| // Copyright 2017 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #ifndef BASE_CONTAINERS_SPAN_H_ | 
 | #define BASE_CONTAINERS_SPAN_H_ | 
 |  | 
 | #include <stddef.h> | 
 |  | 
 | #include <algorithm> | 
 | #include <array> | 
 | #include <iterator> | 
 | #include <type_traits> | 
 | #include <utility> | 
 |  | 
 | #include "base/logging.h" | 
 | #include "base/stl_util.h" | 
 |  | 
 | namespace base { | 
 |  | 
 | // [views.constants] | 
 | constexpr size_t dynamic_extent = static_cast<size_t>(-1); | 
 |  | 
 | template <typename T, size_t Extent = dynamic_extent> | 
 | class span; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename T> | 
 | struct IsSpanImpl : std::false_type {}; | 
 |  | 
 | template <typename T, size_t Extent> | 
 | struct IsSpanImpl<span<T, Extent>> : std::true_type {}; | 
 |  | 
 | template <typename T> | 
 | using IsSpan = IsSpanImpl<std::decay_t<T>>; | 
 |  | 
 | template <typename T> | 
 | struct IsStdArrayImpl : std::false_type {}; | 
 |  | 
 | template <typename T, size_t N> | 
 | struct IsStdArrayImpl<std::array<T, N>> : std::true_type {}; | 
 |  | 
 | template <typename T> | 
 | using IsStdArray = IsStdArrayImpl<std::decay_t<T>>; | 
 |  | 
 | template <typename T> | 
 | using IsCArray = std::is_array<std::remove_reference_t<T>>; | 
 |  | 
 | template <typename From, typename To> | 
 | using IsLegalDataConversion = std::is_convertible<From (*)[], To (*)[]>; | 
 |  | 
 | template <typename Container, typename T> | 
 | using ContainerHasConvertibleData = IsLegalDataConversion< | 
 |     std::remove_pointer_t<decltype(base::data(std::declval<Container>()))>, | 
 |     T>; | 
 |  | 
 | template <typename Container> | 
 | using ContainerHasIntegralSize = | 
 |     std::is_integral<decltype(base::size(std::declval<Container>()))>; | 
 |  | 
 | template <typename From, size_t FromExtent, typename To, size_t ToExtent> | 
 | using EnableIfLegalSpanConversion = | 
 |     std::enable_if_t<(ToExtent == dynamic_extent || ToExtent == FromExtent) && | 
 |                      IsLegalDataConversion<From, To>::value>; | 
 |  | 
 | // SFINAE check if Array can be converted to a span<T>. | 
 | template <typename Array, size_t N, typename T, size_t Extent> | 
 | using EnableIfSpanCompatibleArray = | 
 |     std::enable_if_t<(Extent == dynamic_extent || Extent == N) && | 
 |                      ContainerHasConvertibleData<Array, T>::value>; | 
 |  | 
 | // SFINAE check if Container can be converted to a span<T>. | 
 | template <typename Container, typename T> | 
 | using EnableIfSpanCompatibleContainer = | 
 |     std::enable_if_t<!internal::IsSpan<Container>::value && | 
 |                      !internal::IsStdArray<Container>::value && | 
 |                      !internal::IsCArray<Container>::value && | 
 |                      ContainerHasConvertibleData<Container, T>::value && | 
 |                      ContainerHasIntegralSize<Container>::value>; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // A span is a value type that represents an array of elements of type T. Since | 
 | // it only consists of a pointer to memory with an associated size, it is very | 
 | // light-weight. It is cheap to construct, copy, move and use spans, so that | 
 | // users are encouraged to use it as a pass-by-value parameter. A span does not | 
 | // own the underlying memory, so care must be taken to ensure that a span does | 
 | // not outlive the backing store. | 
 | // | 
 | // span is somewhat analogous to StringPiece, but with arbitrary element types, | 
 | // allowing mutation if T is non-const. | 
 | // | 
 | // span is implicitly convertible from C++ arrays, as well as most [1] | 
 | // container-like types that provide a data() and size() method (such as | 
