|  | // Copyright 2013 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "base/strings/safe_sprintf.h" | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <limits> | 
|  |  | 
|  | #include "base/macros.h" | 
|  | #include "build/build_config.h" | 
|  |  | 
|  | #if !defined(NDEBUG) | 
|  | // In debug builds, we use RAW_CHECK() to print useful error messages, if | 
|  | // SafeSPrintf() is called with broken arguments. | 
|  | // As our contract promises that SafeSPrintf() can be called from any | 
|  | // restricted run-time context, it is not actually safe to call logging | 
|  | // functions from it; and we only ever do so for debug builds and hope for the | 
|  | // best. We should _never_ call any logging function other than RAW_CHECK(), | 
|  | // and we should _never_ include any logging code that is active in production | 
|  | // builds. Most notably, we should not include these logging functions in | 
|  | // unofficial release builds, even though those builds would otherwise have | 
|  | // DCHECKS() enabled. | 
|  | // In other words; please do not remove the #ifdef around this #include. | 
|  | // Instead, in production builds we opt for returning a degraded result, | 
|  | // whenever an error is encountered. | 
|  | // E.g. The broken function call | 
|  | //        SafeSPrintf("errno = %d (%x)", errno, strerror(errno)) | 
|  | //      will print something like | 
|  | //        errno = 13, (%x) | 
|  | //      instead of | 
|  | //        errno = 13 (Access denied) | 
|  | //      In most of the anticipated use cases, that's probably the preferred | 
|  | //      behavior. | 
|  | #include "base/logging.h" | 
|  | #define DEBUG_CHECK RAW_CHECK | 
|  | #else | 
|  | #define DEBUG_CHECK(x) do { if (x) { } } while (0) | 
|  | #endif | 
|  |  | 
|  | namespace base { | 
|  | namespace strings { | 
|  |  | 
|  | // The code in this file is extremely careful to be async-signal-safe. | 
|  | // | 
|  | // Most obviously, we avoid calling any code that could dynamically allocate | 
|  | // memory. Doing so would almost certainly result in bugs and dead-locks. | 
|  | // We also avoid calling any other STL functions that could have unintended | 
|  | // side-effects involving memory allocation or access to other shared | 
|  | // resources. | 
|  | // | 
|  | // But on top of that, we also avoid calling other library functions, as many | 
|  | // of them have the side-effect of calling getenv() (in order to deal with | 
|  | // localization) or accessing errno. The latter sounds benign, but there are | 
|  | // several execution contexts where it isn't even possible to safely read let | 
|  | // alone write errno. | 
|  | // | 
|  | // The stated design goal of the SafeSPrintf() function is that it can be | 
|  | // called from any context that can safely call C or C++ code (i.e. anything | 
|  | // that doesn't require assembly code). | 
|  | // | 
|  | // For a brief overview of some but not all of the issues with async-signal- | 
|  | // safety, refer to: | 
|  | // http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html | 
|  |  | 
|  | namespace { | 
|  | const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1; | 
|  |  | 
|  | const char kUpCaseHexDigits[]   = "0123456789ABCDEF"; | 
|  | const char kDownCaseHexDigits[] = "0123456789abcdef"; | 
|  | } | 
|  |  | 
|  | #if defined(NDEBUG) | 
|  | // We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(), | 
|  | // but C++ doesn't allow us to do that for constants. Instead, we have to | 
|  | // use careful casting and shifting. We later use a static_assert to | 
|  | // verify that this worked correctly. | 
|  | namespace { | 
|  | const size_t kSSizeMax = kSSizeMaxConst; | 
|  | } | 
|  | #else  // defined(NDEBUG) | 
|  | // For efficiency, we really need kSSizeMax to be a constant. But for unit | 
|  | // tests, it should be adjustable. This allows us to verify edge cases without | 
|  | // having to fill the entire available address space. As a compromise, we make | 
