| // Copyright 2016 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #ifndef BASE_OPTIONAL_H_ | 
 | #define BASE_OPTIONAL_H_ | 
 |  | 
 | #include <type_traits> | 
 | #include <utility> | 
 |  | 
 | #include "base/logging.h" | 
 | #include "base/template_util.h" | 
 |  | 
 | namespace base { | 
 |  | 
 | // Specification: | 
 | // http://en.cppreference.com/w/cpp/utility/optional/in_place_t | 
 | struct in_place_t {}; | 
 |  | 
 | // Specification: | 
 | // http://en.cppreference.com/w/cpp/utility/optional/nullopt_t | 
 | struct nullopt_t { | 
 |   constexpr explicit nullopt_t(int) {} | 
 | }; | 
 |  | 
 | // Specification: | 
 | // http://en.cppreference.com/w/cpp/utility/optional/in_place | 
 | constexpr in_place_t in_place = {}; | 
 |  | 
 | // Specification: | 
 | // http://en.cppreference.com/w/cpp/utility/optional/nullopt | 
 | constexpr nullopt_t nullopt(0); | 
 |  | 
 | // Forward declaration, which is refered by following helpers. | 
 | template <typename T> | 
 | class Optional; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename T, bool = std::is_trivially_destructible<T>::value> | 
 | struct OptionalStorageBase { | 
 |   // Initializing |empty_| here instead of using default member initializing | 
 |   // to avoid errors in g++ 4.8. | 
 |   constexpr OptionalStorageBase() : empty_('\0') {} | 
 |  | 
 |   template <class... Args> | 
 |   constexpr explicit OptionalStorageBase(in_place_t, Args&&... args) | 
 |       : is_populated_(true), value_(std::forward<Args>(args)...) {} | 
 |  | 
 |   // When T is not trivially destructible we must call its | 
 |   // destructor before deallocating its memory. | 
 |   // Note that this hides the (implicitly declared) move constructor, which | 
 |   // would be used for constexpr move constructor in OptionalStorage<T>. | 
 |   // It is needed iff T is trivially move constructible. However, the current | 
 |   // is_trivially_{copy,move}_constructible implementation requires | 
 |   // is_trivially_destructible (which looks a bug, cf: | 
 |   // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=51452 and | 
 |   // http://cplusplus.github.io/LWG/lwg-active.html#2116), so it is not | 
 |   // necessary for this case at the moment. Please see also the destructor | 
 |   // comment in "is_trivially_destructible = true" specialization below. | 
 |   ~OptionalStorageBase() { | 
 |     if (is_populated_) | 
 |       value_.~T(); | 
 |   } | 
 |  | 
 |   template <class... Args> | 
 |   void Init(Args&&... args) { | 
 |     DCHECK(!is_populated_); | 
 |     ::new (&value_) T(std::forward<Args>(args)...); | 
 |     is_populated_ = true; | 
 |   } | 
 |  | 
 |   bool is_populated_ = false; | 
 |   union { | 
 |     // |empty_| exists so that the union will always be initialized, even when | 
 |     // it doesn't contain a value. Union members must be initialized for the | 
 |     // constructor to be 'constexpr'. | 
 |     char empty_; | 
 |     T value_; | 
 |   }; | 
 | }; | 
 |  | 
 | template <typename T> | 
 | struct OptionalStorageBase<T, true /* trivially destructible */> { | 
 |   // Initializing |empty_| here instead of using default member initializing | 
 |   // to avoid errors in g++ 4.8. | 
 |   constexpr OptionalStorageBase() : empty_('\0') {} | 
 |  | 
 |   template <class... Args> | 
 |   constexpr explicit OptionalStorageBase(in_place_t, Args&&... args) | 
 |       : is_populated_(true), value_(std::forward<Args>(args)...) {} | 
 |  | 
 |   // When T is trivially destructible (i.e. its destructor does nothing) there | 
 |   // is no need to call it. Implicitly defined destructor is trivial, because | 
 |   // both members (bool and union containing only variants which are trivially | 
 |   // destructible) are trivially destructible. | 
 |   // Explicitly-defaulted destructor is also trivial, but do not use it here, | 
 |   // because it hides the implicit move constructor. It is needed to implement | 
 |   // constexpr move constructor in OptionalStorage iff T is trivially move | 
 |   // constructible. Note that, if T is trivially move constructible, the move | 
 |   // constructor of OptionalStorageBase<T> is also implicitly defined and it is | 
 |   // trivially move constructor. If T is not trivially move constructible, | 
 |   // "not declaring move constructor without destructor declaration" here means | 
 |   // "delete move constructor", which works because any move constructor of | 
 |   // OptionalStorage will not refer to it in that case. | 
 |  | 