 | // std::vector<T>). A mutable span<T> can also be implicitly converted to an | 
 | // immutable span<const T>. | 
 | // | 
 | // Consider using a span for functions that take a data pointer and size | 
 | // parameter: it allows the function to still act on an array-like type, while | 
 | // allowing the caller code to be a bit more concise. | 
 | // | 
 | // For read-only data access pass a span<const T>: the caller can supply either | 
 | // a span<const T> or a span<T>, while the callee will have a read-only view. | 
 | // For read-write access a mutable span<T> is required. | 
 | // | 
 | // Without span: | 
 | //   Read-Only: | 
 | //     // std::string HexEncode(const uint8_t* data, size_t size); | 
 | //     std::vector<uint8_t> data_buffer = GenerateData(); | 
 | //     std::string r = HexEncode(data_buffer.data(), data_buffer.size()); | 
 | // | 
 | //  Mutable: | 
 | //     // ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...); | 
 | //     char str_buffer[100]; | 
 | //     SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14); | 
 | // | 
 | // With span: | 
 | //   Read-Only: | 
 | //     // std::string HexEncode(base::span<const uint8_t> data); | 
 | //     std::vector<uint8_t> data_buffer = GenerateData(); | 
 | //     std::string r = HexEncode(data_buffer); | 
 | // | 
 | //  Mutable: | 
 | //     // ssize_t SafeSNPrintf(base::span<char>, const char* fmt, Args...); | 
 | //     char str_buffer[100]; | 
 | //     SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14); | 
 | // | 
 | // Spans with "const" and pointers | 
 | // ------------------------------- | 
 | // | 
 | // Const and pointers can get confusing. Here are vectors of pointers and their | 
 | // corresponding spans: | 
 | // | 
 | //   const std::vector<int*>        =>  base::span<int* const> | 
 | //   std::vector<const int*>        =>  base::span<const int*> | 
 | //   const std::vector<const int*>  =>  base::span<const int* const> | 
 | // | 
 | // Differences from the working group proposal | 
 | // ------------------------------------------- | 
 | // | 
 | // https://wg21.link/P0122 is the latest working group proposal, Chromium | 
 | // currently implements R7. Differences between the proposal and the | 
 | // implementation are documented in subsections below. | 
 | // | 
 | // Differences from [span.objectrep]: | 
 | // - as_bytes() and as_writable_bytes() return spans of uint8_t instead of | 
 | //   std::byte | 
 | // | 
 | // Differences in constants and types: | 
 | // - index_type is aliased to size_t | 
 | // | 
 | // Differences from [span.sub]: | 
 | // - using size_t instead of ptrdiff_t for indexing | 
 | // | 
 | // Differences from [span.obs]: | 
 | // - using size_t instead of ptrdiff_t to represent size() | 
 | // | 
 | // Differences from [span.elem]: | 
 | // - using size_t instead of ptrdiff_t for indexing | 
 | // | 
 | // Furthermore, all constructors and methods are marked noexcept due to the lack | 
 | // of exceptions in Chromium. | 
 | // | 
 | // Due to the lack of class template argument deduction guides in C++14 | 
 | // appropriate make_span() utility functions are provided. | 
 |  | 
 | // [span], class template span | 
 | template <typename T, size_t Extent> | 
 | class span { | 
 |  public: | 
 |   using element_type = T; | 
 |   using value_type = std::remove_cv_t<T>; | 
 |   using index_type = size_t; | 
 |   using difference_type = ptrdiff_t; | 
 |   using pointer = T*; | 
 |   using reference = T&; | 
 |   using iterator = T*; | 
 |   using const_iterator = const T*; | 
 |   using reverse_iterator = std::reverse_iterator<iterator>; | 
 |   using const_reverse_iterator = std::reverse_iterator<const_iterator>; | 