|  | // kSSizeMax adjustable in debug builds, and then only compile that particular | 
|  | // part of the unit test in debug builds. | 
|  | namespace { | 
|  | static size_t kSSizeMax = kSSizeMaxConst; | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  | void SetSafeSPrintfSSizeMaxForTest(size_t max) { | 
|  | kSSizeMax = max; | 
|  | } | 
|  |  | 
|  | size_t GetSafeSPrintfSSizeMaxForTest() { | 
|  | return kSSizeMax; | 
|  | } | 
|  | } | 
|  | #endif  // defined(NDEBUG) | 
|  |  | 
|  | namespace { | 
|  | class Buffer { | 
|  | public: | 
|  | // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It | 
|  | // has |size| bytes of writable storage. It is the caller's responsibility | 
|  | // to ensure that the buffer is at least one byte in size, so that it fits | 
|  | // the trailing NUL that will be added by the destructor. The buffer also | 
|  | // must be smaller or equal to kSSizeMax in size. | 
|  | Buffer(char* buffer, size_t size) | 
|  | : buffer_(buffer), | 
|  | size_(size - 1),  // Account for trailing NUL byte | 
|  | count_(0) { | 
|  | // MSVS2013's standard library doesn't mark max() as constexpr yet. cl.exe | 
|  | // supports static_cast but doesn't really implement constexpr yet so it doesn't | 
|  | // complain, but clang does. | 
|  | #if __cplusplus >= 201103 && !(defined(__clang__) && defined(OS_WIN)) | 
|  | static_assert(kSSizeMaxConst == | 
|  | static_cast<size_t>(std::numeric_limits<ssize_t>::max()), | 
|  | "kSSizeMaxConst should be the max value of an ssize_t"); | 
|  | #endif | 
|  | DEBUG_CHECK(size > 0); | 
|  | DEBUG_CHECK(size <= kSSizeMax); | 
|  | } | 
|  |  | 
|  | ~Buffer() { | 
|  | // The code calling the constructor guaranteed that there was enough space | 
|  | // to store a trailing NUL -- and in debug builds, we are actually | 
|  | // verifying this with DEBUG_CHECK()s in the constructor. So, we can | 
|  | // always unconditionally write the NUL byte in the destructor.  We do not | 
|  | // need to adjust the count_, as SafeSPrintf() copies snprintf() in not | 
|  | // including the NUL byte in its return code. | 
|  | *GetInsertionPoint() = '\000'; | 
|  | } | 
|  |  | 
|  | // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The | 
|  | // caller can now stop adding more data, as GetCount() has reached its | 
|  | // maximum possible value. | 
|  | inline bool OutOfAddressableSpace() const { | 
|  | return count_ == static_cast<size_t>(kSSizeMax - 1); | 
|  | } | 
|  |  | 
|  | // Returns the number of bytes that would have been emitted to |buffer_| | 
|  | // if it was sized sufficiently large. This number can be larger than | 
|  | // |size_|, if the caller provided an insufficiently large output buffer. | 
|  | // But it will never be bigger than |kSSizeMax-1|. | 
|  | inline ssize_t GetCount() const { | 
|  | DEBUG_CHECK(count_ < kSSizeMax); | 
|  | return static_cast<ssize_t>(count_); | 
|  | } | 
|  |  | 
|  | // Emits one |ch| character into the |buffer_| and updates the |count_| of | 
|  | // characters that are currently supposed to be in the buffer. | 
|  | // Returns "false", iff the buffer was already full. | 
|  | // N.B. |count_| increases even if no characters have been written. This is | 
|  | // needed so that GetCount() can return the number of bytes that should | 
|  | // have been allocated for the |buffer_|. | 
|  | inline bool Out(char ch) { | 
|  | if (size_ >= 1 && count_ < size_) { | 
|  | buffer_[count_] = ch; | 
|  | return IncrementCountByOne(); | 
|  | } | 
|  | // |count_| still needs to be updated, even if the buffer has been | 
|  | // filled completely. This allows SafeSPrintf() to return the number of | 
|  | // bytes that should have been emitted. | 
|  | IncrementCountByOne(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Inserts |padding|-|len| bytes worth of padding into the |buffer_|. | 
|  | // |count_| will also be incremented by the number of bytes that were meant | 
|  | // to be emitted. The |pad| character is typically either a ' ' space | 