 |   template <class... Args> | 
 |   void Init(Args&&... args) { | 
 |     DCHECK(!is_populated_); | 
 |     ::new (&value_) T(std::forward<Args>(args)...); | 
 |     is_populated_ = true; | 
 |   } | 
 |  | 
 |   bool is_populated_ = false; | 
 |   union { | 
 |     // |empty_| exists so that the union will always be initialized, even when | 
 |     // it doesn't contain a value. Union members must be initialized for the | 
 |     // constructor to be 'constexpr'. | 
 |     char empty_; | 
 |     T value_; | 
 |   }; | 
 | }; | 
 |  | 
 | // Implement conditional constexpr copy and move constructors. These are | 
 | // constexpr if is_trivially_{copy,move}_constructible<T>::value is true | 
 | // respectively. If each is true, the corresponding constructor is defined as | 
 | // "= default;", which generates a constexpr constructor (In this case, | 
 | // the condition of constexpr-ness is satisfied because the base class also has | 
 | // compiler generated constexpr {copy,move} constructors). Note that | 
 | // placement-new is prohibited in constexpr. | 
 | template <typename T, | 
 |           bool = is_trivially_copy_constructible<T>::value, | 
 |           bool = std::is_trivially_move_constructible<T>::value> | 
 | struct OptionalStorage : OptionalStorageBase<T> { | 
 |   // This is no trivially {copy,move} constructible case. Other cases are | 
 |   // defined below as specializations. | 
 |  | 
 |   // Accessing the members of template base class requires explicit | 
 |   // declaration. | 
 |   using OptionalStorageBase<T>::is_populated_; | 
 |   using OptionalStorageBase<T>::value_; | 
 |   using OptionalStorageBase<T>::Init; | 
 |  | 
 |   // Inherit constructors (specifically, the in_place constructor). | 
 |   using OptionalStorageBase<T>::OptionalStorageBase; | 
 |  | 
 |   // User defined constructor deletes the default constructor. | 
 |   // Define it explicitly. | 
 |   OptionalStorage() = default; | 
 |  | 
 |   OptionalStorage(const OptionalStorage& other) { | 
 |     if (other.is_populated_) | 
 |       Init(other.value_); | 
 |   } | 
 |  | 
 |   OptionalStorage(OptionalStorage&& other) noexcept( | 
 |       std::is_nothrow_move_constructible<T>::value) { | 
 |     if (other.is_populated_) | 
 |       Init(std::move(other.value_)); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T> | 
 | struct OptionalStorage<T, | 
 |                        true /* trivially copy constructible */, | 
 |                        false /* trivially move constructible */> | 
 |     : OptionalStorageBase<T> { | 
 |   using OptionalStorageBase<T>::is_populated_; | 
 |   using OptionalStorageBase<T>::value_; | 
 |   using OptionalStorageBase<T>::Init; | 
 |   using OptionalStorageBase<T>::OptionalStorageBase; | 
 |  | 
 |   OptionalStorage() = default; | 
 |   OptionalStorage(const OptionalStorage& other) = default; | 
 |  | 
 |   OptionalStorage(OptionalStorage&& other) noexcept( | 
 |       std::is_nothrow_move_constructible<T>::value) { | 
 |     if (other.is_populated_) | 
 |       Init(std::move(other.value_)); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T> | 
 | struct OptionalStorage<T, | 
 |                        false /* trivially copy constructible */, | 
 |                        true /* trivially move constructible */> | 
 |     : OptionalStorageBase<T> { | 
 |   using OptionalStorageBase<T>::is_populated_; | 
 |   using OptionalStorageBase<T>::value_; | 
 |   using OptionalStorageBase<T>::Init; | 
 |   using OptionalStorageBase<T>::OptionalStorageBase; | 
 |  | 
 |   OptionalStorage() = default; | 
 |   OptionalStorage(OptionalStorage&& other) = default; | 
 |  | 
 |   OptionalStorage(const OptionalStorage& other) { | 
 |     if (other.is_populated_) | 
 |       Init(other.value_); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename T> | 
 | struct OptionalStorage<T, | 
 |                        true /* trivially copy constructible */, | 
 |                        true /* trivially move constructible */> | 
 |     : OptionalStorageBase<T> { | 
 |   // If both trivially {copy,move} constructible are true, it is not necessary | 
 |   // to use user-defined constructors. So, just inheriting constructors | 
 |   // from the base class works. | 
 |   using OptionalStorageBase<T>::OptionalStorageBase; | 
 | }; | 
 |  | 
 | // Base class to support conditionally usable copy-/move- constructors | 
 | // and assign operators. | 
 | template <typename T> | 
 | class OptionalBase { | 