 |   static constexpr index_type extent = Extent; | 
 |  | 
 |   // [span.cons], span constructors, copy, assignment, and destructor | 
 |   constexpr span() noexcept : data_(nullptr), size_(0) { | 
 |     static_assert(Extent == dynamic_extent || Extent == 0, "Invalid Extent"); | 
 |   } | 
 |  | 
 |   constexpr span(T* data, size_t size) noexcept : data_(data), size_(size) { | 
 |     CHECK(Extent == dynamic_extent || Extent == size); | 
 |   } | 
 |  | 
 |   // Artificially templatized to break ambiguity for span(ptr, 0). | 
 |   template <typename = void> | 
 |   constexpr span(T* begin, T* end) noexcept : span(begin, end - begin) { | 
 |     // Note: CHECK_LE is not constexpr, hence regular CHECK must be used. | 
 |     CHECK(begin <= end); | 
 |   } | 
 |  | 
 |   template < | 
 |       size_t N, | 
 |       typename = internal::EnableIfSpanCompatibleArray<T (&)[N], N, T, Extent>> | 
 |   constexpr span(T (&array)[N]) noexcept : span(base::data(array), N) {} | 
 |  | 
 |   template < | 
 |       size_t N, | 
 |       typename = internal:: | 
 |           EnableIfSpanCompatibleArray<std::array<value_type, N>&, N, T, Extent>> | 
 |   constexpr span(std::array<value_type, N>& array) noexcept | 
 |       : span(base::data(array), N) {} | 
 |  | 
 |   template <size_t N, | 
 |             typename = internal::EnableIfSpanCompatibleArray< | 
 |                 const std::array<value_type, N>&, | 
 |                 N, | 
 |                 T, | 
 |                 Extent>> | 
 |   constexpr span(const std::array<value_type, N>& array) noexcept | 
 |       : span(base::data(array), N) {} | 
 |  | 
 |   // Conversion from a container that has compatible base::data() and integral | 
 |   // base::size(). | 
 |   template <typename Container, | 
 |             typename = internal::EnableIfSpanCompatibleContainer<Container&, T>> | 
 |   constexpr span(Container& container) noexcept | 
 |       : span(base::data(container), base::size(container)) {} | 
 |  | 
 |   template < | 
 |       typename Container, | 
 |       typename = internal::EnableIfSpanCompatibleContainer<const Container&, T>> | 
 |   span(const Container& container) noexcept | 
 |       : span(base::data(container), base::size(container)) {} | 
 |  | 
 |   constexpr span(const span& other) noexcept = default; | 
 |  | 
 |   // Conversions from spans of compatible types and extents: this allows a | 
 |   // span<T> to be seamlessly used as a span<const T>, but not the other way | 
 |   // around. If extent is not dynamic, OtherExtent has to be equal to Extent. | 
 |   template < | 
 |       typename U, | 
 |       size_t OtherExtent, | 
 |       typename = | 
 |           internal::EnableIfLegalSpanConversion<U, OtherExtent, T, Extent>> | 
 |   constexpr span(const span<U, OtherExtent>& other) | 
 |       : span(other.data(), other.size()) {} | 
 |  | 
 |   constexpr span& operator=(const span& other) noexcept = default; | 
 |   ~span() noexcept = default; | 
 |  | 
 |   // [span.sub], span subviews | 
 |   template <size_t Count> | 
 |   constexpr span<T, Count> first() const noexcept { | 
 |     static_assert(Extent == dynamic_extent || Count <= Extent, | 
 |                   "Count must not exceed Extent"); | 
 |     CHECK(Extent != dynamic_extent || Count <= size()); | 
 |     return {data(), Count}; | 
 |   } | 
 |  | 
 |   template <size_t Count> | 
 |   constexpr span<T, Count> last() const noexcept { | 
 |     static_assert(Extent == dynamic_extent || Count <= Extent, | 
 |                   "Count must not exceed Extent"); | 
 |     CHECK(Extent != dynamic_extent || Count <= size()); | 
 |     return {data() + (size() - Count), Count}; | 
 |   } | 
 |  | 