|  | // or a '0' zero, but other non-NUL values are legal. | 
|  | // Returns "false", iff the the |buffer_| filled up (i.e. |count_| | 
|  | // overflowed |size_|) at any time during padding. | 
|  | inline bool Pad(char pad, size_t padding, size_t len) { | 
|  | DEBUG_CHECK(pad); | 
|  | DEBUG_CHECK(padding <= kSSizeMax); | 
|  | for (; padding > len; --padding) { | 
|  | if (!Out(pad)) { | 
|  | if (--padding) { | 
|  | IncrementCount(padding-len); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // POSIX doesn't define any async-signal-safe function for converting | 
|  | // an integer to ASCII. Define our own version. | 
|  | // | 
|  | // This also gives us the ability to make the function a little more | 
|  | // powerful and have it deal with |padding|, with truncation, and with | 
|  | // predicting the length of the untruncated output. | 
|  | // | 
|  | // IToASCII() converts an integer |i| to ASCII. | 
|  | // | 
|  | // Unlike similar functions in the standard C library, it never appends a | 
|  | // NUL character. This is left for the caller to do. | 
|  | // | 
|  | // While the function signature takes a signed int64_t, the code decides at | 
|  | // run-time whether to treat the argument as signed (int64_t) or as unsigned | 
|  | // (uint64_t) based on the value of |sign|. | 
|  | // | 
|  | // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have | 
|  | // a |sign|. Otherwise, |i| is treated as unsigned. | 
|  | // | 
|  | // For bases larger than 10, |upcase| decides whether lower-case or upper- | 
|  | // case letters should be used to designate digits greater than 10. | 
|  | // | 
|  | // Padding can be done with either '0' zeros or ' ' spaces. Padding has to | 
|  | // be positive and will always be applied to the left of the output. | 
|  | // | 
|  | // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to | 
|  | // the left of |padding|, if |pad| is '0'; and to the right of |padding| | 
|  | // if |pad| is ' '. | 
|  | // | 
|  | // Returns "false", if the |buffer_| overflowed at any time. | 
|  | bool IToASCII(bool sign, bool upcase, int64_t i, int base, | 
|  | char pad, size_t padding, const char* prefix); | 
|  |  | 
|  | private: | 
|  | // Increments |count_| by |inc| unless this would cause |count_| to | 
|  | // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected; | 
|  | // it then clamps |count_| to |kSSizeMax-1|. | 
|  | inline bool IncrementCount(size_t inc) { | 
|  | // "inc" is either 1 or a "padding" value. Padding is clamped at | 
|  | // run-time to at most kSSizeMax-1. So, we know that "inc" is always in | 
|  | // the range 1..kSSizeMax-1. | 
|  | // This allows us to compute "kSSizeMax - 1 - inc" without incurring any | 
|  | // integer overflows. | 
|  | DEBUG_CHECK(inc <= kSSizeMax - 1); | 
|  | if (count_ > kSSizeMax - 1 - inc) { | 
|  | count_ = kSSizeMax - 1; | 
|  | return false; | 
|  | } else { | 
|  | count_ += inc; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Convenience method for the common case of incrementing |count_| by one. | 
|  | inline bool IncrementCountByOne() { | 
|  | return IncrementCount(1); | 
|  | } | 
|  |  | 
|  | // Return the current insertion point into the buffer. This is typically | 
|  | // at |buffer_| + |count_|, but could be before that if truncation | 
|  | // happened. It always points to one byte past the last byte that was | 
|  | // successfully placed into the |buffer_|. | 
|  | inline char* GetInsertionPoint() const { | 
|  | size_t idx = count_; | 
|  | if (idx > size_) { | 
|  | idx = size_; | 
|  | } | 
|  | return buffer_ + idx; | 
|  | } | 
|  |  | 
|  | // User-provided buffer that will receive the fully formatted output string. | 
|  | char* buffer_; | 
|  |  | 
|  | // Number of bytes that are available in the buffer excluding the trailing | 
|  | // NUL byte that will be added by the destructor. | 
|  | const size_t size_; | 
|  |  | 
|  | // Number of bytes that would have been emitted to the buffer, if the buffer | 