 |   // This class provides implementation rather than public API, so everything | 
 |   // should be hidden. Often we use composition, but we cannot in this case | 
 |   // because of C++ language restriction. | 
 |  protected: | 
 |   constexpr OptionalBase() = default; | 
 |   constexpr OptionalBase(const OptionalBase& other) = default; | 
 |   constexpr OptionalBase(OptionalBase&& other) = default; | 
 |  | 
 |   template <class... Args> | 
 |   constexpr explicit OptionalBase(in_place_t, Args&&... args) | 
 |       : storage_(in_place, std::forward<Args>(args)...) {} | 
 |  | 
 |   // Implementation of converting constructors. | 
 |   template <typename U> | 
 |   explicit OptionalBase(const OptionalBase<U>& other) { | 
 |     if (other.storage_.is_populated_) | 
 |       storage_.Init(other.storage_.value_); | 
 |   } | 
 |  | 
 |   template <typename U> | 
 |   explicit OptionalBase(OptionalBase<U>&& other) { | 
 |     if (other.storage_.is_populated_) | 
 |       storage_.Init(std::move(other.storage_.value_)); | 
 |   } | 
 |  | 
 |   ~OptionalBase() = default; | 
 |  | 
 |   OptionalBase& operator=(const OptionalBase& other) { | 
 |     CopyAssign(other); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   OptionalBase& operator=(OptionalBase&& other) noexcept( | 
 |       std::is_nothrow_move_assignable<T>::value&& | 
 |           std::is_nothrow_move_constructible<T>::value) { | 
 |     MoveAssign(std::move(other)); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   template <typename U> | 
 |   void CopyAssign(const OptionalBase<U>& other) { | 
 |     if (other.storage_.is_populated_) | 
 |       InitOrAssign(other.storage_.value_); | 
 |     else | 
 |       FreeIfNeeded(); | 
 |   } | 
 |  | 
 |   template <typename U> | 
 |   void MoveAssign(OptionalBase<U>&& other) { | 
 |     if (other.storage_.is_populated_) | 
 |       InitOrAssign(std::move(other.storage_.value_)); | 
 |     else | 
 |       FreeIfNeeded(); | 
 |   } | 
 |  | 
 |   template <typename U> | 
 |   void InitOrAssign(U&& value) { | 
 |     if (storage_.is_populated_) | 
 |       storage_.value_ = std::forward<U>(value); | 
 |     else | 
 |       storage_.Init(std::forward<U>(value)); | 
 |   } | 
 |  | 
 |   void FreeIfNeeded() { | 
 |     if (!storage_.is_populated_) | 
 |       return; | 
 |     storage_.value_.~T(); | 
 |     storage_.is_populated_ = false; | 
 |   } | 
 |  | 
 |   // For implementing conversion, allow access to other typed OptionalBase | 
 |   // class. | 
 |   template <typename U> | 
 |   friend class OptionalBase; | 
 |  | 
 |   OptionalStorage<T> storage_; | 
 | }; | 
 |  | 
 | // The following {Copy,Move}{Constructible,Assignable} structs are helpers to | 
 | // implement constructor/assign-operator overloading. Specifically, if T is | 
 | // is not movable but copyable, Optional<T>'s move constructor should not | 
 | // participate in overload resolution. This inheritance trick implements that. | 
 | template <bool is_copy_constructible> | 
 | struct CopyConstructible {}; | 
 |  | 
 | template <> | 
 | struct CopyConstructible<false> { | 
 |   constexpr CopyConstructible() = default; | 
 |   constexpr CopyConstructible(const CopyConstructible&) = delete; | 
 |   constexpr CopyConstructible(CopyConstructible&&) = default; | 
 |   CopyConstructible& operator=(const CopyConstructible&) = default; | 
 |   CopyConstructible& operator=(CopyConstructible&&) = default; | 
 | }; | 
 |  | 
 | template <bool is_move_constructible> | 
 | struct MoveConstructible {}; | 
 |  | 
 | template <> | 
 | struct MoveConstructible<false> { | 
 |   constexpr MoveConstructible() = default; | 
 |   constexpr MoveConstructible(const MoveConstructible&) = default; | 
 |   constexpr MoveConstructible(MoveConstructible&&) = delete; | 
 |   MoveConstructible& operator=(const MoveConstructible&) = default; | 
 |   MoveConstructible& operator=(MoveConstructible&&) = default; | 
 | }; | 
 |  | 
 | template <bool is_copy_assignable> | 
 | struct CopyAssignable {}; | 
 |  | 
 | template <> | 
 | struct CopyAssignable<false> { | 
 |   constexpr CopyAssignable() = default; | 
 |   constexpr CopyAssignable(const CopyAssignable&) = default; | 
 |   constexpr CopyAssignable(CopyAssignable&&) = default; | 
 |   CopyAssignable& operator=(const CopyAssignable&) = delete; | 
 |   CopyAssignable& operator=(CopyAssignable&&) = default; | 
 | }; | 
 |  | 
 | template <bool is_move_assignable> | 
 | struct MoveAssignable {}; | 
 |  | 
 | template <> | 
 | struct MoveAssignable<false> { | 
