args&&... args) | 
 |     -> std::pair<iterator, bool> { | 
 |   return insert(value_type(std::forward<Args>(args)...)); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <class... Args> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::emplace_hint( | 
 |     const_iterator position_hint, | 
 |     Args&&... args) -> iterator { | 
 |   return insert(position_hint, value_type(std::forward<Args>(args)...)); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Erase operations. | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::erase( | 
 |     iterator position) -> iterator { | 
 |   return impl_.body_.erase(position); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::erase( | 
 |     const_iterator position) -> iterator { | 
 |   return impl_.body_.erase(position); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <typename K> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::erase(const K& val) | 
 |     -> size_type { | 
 |   auto eq_range = equal_range(val); | 
 |   auto res = std::distance(eq_range.first, eq_range.second); | 
 |   erase(eq_range.first, eq_range.second); | 
 |   return res; | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::erase( | 
 |     const_iterator first, | 
 |     const_iterator last) -> iterator { | 
 |   return impl_.body_.erase(first, last); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Comparators. | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::key_comp() const | 
 |     -> key_compare { | 
 |   return impl_.get_key_comp(); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::value_comp() const | 
 |     -> value_compare { | 
 |   return impl_.get_value_comp(); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Search operations. | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <typename K> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::count( | 
 |     const K& key) const -> size_type { | 
 |   auto eq_range = equal_range(key); | 
 |   return std::distance(eq_range.first, eq_range.second); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <typename K> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::find(const K& key) | 
 |     -> iterator { | 
 |   return const_cast_it(as_const().find(key)); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <typename K> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::find( | 
 |     const K& key) const -> const_iterator { | 
 |   auto eq_range = equal_range(key); | 
 |   return (eq_range.first == eq_range.second) ? end() : eq_range.first; | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <typename K> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::equal_range( | 
 |     const K& key) -> std::pair<iterator, iterator> { | 
 |   auto res = as_const().equal_range(key); | 
 |   return {const_cast_it(res.first), const_cast_it(res.second)}; | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <typename K> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::equal_range( | 
 |     const K& key) const -> std::pair<const_iterator, const_iterator> { | 
 |   auto lower = lower_bound(key); | 
 |  | 
 |   GetKeyFromValue extractor; | 
 |   if (lower == end() || impl_.get_key_comp()(key, extractor(*lower))) | 
 |     return {lower, lower}; | 
 |  | 
 |   return {lower, std::next(lower)}; | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <typename K> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::lower_bound( | 
 |     const K& key) -> iterator { | 
 |   return const_cast_it(as_const().lower_bound(key)); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <typename K> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::lower_bound( | 
 |     const K& key) const -> const_iterator { | 
 |   static_assert(std::is_convertible<const KeyTypeOrK<K>&, const K&>::value, | 
 |                 "Requested type cannot be bound to the container's key_type " | 
 |                 "which is required for a non-transparent compare."); | 
 |  | 
 |   const KeyTypeOrK<K>& key_ref = key; | 
 |  | 
 |   KeyValueCompare key_value(impl_.get_key_comp()); | 
 |   return std::lower_bound(begin(), end(), key_ref, key_value); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <typename K> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::upper_bound( | 
 |     const K& key) -> iterator { | 
 |   return const_cast_it(as_const().upper_bound(key)); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <typename K> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::upper_bound( | 
 |     const K& key) const -> const_iterator { | 
 |   static_assert(std::is_convertible<const KeyTypeOrK<K>&, const K&>::value, | 
 |                 "Requested type cannot be bound to the container's key_type " | 
 |                 "which is required for a non-transparent compare."); | 
 |  | 
 |   const KeyTypeOrK<K>& key_ref = key; | 
 |  | 
 |   KeyValueCompare key_value(impl_.get_key_comp()); | 
 |   return std::upper_bound(begin(), end(), key_ref, key_value); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // General operations. | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | void flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::swap( | 
 |     flat_tree& other) noexcept { | 
 |   std::swap(impl_, other.impl_); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <class... Args> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::unsafe_emplace( | 
 |     const_iterator position, | 
 |     Args&&... args) -> iterator { | 
 |   return impl_.body_.emplace(position, std::forward<Args>(args)...); | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <class K, class... Args> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::emplace_key_args( | 
 |     const K& key, | 
 |     Args&&... args) -> std::pair<iterator, bool> { | 
 |   auto lower = lower_bound(key); | 
 |   if (lower == end() || key_comp()(key, GetKeyFromValue()(*lower))) | 
 |     return {unsafe_emplace(lower, std::forward<Args>(args)...), true}; | 
 |   return {lower, false}; | 
 | } | 
 |  | 
 | template <class Key, class Value, class GetKeyFromValue, class KeyCompare> | 
 | template <class K, class... Args> | 
 | auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::emplace_hint_key_args( | 
 |     const_iterator hint, | 
 |     const K& key, | 
 |     Args&&... args) -> std::pair<iterator, bool> { | 
 |   GetKeyFromValue extractor; | 
 |   if ((hint == begin() || key_comp()(extractor(*std::prev(hint)), key))) { | 
 |     if (hint == end() || key_comp()(key, extractor(*hint))) { | 
 |       // *(hint - 1) < key < *hint => key did not exist and hint is correct. | 
 |       return {unsafe_emplace(hint, std::forward<Args>(args)...), true}; | 
 |     } | 
 |     if (!key_comp()(extractor(*hint), key)) { | 
 |       // key == *hint => no-op, return correct hint. | 
 |       return {const_cast_it(hint), false}; | 
 |     } | 
 |   } | 
 |   // hint was not helpful, dispatch to hintless version. | 
 |   return emplace_key_args(key, std::forward<Args>(args)...); | 
 | } | 
 |  | 
 | // For containers like sets, the key is the same as the value. This implements | 
 | // the GetKeyFromValue template parameter to flat_tree for this case. | 
 | template <class Key> | 
 | struct GetKeyFromValueIdentity { | 
 |   const Key& operator()(const Key& k) const { return k; } | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Free functions. | 
 |  | 
 | // Erases all elements that match predicate. It has O(size) complexity. | 
 | template <class Key, | 
 |           class Value, | 
 |           class GetKeyFromValue, | 
 |           class KeyCompare, | 
 |           typename Predicate> | 
 | void EraseIf(base::internal::flat_tree<Key, Value, GetKeyFromValue, KeyCompare>& | 
 |                  container, | 
 |              Predicate pred) { | 
 |   container.erase(std::remove_if(container.begin(), container.end(), pred), | 
 |                   container.end()); | 
 | } | 
 |  | 
 | }  // namespace base | 
 |  | 
 | #endif  // BASE_CONTAINERS_FLAT_TREE_H_ |