|  | // was sufficiently big. This number always excludes the trailing NUL byte | 
|  | // and it is guaranteed to never grow bigger than kSSizeMax-1. | 
|  | size_t count_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(Buffer); | 
|  | }; | 
|  |  | 
|  |  | 
|  | bool Buffer::IToASCII(bool sign, bool upcase, int64_t i, int base, | 
|  | char pad, size_t padding, const char* prefix) { | 
|  | // Sanity check for parameters. None of these should ever fail, but see | 
|  | // above for the rationale why we can't call CHECK(). | 
|  | DEBUG_CHECK(base >= 2); | 
|  | DEBUG_CHECK(base <= 16); | 
|  | DEBUG_CHECK(!sign || base == 10); | 
|  | DEBUG_CHECK(pad == '0' || pad == ' '); | 
|  | DEBUG_CHECK(padding <= kSSizeMax); | 
|  | DEBUG_CHECK(!(sign && prefix && *prefix)); | 
|  |  | 
|  | // Handle negative numbers, if the caller indicated that |i| should be | 
|  | // treated as a signed number; otherwise treat |i| as unsigned (even if the | 
|  | // MSB is set!) | 
|  | // Details are tricky, because of limited data-types, but equivalent pseudo- | 
|  | // code would look like: | 
|  | //   if (sign && i < 0) | 
|  | //     prefix = "-"; | 
|  | //   num = abs(i); | 
|  | int minint = 0; | 
|  | uint64_t num; | 
|  | if (sign && i < 0) { | 
|  | prefix = "-"; | 
|  |  | 
|  | // Turn our number positive. | 
|  | if (i == std::numeric_limits<int64_t>::min()) { | 
|  | // The most negative integer needs special treatment. | 
|  | minint = 1; | 
|  | num = static_cast<uint64_t>(-(i + 1)); | 
|  | } else { | 
|  | // "Normal" negative numbers are easy. | 
|  | num = static_cast<uint64_t>(-i); | 
|  | } | 
|  | } else { | 
|  | num = static_cast<uint64_t>(i); | 
|  | } | 
|  |  | 
|  | // If padding with '0' zero, emit the prefix or '-' character now. Otherwise, | 
|  | // make the prefix accessible in reverse order, so that we can later output | 
|  | // it right between padding and the number. | 
|  | // We cannot choose the easier approach of just reversing the number, as that | 
|  | // fails in situations where we need to truncate numbers that have padding | 
|  | // and/or prefixes. | 
|  | const char* reverse_prefix = nullptr; | 
|  | if (prefix && *prefix) { | 
|  | if (pad == '0') { | 
|  | while (*prefix) { | 
|  | if (padding) { | 
|  | --padding; | 
|  | } | 
|  | Out(*prefix++); | 
|  | } | 
|  | prefix = nullptr; | 
|  | } else { | 
|  | for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) { | 
|  | } | 
|  | } | 
|  | } else | 
|  | prefix = nullptr; | 
|  | const size_t prefix_length = reverse_prefix - prefix; | 
|  |  | 
|  | // Loop until we have converted the entire number. Output at least one | 
|  | // character (i.e. '0'). | 
|  | size_t start = count_; | 
|  | size_t discarded = 0; | 
|  | bool started = false; | 
|  | do { | 
|  | // Make sure there is still enough space left in our output buffer. | 
|  | if (count_ >= size_) { | 
|  | if (start < size_) { | 
|  | // It is rare that we need to output a partial number. But if asked | 
|  | // to do so, we will still make sure we output the correct number of | 
|  | // leading digits. | 
|  | // Since we are generating the digits in reverse order, we actually | 
|  | // have to discard digits in the order that we have already emitted | 
|  | // them. This is essentially equivalent to: | 
|  | //   memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1) | 
|  | for (char* move = buffer_ + start, *end = buffer_ + size_ - 1; | 
|  | move < end; | 
|  | ++move) { | 
|  | *move = move[1]; | 
|  | } | 
|  | ++discarded; | 
|  | --count_; | 
|  | } else if (count_ - size_ > 1) { | 
|  | // Need to increment either |count_| or |discarded| to make progress. | 
|  | // The latter is more efficient, as it eventually triggers fast | 
|  | // handling of padding. But we have to ensure we don't accidentally | 
|  | // change the overall state (i.e. switch the state-machine from | 
|  | // discarding to non-discarding). |count_| needs to always stay | 
|  | // bigger than |size_|. | 