 |   constexpr MoveAssignable() = default; | 
 |   constexpr MoveAssignable(const MoveAssignable&) = default; | 
 |   constexpr MoveAssignable(MoveAssignable&&) = default; | 
 |   MoveAssignable& operator=(const MoveAssignable&) = default; | 
 |   MoveAssignable& operator=(MoveAssignable&&) = delete; | 
 | }; | 
 |  | 
 | // Helper to conditionally enable converting constructors and assign operators. | 
 | template <typename T, typename U> | 
 | struct IsConvertibleFromOptional | 
 |     : std::integral_constant< | 
 |           bool, | 
 |           std::is_constructible<T, Optional<U>&>::value || | 
 |               std::is_constructible<T, const Optional<U>&>::value || | 
 |               std::is_constructible<T, Optional<U>&&>::value || | 
 |               std::is_constructible<T, const Optional<U>&&>::value || | 
 |               std::is_convertible<Optional<U>&, T>::value || | 
 |               std::is_convertible<const Optional<U>&, T>::value || | 
 |               std::is_convertible<Optional<U>&&, T>::value || | 
 |               std::is_convertible<const Optional<U>&&, T>::value> {}; | 
 |  | 
 | template <typename T, typename U> | 
 | struct IsAssignableFromOptional | 
 |     : std::integral_constant< | 
 |           bool, | 
 |           IsConvertibleFromOptional<T, U>::value || | 
 |               std::is_assignable<T&, Optional<U>&>::value || | 
 |               std::is_assignable<T&, const Optional<U>&>::value || | 
 |               std::is_assignable<T&, Optional<U>&&>::value || | 
 |               std::is_assignable<T&, const Optional<U>&&>::value> {}; | 
 |  | 
 | // Forward compatibility for C++17. | 
 | // Introduce one more deeper nested namespace to avoid leaking using std::swap. | 
 | namespace swappable_impl { | 
 | using std::swap; | 
 |  | 
 | struct IsSwappableImpl { | 
 |   // Tests if swap can be called. Check<T&>(0) returns true_type iff swap | 
 |   // is available for T. Otherwise, Check's overload resolution falls back | 
 |   // to Check(...) declared below thanks to SFINAE, so returns false_type. | 
 |   template <typename T> | 
 |   static auto Check(int) | 
 |       -> decltype(swap(std::declval<T>(), std::declval<T>()), std::true_type()); | 
 |  | 
 |   template <typename T> | 
 |   static std::false_type Check(...); | 
 | }; | 
 | }  // namespace swappable_impl | 
 |  | 
 | template <typename T> | 
 | struct IsSwappable : decltype(swappable_impl::IsSwappableImpl::Check<T&>(0)) {}; | 
 |  | 
 | // Forward compatibility for C++20. | 
 | template <typename T> | 
 | using RemoveCvRefT = std::remove_cv_t<std::remove_reference_t<T>>; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | // On Windows, by default, empty-base class optimization does not work, | 
 | // which means even if the base class is empty struct, it still consumes one | 
 | // byte for its body. __declspec(empty_bases) enables the optimization. | 
 | // cf) | 
 | // https://blogs.msdn.microsoft.com/vcblog/2016/03/30/optimizing-the-layout-of-empty-base-classes-in-vs2015-update-2-3/ | 
 | #ifdef OS_WIN | 
 | #define OPTIONAL_DECLSPEC_EMPTY_BASES __declspec(empty_bases) | 
 | #else | 
 | #define OPTIONAL_DECLSPEC_EMPTY_BASES | 
 | #endif | 
 |  | 
 | // base::Optional is a Chromium version of the C++17 optional class: | 
 | // std::optional documentation: | 
 | // http://en.cppreference.com/w/cpp/utility/optional | 
 | // Chromium documentation: | 
 | // https://chromium.googlesource.com/chromium/src/+/master/docs/optional.md | 
 | // | 
 | // These are the differences between the specification and the implementation: | 
 | // - Constructors do not use 'constexpr' as it is a C++14 extension. | 
 | // - 'constexpr' might be missing in some places for reasons specified locally. | 
 | // - No exceptions are thrown, because they are banned from Chromium. | 
 | //   Marked noexcept for only move constructor and move assign operators. | 
 | // - All the non-members are in the 'base' namespace instead of 'std'. | 
 | // | 
 | // Note that T cannot have a constructor T(Optional<T>) etc. Optional<T> checks | 
 | // T's constructor (specifically via IsConvertibleFromOptional), and in the | 
 | // check whether T can be constructible from Optional<T>, which is recursive | 
 | // so it does not work. As of Feb 2018, std::optional C++17 implementation in | 
 | // both clang and gcc has same limitation. MSVC SFINAE looks to have different | 
 | // behavior, but anyway it reports an error, too. | 
 | template <typename T> | 
 | class OPTIONAL_DECLSPEC_EMPTY_BASES Optional | 