 |   template <size_t Offset, size_t Count = dynamic_extent> | 
 |   constexpr span<T, | 
 |                  (Count != dynamic_extent | 
 |                       ? Count | 
 |                       : (Extent != dynamic_extent ? Extent - Offset | 
 |                                                   : dynamic_extent))> | 
 |   subspan() const noexcept { | 
 |     static_assert(Extent == dynamic_extent || Offset <= Extent, | 
 |                   "Offset must not exceed Extent"); | 
 |     static_assert(Extent == dynamic_extent || Count == dynamic_extent || | 
 |                       Count <= Extent - Offset, | 
 |                   "Count must not exceed Extent - Offset"); | 
 |     CHECK(Extent != dynamic_extent || Offset <= size()); | 
 |     CHECK(Extent != dynamic_extent || Count == dynamic_extent || | 
 |           Count <= size() - Offset); | 
 |     return {data() + Offset, Count != dynamic_extent ? Count : size() - Offset}; | 
 |   } | 
 |  | 
 |   constexpr span<T, dynamic_extent> first(size_t count) const noexcept { | 
 |     // Note: CHECK_LE is not constexpr, hence regular CHECK must be used. | 
 |     CHECK(count <= size()); | 
 |     return {data(), count}; | 
 |   } | 
 |  | 
 |   constexpr span<T, dynamic_extent> last(size_t count) const noexcept { | 
 |     // Note: CHECK_LE is not constexpr, hence regular CHECK must be used. | 
 |     CHECK(count <= size()); | 
 |     return {data() + (size() - count), count}; | 
 |   } | 
 |  | 
 |   constexpr span<T, dynamic_extent> subspan(size_t offset, | 
 |                                             size_t count = dynamic_extent) const | 
 |       noexcept { | 
 |     // Note: CHECK_LE is not constexpr, hence regular CHECK must be used. | 
 |     CHECK(offset <= size()); | 
 |     CHECK(count == dynamic_extent || count <= size() - offset); | 
 |     return {data() + offset, count != dynamic_extent ? count : size() - offset}; | 
 |   } | 
 |  | 
 |   // [span.obs], span observers | 
 |   constexpr size_t size() const noexcept { return size_; } | 
 |   constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); } | 
 |   constexpr bool empty() const noexcept { return size() == 0; } | 
 |  | 
 |   // [span.elem], span element access | 
 |   constexpr T& operator[](size_t idx) const noexcept { | 
 |     // Note: CHECK_LT is not constexpr, hence regular CHECK must be used. | 
 |     CHECK(idx < size()); | 
 |     return *(data() + idx); | 
 |   } | 
 |  | 
 |   constexpr T& operator()(size_t idx) const noexcept { | 
 |     // Note: CHECK_LT is not constexpr, hence regular CHECK must be used. | 
 |     CHECK(idx < size()); | 
 |     return *(data() + idx); | 
 |   } | 
 |  | 
 |   constexpr T* data() const noexcept { return data_; } | 
 |  | 
 |   // [span.iter], span iterator support | 
 |   constexpr iterator begin() const noexcept { return data(); } | 
 |   constexpr iterator end() const noexcept { return data() + size(); } | 
 |  | 
 |   constexpr const_iterator cbegin() const noexcept { return begin(); } | 
 |   constexpr const_iterator cend() const noexcept { return end(); } | 
 |  | 
 |   constexpr reverse_iterator rbegin() const noexcept { | 
 |     return reverse_iterator(end()); | 
 |   } | 
 |   constexpr reverse_iterator rend() const noexcept { | 
 |     return reverse_iterator(begin()); | 
 |   } | 
 |  | 
 |   constexpr const_reverse_iterator crbegin() const noexcept { | 
 |     return const_reverse_iterator(cend()); | 
 |   } | 
 |   constexpr const_reverse_iterator crend() const noexcept { | 
 |     return const_reverse_iterator(cbegin()); | 
 |   } | 
 |  | 
 |  private: | 
 |   T* data_; | 
 |   size_t size_; | 
 | }; | 
 |  | 
 | // span<T, Extent>::extent can not be declared inline prior to C++17, hence this | 