|  | --count_; | 
|  | ++discarded; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Output the next digit and (if necessary) compensate for the most | 
|  | // negative integer needing special treatment. This works because, | 
|  | // no matter the bit width of the integer, the lowest-most decimal | 
|  | // integer always ends in 2, 4, 6, or 8. | 
|  | if (!num && started) { | 
|  | if (reverse_prefix > prefix) { | 
|  | Out(*--reverse_prefix); | 
|  | } else { | 
|  | Out(pad); | 
|  | } | 
|  | } else { | 
|  | started = true; | 
|  | Out((upcase ? kUpCaseHexDigits : kDownCaseHexDigits)[num%base + minint]); | 
|  | } | 
|  |  | 
|  | minint = 0; | 
|  | num /= base; | 
|  |  | 
|  | // Add padding, if requested. | 
|  | if (padding > 0) { | 
|  | --padding; | 
|  |  | 
|  | // Performance optimization for when we are asked to output excessive | 
|  | // padding, but our output buffer is limited in size.  Even if we output | 
|  | // a 64bit number in binary, we would never write more than 64 plus | 
|  | // prefix non-padding characters. So, once this limit has been passed, | 
|  | // any further state change can be computed arithmetically; we know that | 
|  | // by this time, our entire final output consists of padding characters | 
|  | // that have all already been output. | 
|  | if (discarded > 8*sizeof(num) + prefix_length) { | 
|  | IncrementCount(padding); | 
|  | padding = 0; | 
|  | } | 
|  | } | 
|  | } while (num || padding || (reverse_prefix > prefix)); | 
|  |  | 
|  | // Conversion to ASCII actually resulted in the digits being in reverse | 
|  | // order. We can't easily generate them in forward order, as we can't tell | 
|  | // the number of characters needed until we are done converting. | 
|  | // So, now, we reverse the string (except for the possible '-' sign). | 
|  | char* front = buffer_ + start; | 
|  | char* back = GetInsertionPoint(); | 
|  | while (--back > front) { | 
|  | char ch = *back; | 
|  | *back = *front; | 
|  | *front++ = ch; | 
|  | } | 
|  |  | 
|  | IncrementCount(discarded); | 
|  | return !discarded; | 
|  | } | 
|  |  | 
|  | }  // anonymous namespace | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args, | 
|  | const size_t max_args) { | 
|  | // Make sure that at least one NUL byte can be written, and that the buffer | 
|  | // never overflows kSSizeMax. Not only does that use up most or all of the | 
|  | // address space, it also would result in a return code that cannot be | 
|  | // represented. | 
|  | if (static_cast<ssize_t>(sz) < 1) { | 
|  | return -1; | 
|  | } else if (sz > kSSizeMax) { | 
|  | sz = kSSizeMax; | 
|  | } | 
|  |  | 
|  | // Iterate over format string and interpret '%' arguments as they are | 
|  | // encountered. | 
|  | Buffer buffer(buf, sz); | 
|  | size_t padding; | 
|  | char pad; | 
|  | for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) { | 
|  | if (*fmt++ == '%') { | 
|  | padding = 0; | 
|  | pad = ' '; | 
|  | char ch = *fmt++; | 
|  | format_character_found: | 
|  | switch (ch) { | 
|  | case '0': case '1': case '2': case '3': case '4': | 
|  | case '5': case '6': case '7': case '8': case '9': | 
|  | // Found a width parameter. Convert to an integer value and store in | 
|  | // "padding". If the leading digit is a zero, change the padding | 
|  | // character from a space ' ' to a zero '0'. | 
|  | pad = ch == '0' ? '0' : ' '; | 
|  | for (;;) { | 
|  | // The maximum allowed padding fills all the available address | 
|  | // space and leaves just enough space to insert the trailing NUL. | 
|  | const size_t max_padding = kSSizeMax - 1; | 
|  | if (padding > max_padding/10 || | 
|  | 10*padding > max_padding - (ch - '0')) { | 
|  | DEBUG_CHECK(padding <= max_padding/10 && | 
|  | 10*padding <= max_padding - (ch - '0')); | 
|  | // Integer overflow detected. Skip the rest of the width until | 
|  | // we find the format character, then do the normal error handling. | 
|  | padding_overflow: | 
|  | padding = max_padding; | 