 |     : public internal::OptionalBase<T>, | 
 |       public internal::CopyConstructible<std::is_copy_constructible<T>::value>, | 
 |       public internal::MoveConstructible<std::is_move_constructible<T>::value>, | 
 |       public internal::CopyAssignable<std::is_copy_constructible<T>::value && | 
 |                                       std::is_copy_assignable<T>::value>, | 
 |       public internal::MoveAssignable<std::is_move_constructible<T>::value && | 
 |                                       std::is_move_assignable<T>::value> { | 
 |  public: | 
 | #undef OPTIONAL_DECLSPEC_EMPTY_BASES | 
 |   using value_type = T; | 
 |  | 
 |   // Defer default/copy/move constructor implementation to OptionalBase. | 
 |   constexpr Optional() = default; | 
 |   constexpr Optional(const Optional& other) = default; | 
 |   constexpr Optional(Optional&& other) noexcept( | 
 |       std::is_nothrow_move_constructible<T>::value) = default; | 
 |  | 
 |   constexpr Optional(nullopt_t) {}  // NOLINT(runtime/explicit) | 
 |  | 
 |   // Converting copy constructor. "explicit" only if | 
 |   // std::is_convertible<const U&, T>::value is false. It is implemented by | 
 |   // declaring two almost same constructors, but that condition in enable_if_t | 
 |   // is different, so that either one is chosen, thanks to SFINAE. | 
 |   template < | 
 |       typename U, | 
 |       std::enable_if_t<std::is_constructible<T, const U&>::value && | 
 |                            !internal::IsConvertibleFromOptional<T, U>::value && | 
 |                            std::is_convertible<const U&, T>::value, | 
 |                        bool> = false> | 
 |   Optional(const Optional<U>& other) : internal::OptionalBase<T>(other) {} | 
 |  | 
 |   template < | 
 |       typename U, | 
 |       std::enable_if_t<std::is_constructible<T, const U&>::value && | 
 |                            !internal::IsConvertibleFromOptional<T, U>::value && | 
 |                            !std::is_convertible<const U&, T>::value, | 
 |                        bool> = false> | 
 |   explicit Optional(const Optional<U>& other) | 
 |       : internal::OptionalBase<T>(other) {} | 
 |  | 
 |   // Converting move constructor. Similar to converting copy constructor, | 
 |   // declaring two (explicit and non-explicit) constructors. | 
 |   template < | 
 |       typename U, | 
 |       std::enable_if_t<std::is_constructible<T, U&&>::value && | 
 |                            !internal::IsConvertibleFromOptional<T, U>::value && | 
 |                            std::is_convertible<U&&, T>::value, | 
 |                        bool> = false> | 
 |   Optional(Optional<U>&& other) : internal::OptionalBase<T>(std::move(other)) {} | 
 |  | 
 |   template < | 
 |       typename U, | 
 |       std::enable_if_t<std::is_constructible<T, U&&>::value && | 
 |                            !internal::IsConvertibleFromOptional<T, U>::value && | 
 |                            !std::is_convertible<U&&, T>::value, | 
 |                        bool> = false> | 
 |   explicit Optional(Optional<U>&& other) | 
 |       : internal::OptionalBase<T>(std::move(other)) {} | 
 |  | 
 |   template <class... Args> | 
 |   constexpr explicit Optional(in_place_t, Args&&... args) | 
 |       : internal::OptionalBase<T>(in_place, std::forward<Args>(args)...) {} | 
 |  | 
 |   template < | 
 |       class U, | 
 |       class... Args, | 
 |       class = std::enable_if_t<std::is_constructible<value_type, | 
 |                                                      std::initializer_list<U>&, | 
 |                                                      Args...>::value>> | 
 |   constexpr explicit Optional(in_place_t, | 
 |                               std::initializer_list<U> il, | 
 |                               Args&&... args) | 
 |       : internal::OptionalBase<T>(in_place, il, std::forward<Args>(args)...) {} | 
 |  | 
 |   // Forward value constructor. Similar to converting constructors, | 
 |   // conditionally explicit. | 
 |   template < | 
 |       typename U = value_type, | 
 |       std::enable_if_t< | 
 |           std::is_constructible<T, U&&>::value && | 
 |               !std::is_same<internal::RemoveCvRefT<U>, in_place_t>::value && | 
 |               !std::is_same<internal::RemoveCvRefT<U>, Optional<T>>::value && | 
 |               std::is_convertible<U&&, T>::value, | 
 |           bool> = false> | 
 |   constexpr Optional(U&& value) | 
 |       : internal::OptionalBase<T>(in_place, std::forward<U>(value)) {} | 