 | // definition is required. | 
 | template <class T, size_t Extent> | 
 | constexpr size_t span<T, Extent>::extent; | 
 |  | 
 | // [span.comparison], span comparison operators | 
 | // Relational operators. Equality is a element-wise comparison. | 
 | template <typename T, size_t X, typename U, size_t Y> | 
 | constexpr bool operator==(span<T, X> lhs, span<U, Y> rhs) noexcept { | 
 |   return std::equal(lhs.cbegin(), lhs.cend(), rhs.cbegin(), rhs.cend()); | 
 | } | 
 |  | 
 | template <typename T, size_t X, typename U, size_t Y> | 
 | constexpr bool operator!=(span<T, X> lhs, span<U, Y> rhs) noexcept { | 
 |   return !(lhs == rhs); | 
 | } | 
 |  | 
 | template <typename T, size_t X, typename U, size_t Y> | 
 | constexpr bool operator<(span<T, X> lhs, span<U, Y> rhs) noexcept { | 
 |   return std::lexicographical_compare(lhs.cbegin(), lhs.cend(), rhs.cbegin(), | 
 |                                       rhs.cend()); | 
 | } | 
 |  | 
 | template <typename T, size_t X, typename U, size_t Y> | 
 | constexpr bool operator<=(span<T, X> lhs, span<U, Y> rhs) noexcept { | 
 |   return !(rhs < lhs); | 
 | } | 
 |  | 
 | template <typename T, size_t X, typename U, size_t Y> | 
 | constexpr bool operator>(span<T, X> lhs, span<U, Y> rhs) noexcept { | 
 |   return rhs < lhs; | 
 | } | 
 |  | 
 | template <typename T, size_t X, typename U, size_t Y> | 
 | constexpr bool operator>=(span<T, X> lhs, span<U, Y> rhs) noexcept { | 
 |   return !(lhs < rhs); | 
 | } | 
 |  | 
 | // [span.objectrep], views of object representation | 
 | template <typename T, size_t X> | 
 | span<const uint8_t, (X == dynamic_extent ? dynamic_extent : sizeof(T) * X)> | 
 | as_bytes(span<T, X> s) noexcept { | 
 |   return {reinterpret_cast<const uint8_t*>(s.data()), s.size_bytes()}; | 
 | } | 
 |  | 
 | template <typename T, | 
 |           size_t X, | 
 |           typename = std::enable_if_t<!std::is_const<T>::value>> | 
 | span<uint8_t, (X == dynamic_extent ? dynamic_extent : sizeof(T) * X)> | 
 | as_writable_bytes(span<T, X> s) noexcept { | 
 |   return {reinterpret_cast<uint8_t*>(s.data()), s.size_bytes()}; | 
 | } | 
 |  | 
 | // Type-deducing helpers for constructing a span. | 
 | template <typename T> | 
 | constexpr span<T> make_span(T* data, size_t size) noexcept { | 
 |   return {data, size}; | 
 | } | 
 |  | 
 | template <typename T> | 
 | constexpr span<T> make_span(T* begin, T* end) noexcept { | 
 |   return {begin, end}; | 
 | } | 
 |  | 
 | template <typename T, size_t N> | 
 | constexpr span<T, N> make_span(T (&array)[N]) noexcept { | 
 |   return array; | 
 | } | 
 |  | 
 | template <typename T, size_t N> | 
 | constexpr span<T, N> make_span(std::array<T, N>& array) noexcept { | 
 |   return array; | 
 | } | 
 |  | 
 | template <typename T, size_t N> | 
 | constexpr span<const T, N> make_span(const std::array<T, N>& array) noexcept { | 
 |   return array; | 
 | } | 
 |  | 
 | template <typename Container, | 
 |           typename T = typename Container::value_type, | 
 |           typename = internal::EnableIfSpanCompatibleContainer<Container&, T>> | 
 | constexpr span<T> make_span(Container& container) noexcept { | 
 |   return container; | 
 | } | 
 |  | 
 | template < | 
 |     typename Container, | 
 |     typename T = const typename Container::value_type, | 
 |     typename = internal::EnableIfSpanCompatibleContainer<const Container&, T>> | 
 | constexpr span<T> make_span(const Container& container) noexcept { | 
 |   return container; | 
 | } | 
 |  | 
 | template <typename T, size_t X> | 
 | constexpr span<T, X> make_span(const span<T, X>& span) noexcept { | 
 |   return span; | 
 | } | 
 |  | 
 | }  // namespace base | 
 |  | 
 | #endif  // BASE_CONTAINERS_SPAN_H_ |