|  | while ((ch = *fmt++) >= '0' && ch <= '9') { | 
|  | } | 
|  | if (cur_arg < max_args) { | 
|  | ++cur_arg; | 
|  | } | 
|  | goto fail_to_expand; | 
|  | } | 
|  | padding = 10*padding + ch - '0'; | 
|  | if (padding > max_padding) { | 
|  | // This doesn't happen for "sane" values of kSSizeMax. But once | 
|  | // kSSizeMax gets smaller than about 10, our earlier range checks | 
|  | // are incomplete. Unittests do trigger this artificial corner | 
|  | // case. | 
|  | DEBUG_CHECK(padding <= max_padding); | 
|  | goto padding_overflow; | 
|  | } | 
|  | ch = *fmt++; | 
|  | if (ch < '0' || ch > '9') { | 
|  | // Reached the end of the width parameter. This is where the format | 
|  | // character is found. | 
|  | goto format_character_found; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 'c': {  // Output an ASCII character. | 
|  | // Check that there are arguments left to be inserted. | 
|  | if (cur_arg >= max_args) { | 
|  | DEBUG_CHECK(cur_arg < max_args); | 
|  | goto fail_to_expand; | 
|  | } | 
|  |  | 
|  | // Check that the argument has the expected type. | 
|  | const Arg& arg = args[cur_arg++]; | 
|  | if (arg.type != Arg::INT && arg.type != Arg::UINT) { | 
|  | DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT); | 
|  | goto fail_to_expand; | 
|  | } | 
|  |  | 
|  | // Apply padding, if needed. | 
|  | buffer.Pad(' ', padding, 1); | 
|  |  | 
|  | // Convert the argument to an ASCII character and output it. | 
|  | char as_char = static_cast<char>(arg.integer.i); | 
|  | if (!as_char) { | 
|  | goto end_of_output_buffer; | 
|  | } | 
|  | buffer.Out(as_char); | 
|  | break; } | 
|  | case 'd':    // Output a possibly signed decimal value. | 
|  | case 'o':    // Output an unsigned octal value. | 
|  | case 'x':    // Output an unsigned hexadecimal value. | 
|  | case 'X': | 
|  | case 'p': {  // Output a pointer value. | 
|  | // Check that there are arguments left to be inserted. | 
|  | if (cur_arg >= max_args) { | 
|  | DEBUG_CHECK(cur_arg < max_args); | 
|  | goto fail_to_expand; | 
|  | } | 
|  |  | 
|  | const Arg& arg = args[cur_arg++]; | 
|  | int64_t i; | 
|  | const char* prefix = nullptr; | 
|  | if (ch != 'p') { | 
|  | // Check that the argument has the expected type. | 
|  | if (arg.type != Arg::INT && arg.type != Arg::UINT) { | 
|  | DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT); | 
|  | goto fail_to_expand; | 
|  | } | 
|  | i = arg.integer.i; | 
|  |  | 
|  | if (ch != 'd') { | 
|  | // The Arg() constructor automatically performed sign expansion on | 
|  | // signed parameters. This is great when outputting a %d decimal | 
|  | // number, but can result in unexpected leading 0xFF bytes when | 
|  | // outputting a %x hexadecimal number. Mask bits, if necessary. | 
|  | // We have to do this here, instead of in the Arg() constructor, as | 
|  | // the Arg() constructor cannot tell whether we will output a %d | 
|  | // or a %x. Only the latter should experience masking. | 
|  | if (arg.integer.width < sizeof(int64_t)) { | 
|  | i &= (1LL << (8*arg.integer.width)) - 1; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Pointer values require an actual pointer or a string. | 
|  | if (arg.type == Arg::POINTER) { | 
|  | i = reinterpret_cast<uintptr_t>(arg.ptr); | 
|  | } else if (arg.type == Arg::STRING) { | 
|  | i = reinterpret_cast<uintptr_t>(arg.str); | 
|  | } else if (arg.type == Arg::INT && | 
|  | arg.integer.width == sizeof(NULL) && | 
|  | arg.integer.i == 0) {  // Allow C++'s version of NULL | 
|  | i = 0; | 
|  | } else { | 
|  | DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING); | 
|  | goto fail_to_expand; | 
|  | } | 
|  |  | 
|  | // Pointers always include the "0x" prefix. | 
|  | prefix = "0x"; | 
|  | } | 
|  |  | 
|  | // Use IToASCII() to convert to ASCII representation. For decimal | 
|  | // numbers, optionally print a sign. For hexadecimal numbers, | 
|  | // distinguish between upper and lower case. %p addresses are always | 