 |  | 
 |   template < | 
 |       typename U = value_type, | 
 |       std::enable_if_t< | 
 |           std::is_constructible<T, U&&>::value && | 
 |               !std::is_same<internal::RemoveCvRefT<U>, in_place_t>::value && | 
 |               !std::is_same<internal::RemoveCvRefT<U>, Optional<T>>::value && | 
 |               !std::is_convertible<U&&, T>::value, | 
 |           bool> = false> | 
 |   constexpr explicit Optional(U&& value) | 
 |       : internal::OptionalBase<T>(in_place, std::forward<U>(value)) {} | 
 |  | 
 |   ~Optional() = default; | 
 |  | 
 |   // Defer copy-/move- assign operator implementation to OptionalBase. | 
 |   Optional& operator=(const Optional& other) = default; | 
 |   Optional& operator=(Optional&& other) noexcept( | 
 |       std::is_nothrow_move_assignable<T>::value&& | 
 |           std::is_nothrow_move_constructible<T>::value) = default; | 
 |  | 
 |   Optional& operator=(nullopt_t) { | 
 |     FreeIfNeeded(); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Perfect-forwarded assignment. | 
 |   template <typename U> | 
 |   std::enable_if_t< | 
 |       !std::is_same<internal::RemoveCvRefT<U>, Optional<T>>::value && | 
 |           std::is_constructible<T, U>::value && | 
 |           std::is_assignable<T&, U>::value && | 
 |           (!std::is_scalar<T>::value || | 
 |            !std::is_same<std::decay_t<U>, T>::value), | 
 |       Optional&> | 
 |   operator=(U&& value) { | 
 |     InitOrAssign(std::forward<U>(value)); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Copy assign the state of other. | 
 |   template <typename U> | 
 |   std::enable_if_t<!internal::IsAssignableFromOptional<T, U>::value && | 
 |                        std::is_constructible<T, const U&>::value && | 
 |                        std::is_assignable<T&, const U&>::value, | 
 |                    Optional&> | 
 |   operator=(const Optional<U>& other) { | 
 |     CopyAssign(other); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Move assign the state of other. | 
 |   template <typename U> | 
 |   std::enable_if_t<!internal::IsAssignableFromOptional<T, U>::value && | 
 |                        std::is_constructible<T, U>::value && | 
 |                        std::is_assignable<T&, U>::value, | 
 |                    Optional&> | 
 |   operator=(Optional<U>&& other) { | 
 |     MoveAssign(std::move(other)); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   constexpr const T* operator->() const { | 
 |     CHECK(storage_.is_populated_); | 
 |     return &storage_.value_; | 
 |   } | 
 |  | 
 |   constexpr T* operator->() { | 
 |     CHECK(storage_.is_populated_); | 
 |     return &storage_.value_; | 
 |   } | 
 |  | 
 |   constexpr const T& operator*() const& { | 
 |     CHECK(storage_.is_populated_); | 
 |     return storage_.value_; | 
 |   } | 
 |  | 
 |   constexpr T& operator*() & { | 
 |     CHECK(storage_.is_populated_); | 
 |     return storage_.value_; | 
 |   } | 
 |  | 
 |   constexpr const T&& operator*() const&& { | 
 |     CHECK(storage_.is_populated_); | 
 |     return std::move(storage_.value_); | 
 |   } | 
 |  | 
 |   constexpr T&& operator*() && { | 
 |     CHECK(storage_.is_populated_); | 
 |     return std::move(storage_.value_); | 
 |   } | 
 |  | 
 |   constexpr explicit operator bool() const { return storage_.is_populated_; } | 
 |  | 
 |   constexpr bool has_value() const { return storage_.is_populated_; } | 
 |  | 
 |   constexpr T& value() & { | 
 |     CHECK(storage_.is_populated_); | 
 |     return storage_.value_; | 
 |   } | 
 |  | 
 |   constexpr const T& value() const& { | 
 |     CHECK(storage_.is_populated_); | 
 |     return storage_.value_; | 
 |   } | 
 |  | 
 |   constexpr T&& value() && { | 
 |     CHECK(storage_.is_populated_); | 
 |     return std::move(storage_.value_); | 
 |   } | 
 |  | 
 |   constexpr const T&& value() const&& { | 
 |     CHECK(storage_.is_populated_); | 
 |     return std::move(storage_.value_); | 
 |   } | 
 |  | 
 |   template <class U> | 
 |   constexpr T value_or(U&& default_value) const& { | 
 |     // TODO(mlamouri): add the following assert when possible: | 
 |     // static_assert(std::is_copy_constructible<T>::value, | 
 |     //               "T must be copy constructible"); | 
 |     static_assert(std::is_convertible<U, T>::value, | 
 |                   "U must be convertible to T"); | 
 |     return storage_.is_populated_ | 
 |                ? value() | 
 |                : static_cast<T>(std::forward<U>(default_value)); | 
 |   } | 
 |  | 
 |   template <class U> | 
 |   constexpr T value_or(U&& default_value) && { | 
 |     // TODO(mlamouri): add the following assert when possible: | 
 |     // static_assert(std::is_move_constructible<T>::value, | 
 |     //               "T must be move constructible"); | 
 |     static_assert(std::is_convertible<U, T>::value, | 
 |                   "U must be convertible to T"); | 
 |     return storage_.is_populated_ | 
 |                ? std::move(value()) | 
 |                : static_cast<T>(std::forward<U>(default_value)); | 
 |   } | 
 |  | 
 |   void swap(Optional& other) { | 
 |     if (!storage_.is_populated_ && !other.storage_.is_populated_) | 
 |       return; | 
 |  | 
 |     if (storage_.is_populated_ != other.storage_.is_populated_) { | 
 |       if (storage_.is_populated_) { | 
 |         other.storage_.Init(std::move(storage_.value_)); | 
 |         FreeIfNeeded(); | 
 |       } else { | 
 |         storage_.Init(std::move(other.storage_.value_)); | 
 |         other.FreeIfNeeded(); | 
 |       } | 
 |       return; | 
 |     } | 
 |  | 
 |     DCHECK(storage_.is_populated_ && other.storage_.is_populated_); | 
 |     using std::swap; | 
 |     swap(**this, *other); | 
 |   } | 
 |  | 
 |   void reset() { FreeIfNeeded(); } | 
 |  | 
 |   template <class... Args> | 
 |   T& emplace(Args&&... args) { | 
 |     FreeIfNeeded(); | 
 |     storage_.Init(std::forward<Args>(args)...); | 
 |     return storage_.value_; | 
 |   } | 
 |  | 
 |   template <class U, class... Args> | 
 |   std::enable_if_t< | 
 |       std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value, | 
 |       T&> | 
 |   emplace(std::initializer_list<U> il, Args&&... args) { | 
 |     FreeIfNeeded(); | 
 |     storage_.Init(il, std::forward<Args>(args)...); | 
 |     return storage_.value_; | 
 |   } | 
 |  | 
 |  private: | 
 |   // Accessing template base class's protected member needs explicit | 
 |   // declaration to do so. | 
 |   using internal::OptionalBase<T>::CopyAssign; | 
 |   using internal::OptionalBase<T>::FreeIfNeeded; | 
 |   using internal::OptionalBase<T>::InitOrAssign; | 
 |   using internal::OptionalBase<T>::MoveAssign; | 
 |   using internal::OptionalBase<T>::storage_; | 
 | }; | 
 |  | 
 | // Here after defines comparation operators. The definition follows | 
 | // http://en.cppreference.com/w/cpp/utility/optional/operator_cmp | 
 | // while bool() casting is replaced by has_value() to meet the chromium | 
 | // style guide. | 
 | template <class T, class U> | 
 | constexpr bool operator==(const Optional<T>& lhs, const Optional<U>& rhs) { | 
 |   if (lhs.has_value() != rhs.has_value()) | 
 |     return false; | 
 |   if (!lhs.has_value()) | 
 |     return true; | 
 |   return *lhs == *rhs; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator!=(const Optional<T>& lhs, const Optional<U>& rhs) { | 
 |   if (lhs.has_value() != rhs.has_value()) | 
 |     return true; | 
 |   if (!lhs.has_value()) | 
 |     return false; | 
 |   return *lhs != *rhs; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator<(const Optional<T>& lhs, const Optional<U>& rhs) { | 
 |   if (!rhs.has_value()) | 
 |     return false; | 
 |   if (!lhs.has_value()) | 
 |     return true; | 
 |   return *lhs < *rhs; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator<=(const Optional<T>& lhs, const Optional<U>& rhs) { | 
 |   if (!lhs.has_value()) | 
 |     return true; | 
 |   if (!rhs.has_value()) | 
 |     return false; | 
 |   return *lhs <= *rhs; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator>(const Optional<T>& lhs, const Optional<U>& rhs) { | 
 |   if (!lhs.has_value()) | 
 |     return false; | 
 |   if (!rhs.has_value()) | 
 |     return true; | 
 |   return *lhs > *rhs; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator>=(const Optional<T>& lhs, const Optional<U>& rhs) { | 
 |   if (!rhs.has_value()) | 
 |     return true; | 
 |   if (!lhs.has_value()) | 
 |     return false; | 
 |   return *lhs >= *rhs; | 
 | } | 
 |  | 
 | template <class T> | 
 | constexpr bool operator==(const Optional<T>& opt, nullopt_t) { | 
 |   return !opt; | 
 | } | 
 |  | 
 | template <class T> | 
 | constexpr bool operator==(nullopt_t, const Optional<T>& opt) { | 
 |   return !opt; | 
 | } | 
 |  | 
 | template <class T> | 
 | constexpr bool operator!=(const Optional<T>& opt, nullopt_t) { | 
 |   return opt.has_value(); | 
 | } | 
 |  | 
 | template <class T> | 
 | constexpr bool operator!=(nullopt_t, const Optional<T>& opt) { | 