|  | // printed as upcase. Supports base 8, 10, and 16. Prints padding | 
|  | // and/or prefixes, if so requested. | 
|  | buffer.IToASCII(ch == 'd' && arg.type == Arg::INT, | 
|  | ch != 'x', i, | 
|  | ch == 'o' ? 8 : ch == 'd' ? 10 : 16, | 
|  | pad, padding, prefix); | 
|  | break; } | 
|  | case 's': { | 
|  | // Check that there are arguments left to be inserted. | 
|  | if (cur_arg >= max_args) { | 
|  | DEBUG_CHECK(cur_arg < max_args); | 
|  | goto fail_to_expand; | 
|  | } | 
|  |  | 
|  | // Check that the argument has the expected type. | 
|  | const Arg& arg = args[cur_arg++]; | 
|  | const char *s; | 
|  | if (arg.type == Arg::STRING) { | 
|  | s = arg.str ? arg.str : "<NULL>"; | 
|  | } else if (arg.type == Arg::INT && arg.integer.width == sizeof(NULL) && | 
|  | arg.integer.i == 0) {  // Allow C++'s version of NULL | 
|  | s = "<NULL>"; | 
|  | } else { | 
|  | DEBUG_CHECK(arg.type == Arg::STRING); | 
|  | goto fail_to_expand; | 
|  | } | 
|  |  | 
|  | // Apply padding, if needed. This requires us to first check the | 
|  | // length of the string that we are outputting. | 
|  | if (padding) { | 
|  | size_t len = 0; | 
|  | for (const char* src = s; *src++; ) { | 
|  | ++len; | 
|  | } | 
|  | buffer.Pad(' ', padding, len); | 
|  | } | 
|  |  | 
|  | // Printing a string involves nothing more than copying it into the | 
|  | // output buffer and making sure we don't output more bytes than | 
|  | // available space; Out() takes care of doing that. | 
|  | for (const char* src = s; *src; ) { | 
|  | buffer.Out(*src++); | 
|  | } | 
|  | break; } | 
|  | case '%': | 
|  | // Quoted percent '%' character. | 
|  | goto copy_verbatim; | 
|  | fail_to_expand: | 
|  | // C++ gives us tools to do type checking -- something that snprintf() | 
|  | // could never really do. So, whenever we see arguments that don't | 
|  | // match up with the format string, we refuse to output them. But | 
|  | // since we have to be extremely conservative about being async- | 
|  | // signal-safe, we are limited in the type of error handling that we | 
|  | // can do in production builds (in debug builds we can use | 
|  | // DEBUG_CHECK() and hope for the best). So, all we do is pass the | 
|  | // format string unchanged. That should eventually get the user's | 
|  | // attention; and in the meantime, it hopefully doesn't lose too much | 
|  | // data. | 
|  | default: | 
|  | // Unknown or unsupported format character. Just copy verbatim to | 
|  | // output. | 
|  | buffer.Out('%'); | 
|  | DEBUG_CHECK(ch); | 
|  | if (!ch) { | 
|  | goto end_of_format_string; | 
|  | } | 
|  | buffer.Out(ch); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | copy_verbatim: | 
|  | buffer.Out(fmt[-1]); | 
|  | } | 
|  | } | 
|  | end_of_format_string: | 
|  | end_of_output_buffer: | 
|  | return buffer.GetCount(); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  |  | 
|  | ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) { | 
|  | // Make sure that at least one NUL byte can be written, and that the buffer | 
|  | // never overflows kSSizeMax. Not only does that use up most or all of the | 
|  | // address space, it also would result in a return code that cannot be | 
|  | // represented. | 
|  | if (static_cast<ssize_t>(sz) < 1) { | 
|  | return -1; | 
|  | } else if (sz > kSSizeMax) { | 
|  | sz = kSSizeMax; | 
|  | } | 
|  |  | 
|  | Buffer buffer(buf, sz); | 
|  |  | 
|  | // In the slow-path, we deal with errors by copying the contents of | 
|  | // "fmt" unexpanded. This means, if there are no arguments passed, the | 
|  | // SafeSPrintf() function always degenerates to a version of strncpy() that | 
|  | // de-duplicates '%' characters. | 
|  | const char* src = fmt; | 
|  | for (; *src; ++src) { | 
|  | buffer.Out(*src); | 
|  | DEBUG_CHECK(src[0] != '%' || src[1] == '%'); | 
|  | if (src[0] == '%' && src[1] == '%') { | 
|  | ++src; | 
|  | } | 
|  | } | 
|  | return buffer.GetCount(); | 
|  | } | 
|  |  | 
|  | }  // namespace strings | 
|  | }  // namespace base |