 |   return opt.has_value(); | 
 | } | 
 |  | 
 | template <class T> | 
 | constexpr bool operator<(const Optional<T>& opt, nullopt_t) { | 
 |   return false; | 
 | } | 
 |  | 
 | template <class T> | 
 | constexpr bool operator<(nullopt_t, const Optional<T>& opt) { | 
 |   return opt.has_value(); | 
 | } | 
 |  | 
 | template <class T> | 
 | constexpr bool operator<=(const Optional<T>& opt, nullopt_t) { | 
 |   return !opt; | 
 | } | 
 |  | 
 | template <class T> | 
 | constexpr bool operator<=(nullopt_t, const Optional<T>& opt) { | 
 |   return true; | 
 | } | 
 |  | 
 | template <class T> | 
 | constexpr bool operator>(const Optional<T>& opt, nullopt_t) { | 
 |   return opt.has_value(); | 
 | } | 
 |  | 
 | template <class T> | 
 | constexpr bool operator>(nullopt_t, const Optional<T>& opt) { | 
 |   return false; | 
 | } | 
 |  | 
 | template <class T> | 
 | constexpr bool operator>=(const Optional<T>& opt, nullopt_t) { | 
 |   return true; | 
 | } | 
 |  | 
 | template <class T> | 
 | constexpr bool operator>=(nullopt_t, const Optional<T>& opt) { | 
 |   return !opt; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator==(const Optional<T>& opt, const U& value) { | 
 |   return opt.has_value() ? *opt == value : false; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator==(const U& value, const Optional<T>& opt) { | 
 |   return opt.has_value() ? value == *opt : false; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator!=(const Optional<T>& opt, const U& value) { | 
 |   return opt.has_value() ? *opt != value : true; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator!=(const U& value, const Optional<T>& opt) { | 
 |   return opt.has_value() ? value != *opt : true; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator<(const Optional<T>& opt, const U& value) { | 
 |   return opt.has_value() ? *opt < value : true; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator<(const U& value, const Optional<T>& opt) { | 
 |   return opt.has_value() ? value < *opt : false; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator<=(const Optional<T>& opt, const U& value) { | 
 |   return opt.has_value() ? *opt <= value : true; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator<=(const U& value, const Optional<T>& opt) { | 
 |   return opt.has_value() ? value <= *opt : false; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator>(const Optional<T>& opt, const U& value) { | 
 |   return opt.has_value() ? *opt > value : false; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator>(const U& value, const Optional<T>& opt) { | 
 |   return opt.has_value() ? value > *opt : true; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator>=(const Optional<T>& opt, const U& value) { | 
 |   return opt.has_value() ? *opt >= value : false; | 
 | } | 
 |  | 
 | template <class T, class U> | 
 | constexpr bool operator>=(const U& value, const Optional<T>& opt) { | 
 |   return opt.has_value() ? value >= *opt : true; | 
 | } | 
 |  | 
 | template <class T> | 
 | constexpr Optional<std::decay_t<T>> make_optional(T&& value) { | 
 |   return Optional<std::decay_t<T>>(std::forward<T>(value)); | 
 | } | 
 |  | 
 | template <class T, class... Args> | 
 | constexpr Optional<T> make_optional(Args&&... args) { | 
 |   return Optional<T>(in_place, std::forward<Args>(args)...); | 
 | } | 
 |  | 
 | template <class T, class U, class... Args> | 
 | constexpr Optional<T> make_optional(std::initializer_list<U> il, | 
 |                                     Args&&... args) { | 
 |   return Optional<T>(in_place, il, std::forward<Args>(args)...); | 
 | } | 
 |  | 
 | // Partial specialization for a function template is not allowed. Also, it is | 
 | // not allowed to add overload function to std namespace, while it is allowed | 
 | // to specialize the template in std. Thus, swap() (kind of) overloading is | 
 | // defined in base namespace, instead. | 
 | template <class T> | 
 | std::enable_if_t<std::is_move_constructible<T>::value && | 
 |                  internal::IsSwappable<T>::value> | 
 | swap(Optional<T>& lhs, Optional<T>& rhs) { | 
 |   lhs.swap(rhs); | 
 | } | 
 |  | 
 | }  // namespace base | 
 |  | 
 | namespace std { | 
 |  | 
 | template <class T> | 
 | struct hash<base::Optional<T>> { | 
 |   size_t operator()(const base::Optional<T>& opt) const { | 
 |     return opt == base::nullopt ? 0 : std::hash<T>()(*opt); | 
 |   } | 
 | }; | 
 |  | 
 | }  // namespace std | 
 |  | 
 | #endif  // BASE_OPTIONAL_H_ |